

Faculty of Mechanical Engineering

Master of Science in Mechanical Engineering

INVESTIGATION OF MECHANICAL PERFORMANCE OF WOVEN KENAF/GLASS HYBRID COMPOSITE METAL LAMINATE

KATHIRAVAN S/O SUBRAMANIAM

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this thesis entitled "Investigation of Mechanical Performance of Woven Kenaf/Glass Hybrid Composite Metal Laminate" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Mechanical Engineering.

DEDICATION

To my beloved family and friends.

ABSTRACT

In the past few decades, research and engineering interests have been shifting from monolithic materials to fibre reinforced polymer materials. The biggest advantage of composite materials is that they are lightweight as well as tough. By choosing the suitable combination of matrix and reinforcement, a new material can be produced that meets the requirements of a particular application. In order to improve the properties of existing composites, new research leads to the development of Fibre Metal Laminate (FML). Fibre Metal Laminates (FML) is a class of hybrid structure formed from the combination of thin metal layers and fibre reinforced composites bonded together. The increasing of environmental concerns and the need for high-performance materials lead to the development of natural and synthetic hybrid composites. Hybridization of natural and synthetic fibres in single matrix results in the enhancement of mechanical properties of the composite by taking the best advantages of one fibre to overcome the disadvantage of another fibre which consequently minimize the dependent on synthetic fibres. This work presents the effects of fibre stacking configuration on tensile and quasi-static indentation (QSI) and low-velocity impact (LVI) on kenaf/glass hybrid fibre metal laminates (FML). Two different hybrid stacking configurations of kenaf/glass metal laminates reinforced with polypropylene matrix were prepared through a hot compression process. Non-hybrid kenaf and glass metal laminates were also prepared for comparison. A tensile test was conducted according to ASTM E8, a QSI test was conducted according to ASTM D 6264 using 12.7 mm and 20 mm hemispherical indenters while an LVI test was conducted in accordance with ASTM D 7136. The tensile fractured surface of FML laminates was examined using scanning electron microscopy (SEM) while optical micrograph was used to investigate the failure mechanism of quasi-statically penetrated laminates. From the results, FMLs with the glass plies at the outer layers of composite $[G/K_2/G]$ showed a positive hybrid effect as they displayed better tensile, penetration and impact resistance, compared to the non-hybrid kenaf and glass reinforced FMLs. For tensile test, [G/K₂/G] hybrid FML able to withstand higher strength compared to non-hybrid glass FML composites while for quasi-static indentation (QSI) test, [G/K₂/G] hybrid FML exhibit highest penetration load and energy absorption followed by non-hybrid glass FML [G₃], [K₂/G/K₂] and lastly [K₆]. Similar behaviour is noticed as QSI, [G/K₂/G] hybrid FML display good impact resistance in overall. It was observed that the overall performance of FML laminates decreases as the kenaf content in laminates increases. The potential of kenaf/glass hybrid FMLs in tolerating impact loads is evident. Thus hybrid structure can be used for impact loading applications while reducing the dependence on synthetic fibres. Overall, this study is an exploration of the potential applications of metal laminates reinforced with natural and synthetic fibre.

