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ABSTRACT 

 

 

In the past few decades, research and engineering interests have been shifting from 

monolithic materials to fibre reinforced polymer materials. The biggest advantage of 

composite materials is that they are lightweight as well as tough. By choosing the suitable 

combination of matrix and reinforcement, a new material can be produced that meets the 

requirements of a particular application. In order to improve the properties of existing 

composites, new research leads to the development of Fibre Metal Laminate (FML).  Fibre 

Metal Laminates (FML) is a class of hybrid structure formed from the combination of thin 

metal layers and fibre reinforced composites bonded together. The increasing of 

environmental concerns and the need for high-performance materials lead to the 

development of natural and synthetic hybrid composites. Hybridization of natural and 

synthetic fibres in single matrix results in the enhancement of mechanical properties of the 

composite by taking the best advantages of one fibre to overcome the disadvantage of 

another fibre which consequently minimize the dependent on synthetic fibres. This work 

presents the effects of fibre stacking configuration on tensile and quasi-static indentation 

(QSI) and low-velocity impact (LVI) on kenaf/glass hybrid fibre metal laminates (FML). 

Two different hybrid stacking configurations of kenaf/glass metal laminates reinforced with 

polypropylene matrix were prepared through a hot compression process. Non-hybrid kenaf 

and glass metal laminates were also prepared for comparison. A tensile test was conducted 

according to ASTM E8, a QSI test was conducted according to ASTM D 6264 using 12.7 

mm and 20 mm hemispherical indenters while an LVI test was conducted in accordance with 

ASTM D 7136. The tensile fractured surface of FML laminates was examined using 

scanning electron microscopy (SEM) while optical micrograph was used to investigate the 

failure mechanism of quasi-statically penetrated laminates. From the results, FMLs with the 

glass plies at the outer layers of composite [G/K₂/G] showed a positive hybrid effect as they 

displayed better tensile, penetration and impact resistance, compared to the non-hybrid kenaf 

and glass reinforced FMLs. For tensile test, [G/K₂/G] hybrid FML able to withstand higher 

strength compared to non-hybrid glass FML composites while for quasi-static indentation 

(QSI) test, [G/K₂/G] hybrid FML exhibit highest  penetration load and energy absorption 

followed by non-hybrid glass FML [G3], [K₂/G/K₂] and lastly [K6]. Similar behaviour is 

noticed as QSI, [G/K₂/G] hybrid FML display good impact resistance in overall. It was 

observed that the overall performance of FML laminates decreases as the kenaf content in 

laminates increases. The potential of kenaf/glass hybrid FMLs in tolerating impact loads is 

evident. Thus hybrid structure can be used for impact loading applications while reducing 

the dependence on synthetic fibres. Overall, this study is an exploration of the potential 

applications of metal laminates reinforced with natural and synthetic fibre. 
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KAJIAN PRESTASI MEKANIKAL KENAF TERJALIN / KACA HIBRID RENCAM 

LAMINA LOGAM  

 

 

ABSTRAK 

 

 

Sejak beberapa dekad yang lalu, kepentingan penyelidikan dan kejuruteraan telah beralih 

dari bahan-bahan monolitik ke bahan polimer diperkuat gentian. Manfaat terbesar bahan 

komposit adalah ringan serta keras. Dengan memilih kombinasi yang sesuai matriks dan 

peneguhan, satu bahan baru boleh dihasilkan dengan memenuhi keperluan-keperluan satu 

penggunaan tertentu. Bagi meningkatkan sifat komposit sedia ada, penyelidikan baru 

membawa ke pembangunan Gentian Logam Berlamina (FML). Gentian Logam Berlamina 

(FML) ialah satu kelas struktur hibrid dibentuk dari gabungan lapisan-lapisan logam nipis 

dan gentian komposit yang diperteguhkan mengikat bersama. Peningkatan tahap kesedaran 

alam sekitar dan keperluan untuk bahan-bahan prestasi tinggi menjurus kepada 

pembangunan hibrid semula jadi dan komposit hybrid bersintetik. Penghibridan gentian 

sintetik dan semula jadi dalam matriks tunggal mengakibatkan peningkatan sifat mekanik 

rencam dengan mengambil manfaat terbaik satu gentian mengatasi kekurangan satu lagi 

gentian yang mana meminimakan kebergantungan gentian sintetik. Kerja ini 

membentangkan kesan konfigurasi tindanan gentian terhadap tegangan dan lekukan-statik 

