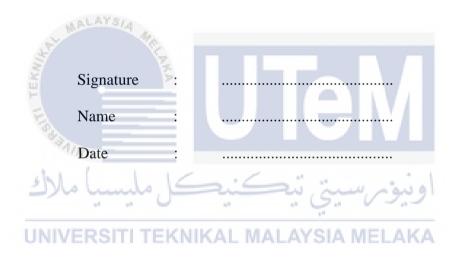


Faculty of Manufacturing Engineering

Master of Science in Manufacturing Engineering

2020

DESIGN AND DEVELOPMENT OF HORIZONTAL AXIS WIND BLADE IN REGENERATIVE ENERGY SYSTEM FOR COOLING TOWER


GOH JEE BOON

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this thesis entitled "Design and Development of Horizontal Axis Wind Blade Regenerative Energy System for Cooling Tower" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Manufacturing Engineering.

DEDICATION

This thesis is dedicated

to my beloved parents and dearest siblings,

who have always been an infinite source of inspiration and love.

ABSTRACT

In Malaysia which is experiencing humid and hot climates throughout the year, usage of cooling tower is very common in most industry and company to cool down the machineries. The waste produced into the environment by these cooling towers is in the form of heat and wind energy. As an initiative for sustainable development, there is a need for development of an efficient and effective energy regenerative system. This thesis presents a work on design and development of such system, named Wasted Kinetic Energy Recovery System (WKERS) to harvest the discharged wind energy from a second source wind energy that is the cooling tower. Cooling tower provides the most suitable wind speed during operation, and the best part is that the wind supply is stable and constant. This study aims to determine the possibility of generating electricity using a regenerative system. In accordance with that, this study also aims to establish the most suitable blade design for the Horizontal Axis Wind Turbine (HAWT) of WKERS. Hence, three different types of blades, which are elliptical, swept and National Renewable Energy Laboratory (NREL) Phase VI blades were designed and their performances were evaluated for the application in WKERS. Firstly, the three blades were sketched and designed using SolidWorks software. Next, linear and rotational flow simulations were carried out using Computational Fluid Dynamics (CFD) analysis to determine the performance and efficiency of the different blade designs. The three blades were fabricated as prototypes. Experimental studies were carried out to validate the rotational speed of each wind turbine blade in order to evaluate the performances of each blade design. Simulation results showed that the blade with the best lifting effect was the swept blade, however more vortices were created after the trailing edge and caused high induced drag to the blade itself. Results obtained showed that the elliptical blade possess the best overall performances of the three proposed designs. The fabricated prototype of the elliptical blade produced up to 508 rev/min of average rotational speed and was the highest value compared to the other two blade types. The elliptical blade design was concluded as the best blade design for WKERS based on results of both simulations and experimental work.