KAJIAN PRESTASI MEKANIKAL KENAF TERJALIN / KACA HIBRID RENCAM LAMINA LOGAM

ABSTRAK

Sejak beberapa dekad yang lalu, kepentingan penyelidikan dan kejuruteraan telah beralih dari bahan-bahan monolitik ke bahan polimer diperkuat gentian. Manfaat terbesar bahan komposit adalah ringan serta keras. Dengan memilih kombinasi yang sesuai matriks dan peneguhan, satu bahan baru boleh dihasilkan dengan memenuhi keperluan-keperluan satu penggunaan tertentu. Bagi meningkatkan sifat komposit sedia ada, penyelidikan baru membawa ke pembangunan Gentian Logam Berlamina (FML). Gentian Logam Berlamina (FML) ialah satu kelas struktur hibrid dibentuk dari gabungan lapisan-lapisan logam nipis dan gentian komposit yang diperteguhkan mengikat bersama. Peningkatan tahap kesedaran alam sekitar dan keperluan untuk bahan-bahan prestasi tinggi menjurus kepada pembangunan hibrid semula jadi dan komposit hybrid bersintetik. Penghibridan gentian sintetik dan semula jadi dalam matriks tunggal mengakibatkan peningkatan sifat mekanik rencam dengan mengambil manfaat terbaik satu gentian mengatasi kekurangan satu lagi gentian yang mana meminimakan kebergantungan gentian sintetik. Kerja ini membentangkan kesan konfigurasi tindanan gentian terhadap tegangan dan lekukan-statik (QSI) dan kesan hentamam halaju rendah (LVI) pada kenaf/gentian hibrid kaca berlamina logam. Dua hibrid berbeza konfigurasi tindanan kenaf lamina logam / kaca dikukuhkan dengan matriks polipropilena telah disediakan melalui proses mampatan panas. Kenaf bukan hibrid dan lamina logam kaca juga disediakan untuk perbandingan. Ujian tegangan dijalankan mengikut ASTM E8 dan ujian QSI mengikut ASTM D 6264 menggunakan pelekuk hemisfera dimensi 12.7 mm dan 20 mm. Ujian LVI dijalankan selaras dengan ASTM D 7136. Permukaan patah tegangan lamina FML diperiksa menggunakan mikroskop elektron imbasan manakala mikrograf optik digunakan untuk menyiasat mekanisma kegagalan kuasistatik penembusan lamina. Satu kesan hibrid positif dalam $[K_2/G/K_2]$ FML dengan lapisan kenaf diantara lapisan kaca serta dilapisi logam menunjukkan tegangan, QSI dan rintangan hentaman lebih baik daripada kenaf bukan hibrid dan kaca diperkukuhkan lamina FML. Dapat dilihat bahawa prestasi keseluruhan lamina FML berkurang apabila kandungan kenaf dalam lamina bertambah. Keseluruhan, kajian ini ialah satu penjelajahan mengenai potensi kegunaan untuk lamina logam diperkukuhkan dengan gentian sintetik dan semula jadi.

ACKNOWLEDGEMENTS

First and foremost, I would like to take this opportunity to express my sincere gratitude to my supervisor Ts. Dr. Omar Bin Bapokutty for his nonstop supervision, support, motivation, encouragement, and immense knowledge towards the completion of research and thesis writing.

I would also like to express my gratitude to Associate Professor Dr. Sivakumar Dhar Malingam as co-supervisor of this project for his unlimited advice and suggestions. Also, to my deepest thanks to the Ministry of Education Malaysia for supporting this research by the grant (Grant No.: FRGS/1/2015/SG06/FKM/03/F00276).

I would also like to express my deepest gratitude to Ng Lin Feng, for his contribution on giving ideas and all the technicians from the laboratory Faculty of Mechanical Engineering for their assistance and efforts in the entire lab and analysis works.

اونيۇم سىتى تېكنىكل مليسيا ملاك

Special thanks to my family and friends for their moral support in completing this project. Lastly, thank you to everyone who are not listed here who had been to the crucial parts of realization of this project.

TABLE OF CONTENTS

DE AP DE AB AC TA LIS LIS LIS LIS LIS	CLAR PROV DICA' STRA STRA KNOV BLE (ST OF ST OF ST OF ST OF	ATION AL TION CT K WLEDGEMENTS DF CONTENTS DF CONTENTS TABLES FIGURES APPENDICES ABBREVIATIONS PUBLICATIONS	i ii iv vi vi xii xii xiii xv
CH 1.	APTE INTE 1.1 1.2 1 3	R RODUCTION Background Problem statement Objectives	1 1 5 7
	1.3 1.4 1.5	Scope Thesis structure	7 9
2.	LITE 2.1 2.2 2.3	CRATURE REVIEW Introduction Fibre metal laminate (FML) Composite 2.3.1 Fibre-reinforced composite (FRP) 2.3.2 Matrix 2.3.2.1 Thermoplastic And Thermoset 2.3.3 Reinforcement 2.3.3.1 Synthetic Fibre 2.3.2.2 Natural Fibre	11 11 14 16 17 17 20 21 23
	2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15	Factors affect the FRP strength Woven structure Hybrid composite structure Low-velocity impact test (LVI) Quasi-static indentation test (QSI) Tensile test on FRP QSI test on FRP LVI test on FRP Tensile test on FML QSI on FML LVI on FML LVI on FML	23 31 32 34 36 39 41 43 47 50 51 53 60
3.	MET 3.1	HODOLOGY Introduction	62 62