(QSI) dan kesan hentamam halaju rendah (LVI) pada kenaf / gentian hibrid kaca berlamina 

logam. Dua hibrid berbeza konfigurasi tindanan kenaf lamina logam / kaca dikukuhkan 

dengan matriks polipropilena telah disediakan melalui proses mampatan panas. Kenaf 

bukan hibrid dan lamina logam kaca juga disediakan untuk perbandingan. Ujian tegangan 

dijalankan mengikut ASTM E8 dan ujian QSI mengikut ASTM D 6264 menggunakan pelekuk 

hemisfera dimensi 12.7 mm dan 20 mm. Ujian LVI dijalankan selaras dengan ASTM D 7136. 

Permukaan patah tegangan lamina FML diperiksa menggunakan mikroskop elektron 

imbasan manakala mikrograf optik digunakan untuk menyiasat mekanisma kegagalan kuasi-

statik penembusan lamina. Satu kesan hibrid positif dalam [K₂ / G / K₂] FML dengan lapisan 

kenaf diantara lapisan kaca serta dilapisi logam menunjukkan tegangan, QSI dan rintangan 

hentaman lebih baik daripada kenaf bukan hibrid dan kaca diperkukuhkan lamina FML. 

Dapat dilihat bahawa prestasi keseluruhan lamina FML berkurang apabila kandungan 

kenaf dalam lamina bertambah. Keseluruhan, kajian ini ialah satu penjelajahan mengenai 

potensi kegunaan untuk lamina logam diperkukuhkan dengan gentian sintetik dan semula 

jadi. 
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CHAPTER 1  

 

INTRODUCTION 

 

1.1 Background 

In line with the flourishing modern industries, demand for advanced composite 

structures has increased, especially for materials with better damage resistance and tolerance 

lead the way to produce fibre metal laminate (FML). FML refers to a class of hybrid 

composite structure that is based on a combination of layers of metal that sandwiched with 

layers of fibre-reinforced plastic, as illustrated in Figure 1.1. In 1950, the Fokker Aero 

structures of the Netherlands discovered that the bonded laminate structures could better 

prevent rapid fatigue crack growth, in comparison to monolithic materials (Chai and 

Manikandan, 2014). 

 

 

Figure 1.1: A sample lay-up of FML 

 

Combining composite and metal layers as bonded structures offers exceptional 

fatigue, impact, and damage tolerance while having the advantage of being a light-weight 
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material. Prior studies have reported that the fibres in the composite layers function as a 

barrier against crack propagation and to increase burn-through resistance, apart from 

providing damping and insulation, while the metal layers enhance ductility, impact 

resistance, and damage tolerance of the structure (Alderliesten, 2005; Cortes and Cantwell, 

2006). Aramid reinforced aluminium laminate (ARALL) is the first generation of FML 

based on thermoset polymer matrix introduced by the Faculty of Aerospace Engineering at 

the Delf University of Technology in the Netherland (Villanueva and Cantwell, 2004). In 

the attempt to generate stronger and stiffer FMLs, several improvements were made to 

develop FML with varied types of synthetic fibres, such as GLARE (glass Fibre-reinforced 

aluminium laminate), and carbon and glass fibre forming CARALL (carbon Fibre-reinforced 

aluminium laminate), respectively (Sinmazçelik et al., 2011). 

A comparative study on drop impact properties performed on GLARE, monolithic 

aluminium, and carbon Fibre-reinforced thermoplastic composite; Vlot et al. (1998) found 

that GLARE-FML displayed excellent damage threshold energies when compared to the two 

other materials. Moriniere et al. (2013) discovered that GLARE-FML displayed 86% of 

specific impact energy threshold, which was higher than aerospace-grade aluminium (2024-

T3) in a study pertaining to impact behaviour of FML. Fan et al. (2011) investigated the 

thickness effect of woven glass Fibre-reinforced epoxy-based composite and FMLs on low-

velocity impact by increasing the glass plies. They revealed that increment of plies in FML 

gave higher impact perforation resistance and energy absorbance in elastic and plastic 

regions. 

