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ABSTRACT 

 

 

 

Shell structures have been widely used in engineering applications such as pipelines, 

aerospace, marine structures, and cooling towers. Occurring suddenly and generally 

inadvertent due to its nature, buckling is one of the main failure considerations in the 

design of these structures. The presence of defects, such as geometric imperfection, 

uneven loading, the boundary condition of the shell, material discontinuity/crack 

imperfection, and so on in shell structures may severely compromise their buckling 

behavior and jeopardize the structural integrity. In this study, experimental and numerical 

investigations on the buckling behavior of axially compressed conical shell with uneven 

axial length imperfection were carried out. The effect of imperfection amplitude, wave 

number, and wave type were investigated. Initial geometric imperfection in the form of 

(i) sinusoid waves, (ii) triangle waves, and (iii) square waves having different wave 

number are explored. This thesis contains experimental data verification and further 

Finite Element (FE) prediction. Excellent repeatability between experimental results with 

only 0% to 7% of error was revealed. Abaqus FE was used to simulate the numerical 

modelling. The imperfection amplitude and shape highly influenced the load-carrying 

capacity of conical shells. Triangular waves yields the lowest imperfection sensitivity in 

comparison to other wave shape. Furthermore, the influence of wave number was also 

studied for each wave shapes. It was found that the wave number has insignificant 

influence on the buckling load of the axially compressed cones. In the next step, a 

comparison between different imperfection approach, namely (i) Eigenmode 

imperfection, (ii) Single and Multiple Load Indentation (SLI and MLI), (iii) crack 

imperfection, and (iv) uneven axial length imperfection was carried out to determine the 

worst knockdown factor (KDF) for axially compressed steel conical shell. As predicted, 

imperfection severely affected the buckling strength of conical shells, and the decrease 

in buckling strength is heavily reliant on the imperfection approach. It is apparent that 

for axially compressed cones with radius-to-thickness ratio, r1/t = 25, uneven axial length 

imperfection was seen to produce the lowest buckling load, followed by eigenmode 

imperfection, crack imperfection, and load indentation for imperfection amplitude 0 < A 

< 1.68. Increasing the imperfection amplitude, A, beyond this level (A ≥ 1.68), the highest 

reduction in buckling load was found to be eigenmode imperfection, followed by uneven 

axial length, crack and load indentation. Furthermore, based on ECCS 2008 

recommendation for imperfection tolerance, the lower bound curve which can be used 

for design recommendation purposes has been proposed for the worst imperfection 

approach case (uneven axial length and eigenmode imperfection) for different conical 

shell geometry configurations. Finally, the proposed lower bound curve was compared 

with the plot of NASA SP-8019 recommended imperfection correlation factor for axially 

compressed cone. Results showed that the proposed lower bound curve for axially 

compressed conical shells with uneven axial length imperfection is notably higher than 

the NASA SP-8019 KDF by 7%. However, axially compressed conical shells with 

eigenmode imperfection were seen to underestimate NASA’s KDF by 55%, particularly 

for elastic buckling.
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KETAKSTABILAN DAN KESENSITIVITIAN TERHADAP KETAKSEMPURNAAN 

OLEH KELOMPANG BERKON DI BAWAH MAMPATAN PAKSI  

 

 

 

ABSTRAK 

 

 

 

Struktur kelompang banyak digunakan dalam aplikasi kejuruteraan seperti saluran paip, 

aeroangkasa, laut, dan menara penyejuk. Berlaku tiba-tiba dan tidak sengaja, lengkokan 

adalah salah satu pertimbangan kegagalan utama dalam struktur ini. Ketaksempurnaan 

geometri, beban yang tidak rata, keadaan sempadan kelompang, ketakselanjaran 

bahan/ketaksempurnaan retak dalam kelompang menjejaskan tingkah laku lengkokan 

dan integriti struktur. Dalam kajian ini, penyelidikan ujikaji dan berangka mengenai 

tingkah laku lengkokan kelompang berkon termampat paksi dengan ketaksempurnaan 

panjang paksi dilakukan. Kesan ketaksempurnaan amplitud, bilangan gelombang dan 

jenis gelombang disiasat. Tiga jenis ketaksempurnaan geometri dengan bilangan 

gelombang berbeza dianalisis, iaitu (i) gelombang bentuk sinus, (ii) gelombang segitiga, 

dan (iii) gelombang segiempat sama. Pengesahan data ujikaji dan lanjutan analisis 

unsur terhingga disediakan. Kebolehulangan data ujikaji yang baik dinyatakan melalui 

keputusan ujian dengan hanya 0% hingga 7% ralat. Unsur terhingga Abaqus digunakan 

unutuk menyelakukan pemodelan berangka. Ketaksempurnaan bentuk dan amplitud 

mempengaruhi beban kon. Gelombang berbentuk segitiga menghasilkan kepekaan 

terhadap ketaksempurnaan yang terendah berbanding gelombang yang lain. Seterusnya, 

kesan bilangan gelombang juga dikaji untuk setiap bentuk gelombang. Ianya didapati 

bahawa bilangan gelombang adalah takbererti kepada keupayaan menanggung beban 

kon. Perbandingan antara pendekatan ketaksempurnaan yang berbeza iaitu (i) mod 

Eigen, (ii) Lekukan Beban Tunggal dan Berganda (LBT and LBB), (iii) keretakan and 