	3.2	FML panel manufacturing and testing flow chart	62
	3.3	Materials	63
		3.3.1 Kenaf bast fibre	63
		3.3.2 Woven E-glass	64
		3.3.3 Maleic anhydride polypropylene (MAPP)	64
		3.3.4 Polypropylene (PP)	65
		3.3.5 Aluminium	68
	3.4	Composite stacking configuration	70
	3.5	Composite and FML fabrication	71
		3.5.1 Composite fabrication	71
		3.5.2 FML fabrication process	73
	3.6	Specimen preparation	74
	3.7	Tensile test	75
	3.8	Quasi-static indentation test	77
	3.9	Low-velocity impact (LVI) test	79
	3.10	Damage morphology	82
4.	RES	ULT AND DISCUSSION	83
	4.1	Introduction	83
	4.2	Tensile test results	83
		4.2.1 Failure analysis	85
	4.3	Quasi-static indentation test results	86
		4.3.1 Quasi-static indentation test using 12.7 mm hemispherical	87
		indenter	
		4.3.2 Quasi-static indentation test using 20 mm hemispherical	96
		indenter	
		4.3.3 Comparison of quasi-static indentation test using 12.7 mm	102
		and 20 mm hemispherical indenter	
	4.4	Low-velocity impact test results (12.7 mm hemispherical indenter)	103
		4.4.1 Load-displacement curves of kenaf/glass hybrid and non-	104
		hybrid FML laminates	100
		4.4.2 Load-time curves of kenaf/glass hybrid and non-hybrid FML	109
		laminates	114
	15	4.4.3 Failure analysis	114
	4.5	Summary	119
5.	CON	CLUSION AND RECOMMENDATIONS FOR FUTURE	123
	RES	EARCH	
	5.1	Conclusion	123
	5.2	Recommendations	124
REFERENCES 125			125
APPENDICES 148			148

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Comparison between thermoset and thermoplastic (Arnold et al., 1992)	18
2.2	Mechanical properties of PP (Maddah, 2016)	19
2.3	Comparison between natural and synthetic fibres	21
2.4	Mechanical and chemical properties of natural fibres (Ramesh, 2016)	26
2.5	Impact classification according to impact energy (Tan and Akil, 2012)	58
3.1	PP and MAPP composition for each cycle	66
3.2	HAAKE Rheomex OS single screw extruder parameters for the	67
	polymer compounding process	
3.3	Chemical composition of aluminium 5052-H32 (Jeon et al., 2014)	69
3.4	Composition of composite laminates MALAYSIA MELAKA	73
3.5	Specifications of the impact tests carried out on FML laminates	80
4.1	Average values of tensile strength and tensile modulus for kenaf/glass	84
	FML	
4.2	Maximum penetration load and energy absorbed by kenaf/glass hybrid	90
	and non-hybrid FML laminates by a 12.7 mm hemispherical indenter	
4.3	Maximum penetration load and energy absorbed by kenaf/glass hybrid	99
	and non-hybrid FML laminates by a 20 mm hemispherical indenter	
4.4	Impact parameter and results obtained from the low velocity impact	112
	test for each kenaf/glass hybrid and non-hybrid FML laminate	

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	A sample lay-up of FML	1
2.1	Illustration of a sample fibre metal laminate (Dharmalingam et al.,	12
	2009)	
2.2	Polypropylene structure (Maddah, 2016)	19
2.3	Classification of natural (Ramesh, 2016)	24
2.4	Woven kenaf bast fibre	27
2.5	(a) longitudinal view of the untreated kenaf fibres (b) SEM images of	28
	the cross section of kenaf fibre (Aziz and Ansell, 2004; Shibata et al.,	
	اونىۋىرسىتى تېكنىكل ملىسيا مارۋ200	
2.6	Fiber bundle tensile strength of differently treated kenaf fiber (Source: Edeerozey et al., 2007)	29
2.7	SEM micrograph of (a) an untreated kenaf fibre and (b) 3% NaOH	30
	treated kenaf fibre (Edeerozey et al., 2007)	
2.8	Tensile specimens for kenaf fibres (Ochi, 2008)	31
2.9	Warp and weft pattern	33
2.10	Different types of weave	34
2.11	Typical force-displacement curve of quasi-static indentation	41
	(Bulut and Erkig, 2018)	