Nonetheless, several commercial thermoset-based FMLs have been reported, such as 

extended polymer matrix curing time that escalates FML production cost. Hence, 

thermoplastic-based FMLs have been introduced with shorter fabrication time using the 

compression moulding technique, which eventually lowers the manufacturing cost. This 



3 

offers superior energy absorption properties and high resistance impact loading. Several 

studies that investigated the impact properties of thermoplastic FML (Reyes and Cantwell, 

2000; Abdullah and Cantwell, 2006; Carrillo and Cantwell, 2009) support the view that 

thermoplastic FML structure exhibits excellent energy absorption characteristics through 

extensive plastic deformation in aluminium and composites layers. 

The issue of recycling thermoset based FML has received considerable critical 

attention. Although FML production is low due to usage mainly in aerospace industry, 

recycling FML should be taken seriously. Yang et al. (2012) asserted that landfills might be 

an option for FMLs due to the higher recycling cost than manufacturing, which should be 

prohibited in the future. Thus, many are seeking to devise a suitable recycling method that 

has a less environmental impact. Mechanical separation and thermal delamination methods 

were investigated by Tempelman (1999) to introduce a recycling option for GLARE, since 

it is commercially used in the aerospace industry. GLARE scraps can be thermally 

delaminated and efficiently cleaned to gain back the glass fibre, but aluminium is refined 

back to its original quality to generate new GLARE materials for the lower-level application.  

Generally, synthetic fibres have higher strength, better durability, and good corrosion 

and water absorption resistance properties (Khan et al., 2010a). Khan et al. (2010b) added 

that glass fibre is the most commercially used material as reinforcement due to its lower cost 

and better physico-mechanical properties than Kevlar and carbon fibres. Although wide 

applications of glass fibres as reinforcement for composites have successfully contributed to 

numerous industries, there is a rise in environmental issue at the end of their useful life. The 

duration for complete degradation of glass fibre takes hundreds to thousands of years due to 

its strong covalent bonds that connect the atoms to form excellent chemical structure. 

Recycling operation for synthetic Fibre-reinforced composites is economically cost-

effective and eco-friendly. Nevertheless, the low economic incentive to recycle composite 
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material waste leads to sending it to landfills as it is relatively cheaper and as a consequence, 

results in landfill accumulation (Pickering, 2006). 

Natural fibres have evoked the interest amongst researchers and industries for the 

past decades. The use of natural fibres as reinforcement material is growing due to their 

advantageous characteristics, such as biodegradable, acceptable strength and modulus, and 

cost-effective in developing materials for the engineering domain (Arthanarieswaran et al., 

2014; Saba et al., 2016), unlike synthetic fibres that are hazardous to people’s health and the 

environment. The kenaf (hibiscus cannabinus) fibre refers to a kind of natural fibre found 

abundantly in Asia. Kenaf bast fibre is lignocellulosic fibre. Generally, fibres that contain 

high cellulose content have high mechanical properties, wherein kenaf bast fibre and core 

fibre have cellulose contents as high as 60.8% and 50.6%, respectively (Ismawati, 2006; Du 

et al., 2008). Saba et al. (2015) highlighted that kenaf fibre could replace synthetic fibres 

(glass fibre) for specific mechanical applications with moderate loading condition. 

Nevertheless, in comparison to synthetic fibres, natural fibres are hydrophilic and possess 

lower modulus and strength (Alawar et al., 2009; Adekunle et al., 2011).  

Recent studies have outlined the drawbacks of natural fibres that can be addressed 

by incorporating synthetic fibres within the same matrix to develop hybrid structures. The 

hybridisation of natural/synthetic fibres enhances materials' impact properties by taking the 

best advantages of both fibre characteristics. Natural/synthetic hybrid structures are partially 

degradable, recyclable, and reduce the usage of synthetic fibres. The performance of hybrid 

structures highly relies on several aspects: the content, the fibre, the fibre-matrix bonding, 

and the stacking sequence of both fibres (Jawaid and Khalil, 2011; Yahaya et al., 2014a; 

Saba et al., 2015). The literature vastly depicts that kenaf fibre incorporated in hybrid 

composites exhibits superior impact strength and displays its potential use in structural and 

automotive industries (Davoodi et al., 2010; Atiqah et al., 2014, Ramesh et al., 2016). 