REKA BENTUK DAN PEMBANGUNAN BILAH ANGIN PAKSI MENDATAR DALAM SISTEM TENAGA REGENERATIF UNTUK MENARA PENYEJUKAN

ABSTRAK

Malaysia mengalami iklim lembap dan panas sepanjang tahun, penggunaan menara penyejukan adalah sangat biasa di kebanyakan industri dan syarikat untuk menyejukkan jentera. Tenaga haba dan tenaga angin telah terjadi sisa yang dihasilkan ke dalam alam sekitar oleh menara penyejukan ini. Sebagai inisiatif untuk pembangunan mampan, kini terdapat keperluan untuk membangunkan sistem penjanaan semula yang cekap dan berkesan. Tesis ini membentangkan satu reka bentuk dan pembangunan sistem sedemikian, yang dinamakan Sistem Pemulihan Tenaga Kinetik (Waste Kinetic Energy Regeneration System - WKERS) untuk menuai tenaga angin yang dikeluarkan daripada tenaga angin sumber kedua iaitu menara penyejukan. Lagipun, menara penyejuk menyediakan kelajuan angin yang paling sesuai semasa operasi, dan bahagian yang terbaik ialah bekalan angin stabil dan berterusan. Kajian ini bertujuan untuk menentukan kemungkinan menjana elektrik menggunakan sistem regeneratif. Selaras dengan itu, kajian ini juga bertujuan untuk membina reka bentuk bilah yang paling sesuai untuk turbin angin paksi mendatar (Horizontal Axis Wind Turbine - HAWT) berdasarkan WKERS. Oleh itu, tiga bilah yang berbeza, iaitu bilah lonjong, bilah menyapu dan bilah Tenaga Makmal Tenaga Diperbaharui Kebangsaan (National Renewable Energy Laboratory - NREL) Fasa VI telah direka dan prestasinys telah dinilai untuk penggunaan di WKERS. Pertama sekali, tiga-tiga bilah telah direkabentuk dan direka menggunakan perisian SolidWorks. Seterusnya, simulasi aliran linear dan putaran dijalankan menggunakan analisis dinamik cecair pengkomputeran (Computational Fluid Dynamics - CFD) untuk menentukan prestasi dan kecekapan reka bentuk bilah yang berlainan. Tiga bilah telah difabulasi sebagai prototaip. Kajian eksperimental dijalankan untuk mengesahkan kelajuan putaran masing-masing bilah turbin angin untuk menilai prestasi setiap reka bentuk bilah. Hasil simulasi menunjukkan bahawa bilah dengan kesan mengangkat yang terbaik adalah bilah menyapu, namun lebih banyak vortex telah dihasilkan pada bahagian belakang bilah dan menyebabkan seretan teraruh tinggi ke bilah itu sendiri. Hasil yang diperoleh menunjukkan bahawa bilah lonjong mempunyai prestasi keseluruhan yang terbaik di antara tiga reka bentuk yang dicadangkan. Prototaip fabulasi bilah lonjong dihasilkan sehingga 508 rev/min kelajuan putaran purata dan paling tinggi berbanding dengan dua jenis bilah yang lain. Reka bentuk bilah elips disimpulkan sebagai reka bentuk bilah yang terbaik untuk WKERS berdasarkan keputusan kedua-dua simulasi dan kerja percubaan.

ACKNOWLEDGEMENTS

Firstly, I would like to take this opportunity to express my sincere gratitude to my main supervisor, Associate Professor Dr. Zamberi Bin Jamaludin and my co-supervisor Dr. Fairul Azni Bin Jafar from the Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka (UTeM) for their invaluable guidance, encouragement and support throughout the course of the project. Numerous of brilliant suggestions and kind supports I have received from them throughout the journey to the completion of this study.

I would also like to give thanks En. Mahasan Bin Mat Ali from Faculty of Manufacturing Engineering, UTeM for his kind advice and continuous assistance, from the final year project of my bachelor's degree until the completion of this master thesis. Besides, I also wish to express my appreciation to my fiancée, Teow Chia Yee, who did physically and mentally support me and helping me in every single way until finishing my research work. Special thanks to my beloved parents and dearest family for their inspiration and ongoing support especially in terms of financial in completing this study.

Last but not least, I am thankful for my colleagues and Mechatronics Lab members for their generous and helpful attitude. I would also like to thank everyone that have been contributing in any part of completing this study.

Lastly, deepest appreciation goes to UTeM for supporting the protection of WKERS concept with a legal copyright law governed by Intellectual Property Corporation of Malaysia under application number of LY2016000528. Not to forget the opportunities provided by UTeM for participation and the assurance awards in events of CII-YIM 2016, MTE 2016, Pecipta'15, UTeMEX'2015 and MINI UTeMEX'2014.

TABLE OF CONTENTS

PAGE

APP DED ABS ABS ACK TAB LIST LIST LIST	ROV DICAT TRA TRA CNOV BLE C C OF C OF C OF C OF	TION CT	i ii iv vii ix xiv xvi xvi xviii		
CHA	РТЕ	R			
1.	INT	RODUCTION	1		
	1.1	Background	1		
	1.2	Problem statement	4		
		Research objectives	5		
		Research scopes	6		
	1.5 1.6	Research question Research outlines	6 7		
	1.0		/		
2.	2. LITERATURE REVIEW 9				
	2.1	Renewable energy	9		
		2.1.1 Energy demand - trend in renewable energy	10		
		2.1.2 Energy harvesting methods	11		
	2.2	Cooling tower	12		
		2.2.1 Natural draft cooling tower MALAYSIA MELAKA	13		
		2.2.2 Mechanical draft cooling tower	15		
	22	2.2.3 Wind power extraction from cooling tower	18 20		
	2.3	Wind turbine regenerative system 2.3.1 Horizontal axis wind turbine (HAWT)	20 21		
		2.3.1.1 Upwind HAWT	21		
		2.3.1.2 Downwind HAWT	23		
		2.3.2 Vertical axis wind turbine (VAWT)	23		
		2.3.2.1 Darrieus VAWT	24		
		2.3.2.2 Giromill VAWT	25		
		2.3.2.3 Savonius VAWT	26		
		2.3.3 Comparison between HAWT and VAWT	27		
		2.3.4 Blade design	28		
		2.3.4.1 Modern wind turbine blade design	29		
		2.3.4.2 Aircraft blade design	31		
		a. Rectangular wing	31 32		
		b. Elliptical wing c. Swept wing	32 32		
		d. Delta wing	32		