- 2.12 Force displacement curve for Kevlar/epoxy composites (Yahaya et al., 45
 2014c)
- 2.13 Optical pictures of damaged surface of hybrid composite laminates after 47 quasi-static test, cross-sectional surface, rear surface, and impacted surface: (a) Kevlar composite, (b) hybrid of placing kenaf layers and Kevlar 29 layers separately, (c) hybrid of placing kenaf layers alternately with Kevlar 29 layers and (d) kenaf composite (Suhad et al., 2017)
- 2.14 Impact damage of different view for glass/carbon and carbon/glass 50hybrid composite after subjected to impact test (Sayer et al., 2010)
- 2.15 Photographs of the indented: (a) pure kenaf fibre plate, (b) 2/1-0.3 52
 FMLs, (c) 2/1-0.6 FMLs and (d) 3/2-0.6 FMLs (Abdullah et al., 2014)
- 2.16Photographs of the indented 3/2 FMLs (Pang et al., 2015)53
- 2.17 Typical load–displacement curve following a low velocity impact test 55 on a FML (Carrillo and Cantwell, 2009)
- 2.18 Cross-sections of four scaled specimens impacted (Carrillo and 56 Cantwell, 2009)
- 2.19Absorbing energy vs impact energy (Múgica et al., 2012)56
- 2.20 Cross section of the impacted plate (Múgica et al., 2012) 57
- 2.21 Schematic diagram of a sandwich structure configuration (Tan and Akil, 58 2012)
- 2.22 Maximum peak load under various impact energy levels (Tan and Akil, 59 2012)

2.23	Absorbed energy on composite specimen under various impact energy	59
	(Tan and Akil, 2012)	
2.24	Side view of damaged specimen (Tan and Akil, 2012)	60
3.1	Flow chart on FML panel manufacturing and testing processes	63
3.2	Plain woven kenaf bast fibre	64
3.3	Plain woven glass fibre	64
3.4	HAAKE Rheomex OS single screw extruder	66
3.5	Plastic granulator	68
3.6	Fabricated modified PP sheet	68
3.7	Stacking configuration of composites "G" and "K" correspond to	71
	woven glass and kenaf fibre plies respectively	
3.8	Compression moulding machine	72
3.9	FML layup	74
3.10	Schematic diagram and dimension of the specimen for QSI and LVI	75
	اونيوم سيتي تيڪنيڪل مليسيا مالاesting	
3.11	Tensile test setup using INSTRON 8872 servohydraulic universal	76
	testing machine	
3.12	Schematic diagram and dimensions of the specimen for the tensile test	76
3.13	Quasi-static indentation test setup	78
3.14	Schematic illustration of the quasi-static indentation fixture	78
3.15	Schematic diagrams of test specimens on edge supported configuration,	79
	indented using hemispherical indenters (a) 12.7 mm in diameter and (b)	
	20 mm in diameter	
3.16	INSTRON CEAST 9340 drop tower impact tester	81

3.17	(a) close-up view of the impact test support fixture and (b)	81
	hemispherical tip indenter (12.7mm in diameter)	
3.18	JEOL-6010 PLUS scanning electron microscope (SEM)	82
4.1	Tensile properties of FML laminate	85
4.2	SEM micrograph of fractured FML laminates after tensile test: (a)	86
	$[G/K_2/G]$, (b) $[G_3]$, (c) $[K_2/G/K_2]$ and (d) $[K_6]$	
4.3	Load-displacement curves of kenaf/glass hybrid and non-hybrid FMLs	87
	penetration by a 12.7 mm hemispherical indenter	
4.4	Maximum penetration load of kenaf/glass hybrid and non-hybrid FML	89
	laminates by a 12.7 mm hemispherical indenter	
4.5	Maximum penetration energy of kenaf/glass hybrid and non-hybrid	90
	FML laminates by a 12.7 mm hemispherical indenter	
4.6	Optical image of damaged surface on FML laminates after the quasi-	94
	static perforation test using a 12.7 mm indenter	
4.7	Crack propagation on the rear surface of $[G/K_2/G]$ FML laminate during	95
	the quasi-static penetration test using a 12.7 mm hemispherical indenter	
4.8	Cross-sectional view of FML laminates after the quasi-static	95
	penetration test using a 12.7 mm hemispherical indenter: (a) $[G/K_2/G]$	
	and (b) [K ₆]	
4.9	Load-displacement curves of kenaf/glass hybrid and non-hybrid FMLs	96
	penetration by a 20 mm hemispherical indenter	
4.10	Maximum penetration energy of kenaf/glass hybrid and non-hybrid	98
	FML laminates by a 20 mm hemispherical indenter	