(iv) ketaksempurnaan panjang paksi direalisasikan untuk menentukan faktor kejatuhan 

terburuk bagi kelompang berkon keluli. Seperti yang diramalkan, ketaksempurnaan 

sangat mempengaruhi kekuatan lengkokan kelompang berkon. Kon yang dimampatkan 

secara paksi dengan nisbah jejari-ke-ketebalan, r1/t=25, ketaksempurnaan panjang 

paksi dilihat menghasilkan beban lengkokan terendah, diikuti oleh mod eigen, 

ketaksempurnaan retak dan lekukan beban untuk amplitud ketaksempurnaan 0<A<1.68. 

Apabila amplitud, A, ditingkatkan, melebihi tahap ini (A≥1.68), pengurangan tertinggi 

dalam beban lengkokan didapati adalah mod eigen, diikuti oleh panjang paksi yang tidak 

rata, ketaksempurnaan retak dan lekukan beban. Berdasarkan saranan ECCS 2008 

untuk had terima ketaksempurnaan, lengkung batasan bawah telah dicadangkan untuk 

kes ketaksempurnaan terburuk (panjang paksi yang tidak rata) untuk tatarajah geometri 

kelompang berkon yang berbeza. Akhirnya, lengkung batasan bawah yang dicadangkan 

dibandingkan dengan plot faktor sekaitan ketaksempurnaan yang disarankan oleh NASA 

SP 8019 untuk kon termampat paksi. Hasil kajian menunjukkan bahawa lengkung 

batasan bawah yang dicadangkan untuk kelompang berkon termampat paksi dengan 

ketaksempurnaan panjang paksi lebih tinggi daripada NASA SP-8019 KDF sebanyak 

7%. Walau bagaimanapun, kelompang berkon yang dimampatkan secara paksi dengan 

mod eigen dilihat lebih rendah dari KDF NASA sebanyak 55%, terutamanya untuk 

lengkokan elastik. 
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CHAPTER 1 

 

 

INTRODUCTION 
 

 

 

 

1.1 Background 

 
Conical shell structures found its application in various industries such as offshore, 

marine, mechanical, civil, and aeronautical. Different industries used different thicknesses 

of conical shell as this will determine the failure mode of the structures. For thin-walled 

conical shells, the failure is usually governed by elastic buckling, while for thicker shells, 

the failure is often at the plastic region. For instance, in the offshore industry, relatively 

thick conical structures are often being used as pressure vessels, pipelines, legs for oil 

drilling platform and connectors between two cylinders that have different diameters 

(Błachut, 2016; Ifayefunmi, 2017). Whilst, thin-walled conical shells were applied to most 

aeronautical, aerospace, and civil industries (Khakimova et al., 2014). In aerospace 

applications, thin conical structures are used as parts of launcher transport systems and 

adapters between cylindrical shells of different diameters, as stated by Khakimova et al. 

(2016b) and Wagner et al. (2018), respectively. This statement is also supported in the 

work presented by Hao et al. (2016). Furthermore, Chahardoli and Alavi Nia (2017) 

expressed that thin-walled conical structures are used in rail and car industry as energy 

absorber, as seen also in the work of Jafarian and Rezvani (2019). 

When in use, conical shells are often subjected to various types of loading such as 

axial compression, external pressure, internal pressure, or a combination of loads, which 

can lead to instability. This technical challenge has led to extensive research in the area of 

axially compressed conical shells. A collection of experimental data on isotropic conical 
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shells under axial compression has been presented in Seide et al. (1960) with different top 

radius-to-thickness ratios, r1/t. Following this, Seide (1961) derived a simple formula to 

calculate the critical elastic buckling load, Fcrit of a perfect isotropic axially compressed 

conical shell, see Equation (1.1): 

𝐹𝑐𝑟𝑖𝑡 =
2𝜋𝐸𝑡2𝑐𝑜𝑠2𝛽

√3(1 − 𝜐2)
 (1.1) 

 

where  

E  = Young’s modulus 

t  = wall thickness  

β  = cone semi-vertex angle  

ν  = Poisson’s ratio  

 

Nevertheless, Equation (1.1) is restricted to the failure of truncated cones in the 

elastic region. To account for the plastic mechanism of conical shells, Chryssanthopoulos 

and Poggi (2001) proposed a formula for the collapse strength, Fcoll, of unstiffened conical 

shell subjected to axial compression as expressed in Equation (1.2). 

𝐹𝑐𝑜𝑙𝑙 = 2𝜋𝑟1𝑡𝜎𝑦𝑝𝑐𝑜𝑠 𝛽 (1.2) 

 

where  

r1  = the top radius of the cone 

t  = wall thickness  

σyp  = yield strength of material  

β  = cone semi-vertex angle  

 

However, early research on the subject matter reports large discrepancies between 