iv

		2.3.4.3 Criteria for blade design	34
		a. Number of blades	34
		b. Tip speed ratio (TSR)	35
		c. Angle-of-attack	36
	2.4	Summary	42
3.		THODOLOGY	43
	3.1	Overall project progress flowchart	43
	3.2	Phase 1 and 2: investigation of cooling tower characteristics and wind	4.5
		properties	45
		3.2.1 Cooling tower specification and dimension	47 50
		3.2.2 Cooling tower wind outlet wind speed3.2.3 Cooling tower potential wind power	50 51
	3.3	Phase 3: blade design and development (simulation)	53
	5.5	3.3.1 Selection of blade design for performance analysis	55 54
		3.3.1.1 Modern wind turbine blade-shaped design	55
		3.3.1.2 Aircraft wing blade-shaped design	58
		a. Elliptical wing-shaped design	59
		b. Swept wing-shaped design	60
		3.3.2 Blade-shaped design (draft sketching)	62
		3.3.2.1 NREL blade-shaped design	62
		3.3.2.2 Elliptical blade-shaped design	63
		3.3.2.3 Swept blade-shaped design	64
		3.3.3 SolidWorks blade-shaped design	64
		3.3.3.1 NREL blade-shaped design	65 67
		3.3.3.2 Elliptical blade-shaped design 3.3.3.3 Swept blade-shaped design	67 74
		3.3.4 Selection of the best blade angle of blade-shaped design HAWT	74 79
	3.4	Phase 4 and 5: WKERS design and development (validation)	79
	5.1	3.4.1 Wind tunnel design and development	80
		3.4.2 Wind turbine design and development	83
		3.4.3 Measuring and monitoring instrument	89
	3.5		90
	3.6	Summary	92
4.	RES	SULT AND DISCUSSION	93
	4.1	Phase 1 and 2: investigation of cooling tower characteristics and wind	
		properties	93
	1.0	4.1.1 Cooling tower wind outlet wind speed	94
	4.2	Phase 3: blade design and development (simulation)	99 100
		4.2.1 Linear flow simulation a. NREL blade-shaped design	100 101
		b. Elliptical blade-shaped design	101
		c. Swept blade-shaped design	104
		4.2.2 Rotational flow simulation	111
		a. NREL blade-shaped design	112
		b. Elliptical blade-shaped design	117
		c. Swept blade-shaped design	122
		4.2.3 Assessment of best blade design with finest blade angle	127

	4.3	4.3 Phase 4 and 5: WKERS design and development (validation)				
	4.3.1 Wind energy source (industrial cooling fan wind speed)					
		4.3.2 NREL blade-shaped HAWT	137			
		4.3.3 Elliptical blade-shaped HAWT	141			
		4.3.4 Swept blade-shaped HAWT	146			
	4.4	Phase 6: data compilation and final analysis (verification)	151			
	4.5	Summary	154			
5.	CO	NCLUSION AND RECOMMENDATIONS	155			
	5.1	Conclusion	155			
	5.2	Recommendation and future work	157			
REI	FERE	ENCES	158			
API	APPENDICES					

LIST OF TABLES

TABLE	TITLE					
3.1	LBCH-8 cooling tower basic specification					
3.2	Analysis of different wind turbine from different companies	57				
3.3	Ranking analysis of different aircraft wing-shaped	59				
3.4	Comparison of elliptical wing-shaped design aircraft (Fredriksen, 2001)	60				
3.5	Comparison of swept wing-shaped design aircraft (Modern Airliners, 2015)	61				
3.6	General characteristics of Supermarine Spitfire fighter aircraft	68				
3.7	wing (Fredriksen, 2001) General characteristics of Boeing 747-8I aircraft wing (Modern Airliners, 2015)					
3.8	General characteristics of Boeing 747-400 aircraft wing (Modern					
	Airliners, 2015)					
4.1	Average wind speed of wind source at different heights	95				
4.2	Wind speed statistics of LBCH-8 cooling tower wind outlet96					
4.3	Standard parameters of flow simulation setting 10					
4.4	NREL blade-shaped HAWT rotational flow simulation 11					
4.5	NREL blade-shaped HAWT velocity surface parameter	116				