х

- 4.11 Maximum penetration load of kenaf/glass hybrid and non-hybrid FML 98laminates by a 20 mm hemispherical indenter
- 4.12 Optical image of damaged surface on FML laminates after the quasistatic perforation test using a 20 mm indenter
- 4.13 Sample cross-section view of [G/K₂/G] FML laminates subjected to 101 quasi-static loading by indenters measuring (a) 12.7 mm and (b) 20 mm
- 4.14 Maximum penetration load and energy of kenaf/glass hybrid and non- 103 hybrid FML laminates by 12.7 mm and 20 mm hemispherical indenters
- 4.15 Load-displacement curves of kenaf/glass hybrid and non-hybrid FMLs 107on low velocity impact test at different energy levels
- 4.16 Load-time curves of kenaf/glass hybrid and non-hybrid FMLs from the 111 low velocity impact test at different energy levels
- 4.17 Visible damage modes in kenaf/glass FML plates impacted at 15J with 116 the 12.7 mm hemispherical tip
- 4.18 Visible damage modes in kenaf/glass FML plates impacted at 30J with 117 the 12.7 mm hemispherical tip
- 4.19 Visible damage modes in kenaf/glass FML plates impacted at 45J with 118 the 12.7 mm hemispherical tip
- 4.20 Visible damage modes in kenaf/glass FML plates impacted at 60J with 119 the 12.7 mm hemispherical tip

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Quasi-static indentation jig drawing	148
В	ASTM D6264	150
С	ASTM D7136	151

LIST OF ABBREVIATIONS

AHP	- Analytical Hierarchy Process
ARALL	- Aramid Fibre Reinforced Aluminium Laminate
CARALL	- Carbon Fibre Reinforced Aluminium Laminate
CFRP	- Carbon Fibre Reinforced Polymer
CMC	- Ceramic Matrix Composites
CO_2	- Carbon dioxide
ECER	East Coast Economic Region
FML	- Fibre-Metal Laminates
FRP	- Fibre-reinforced Polymer
GLARE	- Glass Fibre Reinforced Aluminium Laminate
HDPE	- High Density Polyethylene MALAYSIA MELAKA
HVI	- High Velocity Impact
JIS	- Japanese Industrial Standard
LVI	- Low Velocity Impact
MAPP	- Maleic Anhydride Grafted Polypropylene
MMC	- Metal Matrix Composite
NaOH	- Sodium Hydroxide
ОН	- Hydroxide
PLA	- Polylactic Acid

PMC	- Polymer Matrix Composite
PP	- Polypropylene
QSI	- Quasi-static indentation
RMK	- Rancangan Malaysia Ke
ROM	- Rule of Mixture
SEM	- Scanning Electron Microscopy
SiC	- Silicon Carbide
Ti	- Titanium
UB	- Unit Break
UTM	- Universal Testing Machine
UV	- Ultraviolet
	اونيوم سيتي تيكنيكل مليسيا ملاك
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF PUBLICATIONS

Subramaniam, K., Dhar, M.S., Feng, N. and Bapokutty, O., 2017. The effects of stacking configuration on the response of tensile and quasi-static penetration to woven kenaf/glass hybrid composite metal laminate. *Polymer Composites*, 40(2), pp. 568-577.

CHAPTER 1

INTRODUCTION

1.1 Background

In line with the flourishing modern industries, demand for advanced composite structures has increased, especially for materials with better damage resistance and tolerance lead the way to produce fibre metal laminate (FML). FML refers to a class of hybrid composite structure that is based on a combination of layers of metal that sandwiched with layers of fibre-reinforced plastic, as illustrated in Figure 1.1. In 1950, the Fokker Aero structures of the Netherlands discovered that the bonded laminate structures could better prevent rapid fatigue crack growth, in comparison to monolithic materials (Chai and Manikandan, 2014).

Figure 1.1: A sample lay-up of FML

Combining composite and metal layers as bonded structures offers exceptional fatigue, impact, and damage tolerance while having the advantage of being a light-weight

material. Prior studies have reported that the fibres in the composite layers function as a barrier against crack propagation and to increase burn-through resistance, apart from providing damping and insulation, while the metal layers enhance ductility, impact resistance, and damage tolerance of the structure (Alderliesten, 2005; Cortes and Cantwell, 2006). Aramid reinforced aluminium laminate (ARALL) is the first generation of FML based on thermoset polymer matrix introduced by the Faculty of Aerospace Engineering at the Delf University of Technology in the Netherland (Villanueva and Cantwell, 2004). In the attempt to generate stronger and stiffer FMLs, several improvements were made to develop FML with varied types of synthetic fibres, such as GLARE (glass Fibre-reinforced aluminium laminate), and carbon and glass fibre forming CARALL (carbon Fibre-reinforced aluminium laminate), respectively (Sinmazçelik et al., 2011).