4.6	Elliptical blade-shaped HAWT rotational flow simulation					
4.7	Elliptical blade-shaped HAWT velocity surface parameter					
4.8	Swept blade-shaped HAWT rotational flow simulation					
4.9	Swept blade-shaped HAWT velocity surface parameter	126				
4.10	The most suitable HAWT for validation process	128				
4.11	Area of blades	130				
4.12	Average wind speed of wind source from different heights	135				
4.13	Wind speed statistics of industrial cooling fan on different height 1					
4.14	Average RPM of NREL HAWT from different heights 1					
4.15	15 Rotational speed statistics of NREL blade HAWT on different					
	height					
4.16	Average RPM of elliptical HAWT at different heights	143				
4.17	Rotational speed statistics of elliptical blade HAWT on different	144				
	height					
4.18	Average RPM of swept HAWT at different heights	148				
4.19	Rotational speed statistics of swept blade HAWT on different	149				
	height					
4.20	Performance characteristics of the different blade design	153				

LIST OF FIGURES

FIGURE	TITLE					
1.1	Trends and challenges of building a wind turbine	3				
2.1	Final energy consumption by fuel from 1990 to 2016	10				
	(Department of Statistics Malaysia Official Portal, 2020)					
2.2	Natural draft cooling tower (India National Productivity Council,	14				
2.2	2006)	17				
2.3	Forced draft cooling tower (India National Productivity Council, 2006)	17				
2.4	Induced draft cooling tower (India National Productivity	17				
	اونيوم سيتي تيڪنيڪل ملي(Council, 2006					
2.5	Month mean wind speed of each study location (Azman et al.,	19				
	2011)					
2.6	Horizontal axis wind turbine (HAWT) (Jenkins and Younis,	21				
	2016)					
2.7	Upwind direction on HAWT (Jenkins and Younis, 2016)	22				
2.8	Downwind direction on HAWT (Manwell et al., 2010)	23				
2.9	Vertical axis wind turbine (VAWT) (Manwell et al., 2010)	24				
2.10	Darrieus VAWT (Manwell et al., 2010)	25				
2.11	Giromill VAWT (Manwell et al., 2010)	26				

2.12	Savonius VAWT (Manwell et al., 2010)	27		
2.13	Aerofoil of a cross-sectioned blade (Manwell et al., 2010)			
2.14	Blade design of typical modern wind turbine (HTMS, 2014)	30		
2.15	Rectangular wing (Flight Literacy, 2015)	31		
2.16	Elliptical wing (Flight Literacy, 2015)	32		
2.17	Swept wing (Flight Literacy, 2015)	33		
2.18	Delta wing (Pevitt and Alam, 2014)	33		
2.19	The number of blades of a wind turbine (Pevitt and Alam, 2014)	35		
2.20	Angle-of-attack of an aerofoil (Albright, 2018)	36		
2.21	Velocity profile about NACA 63-415 with different angle-of-	38		
	attack α by wind speed of 5 m/s (Chaudhary and Nayak, 2015)			
2.22	Velocity vectors about NACA 63-415 with different angle-of-	40		
	attack α by wind speed of 5 m/s (Chaudhary and Nayak, 2015)			
2.23	Pressure contours about NACA 63-415 with different angle-of-	41		
	attack α by wind speed of 5 m/s (Chaudhary and Nayak, 2015)			
3.1	Overall-research flowchart KAL MALAYSIA MELAKA	44		
3.2	Feasibility data compilation (Mahasan et al., 2017)	46		
3.3	Feasibility study of potential wind power from a cooling tower	47		
	(phase 2)			
3.4	Model LBCH-8 cooling tower located in FKP, UTeM	49		
3.5	Cooling fan length measurement	49		
3.6	LCD digital pocket anemometer and thermometer	50		
3.7	Discharged wind speed measurement for each position in	51		
	different heights (Najib et al., 2015)			

3.8	Suitable blade design confirmation by mechanical performance		
	(phase 3)		
3.9	NREL blade-shaped design draft sketching	63	
3.10	Elliptical blade-shaped design draft sketching	63	
3.11	Swept blade-shaped design draft sketching	64	
3.12	SolidWorks design procedure	65	
3.13	S809 aerofoil graphical plot	66	
3.14	S809 aerofoil platform sketch in SolidWorks	66	
3.15	NREL blade-shaped design in SolidWorks	67	
3.16	Ellipsoidal elements (Mayank, 2015)	68	
3.17	Aerodynamic centre (AC) on an aerofoil (Mayank, 2015)	69	
3.18	Aerodynamic centre (AC) on the elliptical wing (Mayank, 2015)	69	
3.19	Scale and dimension of elliptical blade-shaped design	72	
3.20	NACA 23009 aerofoil platform sketch in SolidWorks	72	
3.21	NACA 2209.4 aerofoil platform sketch in SolidWorks	73	
3.22	Elliptical blade-shaped design in SolidWorks	73	
3.23	Methods of finding the MAC chord (Mayank, 2015)	75	
3.24	Scale and dimension of swept blade-shaped design	77	
3.25	BACJ-il aerofoil platform sketch in SolidWorks	78	
3.26	Swept blade-shaped design in SolidWorks	78	
3.27	Prototype design and development (phase 4)	80	
3.28	WKERS performance validation (phase 5)	80	
3.29	Aluminium profile with T-slot nut and brackets (Traders, 2015)	81	
3.30	Wind tunnel built by multiple acrylic-ring	82	

3.31	Custom-made brackets for aluminium-to-acrylic mounting					
3.32	Wind tunnel mounted on aluminium profile frame					
3.33	Design of rotor casing (left) and hub (right)					
3.34	NREL HAWT design	86				
3.35	Elliptical HAWT design	87				
3.36	Swept HAWT design	88				
3.37	ONOSOKKI HT-4200 digital tachometer	90				
3.38	Data compilation and conclusion (phase 6)	91				
3.39	Criteria for best blade-shaped design selection process	91				
4.1	Graph of wind speed against height for LBCH-8 cooling tower					
4.2	Flow trajectories of NREL blade-shaped design					
4.3	Surface plot of NREL blade-shaped design	102				
4.4	Cut plot of NREL blade-shaped design	103				
4.5	Pressure analysis of NREL blade-shaped design with edges	103				
	اونيومرسيتي تيڪنيڪل مليسيا reference					
4.6	Flow trajectories of elliptical blade-shaped design	105				
4.7	Surface plot of elliptical blade-shaped design	106				
4.8	Cut plot of elliptical blade-shaped design	106				
4.9	Pressure analysis of elliptical blade-shaped design with edges	107				
	reference					
4.10	Flow trajectories of swept blade-shaped design	108				
4.11	Surface plot of swept blade-shaped design	109				
4.12	Cut plot at tip chord of swept blade-shaped design	109				

4.13	Pressure analysis of swept blade-shaped design with edges							
	reference							
4.14	Linear flow simulation on untwisted NREL blade-shaped design	132						
4.15	Industrial cooling fan used as a substitute for the wind energy	133						
	source							
4.16	Wind tunnel frame	134						
4.17	Graph of wind speed against height for industrial cooling fan	137						
4.18	NREL blade-shaped HAWT 1							
4.19	NREL blade-shaped WKERS set-up 1							
4.20	Graph of rotational speed against height for NREL blade HAWT							
4.21	Elliptical blade-shaped HAWT 142							
4.22	Elliptical blade-shaped WKERS set-up	142						
4.23	Graph of rotational speed against height for elliptical blade	145						
4.24	اونيوس سيتي تيڪنية Swept blade-shaped HAWT	147						
4.25	Swept blade-shaped WKERS set-up	Swept blade-shaped WKERS set-up ALAYSIA MELAKA 147						
4.26	Graph of rotational speed against height for swept blade HAWT 150							

LIST OF APPENDICES

APPENDIX	TITLE			
А	Gantt chart of research work			
В	LCD digital anemometer instruction manual			
С	S809 aerofoil cartesian coordinate system plot	171		
D	Wind turbine NREL Phase VI blade design			
Е	NACA 23009 aerofoil information	175		
F F	NACA 2209.4 aerofoil information	177		
G	BACJ-il aerofoil information	179		
Н	LBC model round type counter flow cooling tower catalogue	183		
I 🤞	Wind speed measurement for each position and layer	195		
U	(1 reading per 1 second) on LBCH-8 cooling tower wind			
	outlet			
J	ONOSOKKI digital tachometer catalogue	201		
K	Wind speed measurement for each position and layer	205		
	(1 reading per 1 second) on industrial cooling fan			
L	Rotational Speed measurement according to different heights	211		
	(1 reading per 1 second) on NREL blade-shaped HAWT			
М	Rotational speed measurement according to different heights	213		
	(1 reading per 1 second) on elliptical blade-shaped HAWT			

LIST OF ABBREVIATIONS

3D	-		3-Dimensional
AC	-		Aerodynamic Centre
AoA	-		Angle-of-Attack
AR	-		Aspect Ratio
BCA	AL AY	0	Boeing Commercial Airplane
CAD	All MAC	S.A	Computer-Aided Design
CFD	EKIN		Computational Fluid Dynamics
DP	III S		Decimal Places
FiT	S'AININ -		Feed-in Tariff
FKP	سيا ملاك	m	Manufacturing Engineering Faculty
HAWT	UNIVERS	ITI	Horizontal Axis Wind Turbine
LCD	-		Liquid-Crystal Display
MAC	-		Mean Aerodynamic Chord
MMGS	-		Millimetre, Gram, and Second
MMO	-		Mach Maximum Operating
MTOW	-		Maximum Takeoff Weight
MW	-		Megawatt
NASA	-		National Aeronautics and Space Administration
NREL	-		National Renewable Energy Laboratory

r	-	Radius
ROI	-	Return on Investment
RoR	-	Rate of Return
RPM	-	Revolutions per Minute
S	-	Wingspan
SEDA	-	Sustainable Energy Development Authority
Т	-	Taper Ratio
TSR	-	Tip Speed Ratio
UTeM	-	Universiti Teknikal Malaysia Melaka
VAWT	ALAYSI	Vertical Axis Wind Turbine
WKERS	s.A. Machine	Wasted Kinetic Energy Recovery System
	THE REAL	
	مسم بسيا ملاك	اونيۈمرسيتي تيڪنيڪل ملي
UNIVERSITI TEKNIKAL MALAYSIA MELAKA		

LIST OF PUBLICATIONS

J. B. Goh, Z. Jamaludin, F. A. Jafar, M. Mat Ali, M. N. Ali Mokhtar and C. H. Tan, "Analytical Study on Different Blade-shaped Design of HAWT for Wasted Kinetic Energy Recovery System (WKERS)," *IOP Conference Series: Material Science and Engineering*, vol. 210, no. 1, 2017.

J. B. Goh, Z. Jamaludin, F. A. Jafar, M. N. Ali Mokhtar and M. Mat Ali, "The Experimental Study of Waste Kinetic Energy Recovery System (WKERS)," *Asian Research Publishing Network - Journal of Engineering and Applied Science (ARPN - JEAS)*, vol. 12, no. 16, pp. 4831–4836, 2017.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CHAPTER 1

INTRODUCTION

This chapter highlights the background of this research that focusses on design and development of a waste energy recovery system for sustainable environment and industrial eco-system. The content of this chapter includes the problem statement, research objectives, scopes and the thesis outline. The background covers the energy resources and introduction of renewable energy practices in Malaysia highlighting the important of embracing elements of sustainability especially by engaging innovations in area related to conversion of waste energy into some other beneficial form of energy.

1.1 Background

Energy resources are limited since the world energy demand increases in accordance to the population growth and the economic development. Growing concern in Malaysia has arisen about the energy consumption and its adverse environment impacts. Energy is commonly extracted from fossil fuels like coal, natural gas and petroleum which are also the primary sources for energy for the rest of the world (EIA, 2015). Over-harvesting of fossil fuels brings negative impacts to human health and environment especially through the emissions of greenhouse gases (Chong et al., 2014).

Hence, to develop a long-term sustainability, the utilization of renewable energy such as solar, wind, rain, tides and waves is encouraged. As a mean to minimize the negative impacts on energy supply chain in Malaysia, renewable energy has been considered as the