A comparative study on drop impact properties performed on GLARE, monolithic aluminium, and carbon Fibre-reinforced thermoplastic composite; Vlot et al. (1998) found that GLARE-FML displayed excellent damage threshold energies when compared to the two other materials. Moriniere et al. (2013) discovered that GLARE-FML displayed 86% of specific impact energy threshold, which was higher than aerospace-grade aluminium (2024-T3) in a study pertaining to impact behaviour of FML. Fan et al. (2011) investigated the thickness effect of woven glass Fibre-reinforced epoxy-based composite and FMLs on low-velocity impact by increasing the glass plies. They revealed that increment of plies in FML gave higher impact perforation resistance and energy absorbance in elastic and plastic regions.

Nonetheless, several commercial thermoset-based FMLs have been reported, such as extended polymer matrix curing time that escalates FML production cost. Hence, thermoplastic-based FMLs have been introduced with shorter fabrication time using the compression moulding technique, which eventually lowers the manufacturing cost. This offers superior energy absorption properties and high resistance impact loading. Several studies that investigated the impact properties of thermoplastic FML (Reyes and Cantwell, 2000; Abdullah and Cantwell, 2006; Carrillo and Cantwell, 2009) support the view that thermoplastic FML structure exhibits excellent energy absorption characteristics through extensive plastic deformation in aluminium and composites layers.

The issue of recycling thermoset based FML has received considerable critical attention. Although FML production is low due to usage mainly in aerospace industry, recycling FML should be taken seriously. Yang et al. (2012) asserted that landfills might be an option for FMLs due to the higher recycling cost than manufacturing, which should be prohibited in the future. Thus, many are seeking to devise a suitable recycling method that has a less environmental impact. Mechanical separation and thermal delamination methods were investigated by Tempelman (1999) to introduce a recycling option for GLARE, since it is commercially used in the aerospace industry. GLARE scraps can be thermally delaminated and efficiently cleaned to gain back the glass fibre, but aluminium is refined back to its original quality to generate new GLARE materials for the lower-level application.

Generally, synthetic fibres have higher strength, better durability, and good corrosion and water absorption resistance properties (Khan et al., 2010a). Khan et al. (2010b) added that glass fibre is the most commercially used material as reinforcement due to its lower cost and better physico-mechanical properties than Kevlar and carbon fibres. Although wide applications of glass fibres as reinforcement for composites have successfully contributed to numerous industries, there is a rise in environmental issue at the end of their useful life. The duration for complete degradation of glass fibre takes hundreds to thousands of years due to its strong covalent bonds that connect the atoms to form excellent chemical structure. Recycling operation for synthetic Fibre-reinforced composites is economically costeffective and eco-friendly. Nevertheless, the low economic incentive to recycle composite material waste leads to sending it to landfills as it is relatively cheaper and as a consequence, results in landfill accumulation (Pickering, 2006).

Natural fibres have evoked the interest amongst researchers and industries for the past decades. The use of natural fibres as reinforcement material is growing due to their advantageous characteristics, such as biodegradable, acceptable strength and modulus, and cost-effective in developing materials for the engineering domain (Arthanarieswaran et al., 2014; Saba et al., 2016), unlike synthetic fibres that are hazardous to people's health and the environment. The kenaf (hibiscus cannabinus) fibre refers to a kind of natural fibre found abundantly in Asia. Kenaf bast fibre is lignocellulosic fibre. Generally, fibres that contain high cellulose content have high mechanical properties, wherein kenaf bast fibre and core fibre have cellulose contents as high as 60.8% and 50.6%, respectively (Ismawati, 2006; Du et al., 2008). Saba et al. (2015) highlighted that kenaf fibre could replace synthetic fibres (glass fibre) for specific mechanical applications with moderate loading condition. Nevertheless, in comparison to synthetic fibres, natural fibres are hydrophilic and possess lower modulus and strength (Alawar et al., 2009; Adekunle et al., 2011).

Recent studies have outlined the drawbacks of natural fibres that can be addressed by incorporating synthetic fibres within the same matrix to develop hybrid structures. The hybridisation of natural/synthetic fibres enhances materials' impact properties by taking the best advantages of both fibre characteristics. Natural/synthetic hybrid structures are partially degradable, recyclable, and reduce the usage of synthetic fibres. The performance of hybrid structures highly relies on several aspects: the content, the fibre, the fibre-matrix bonding, and the stacking sequence of both fibres (Jawaid and Khalil, 2011; Yahaya et al., 2014a; Saba et al., 2015). The literature vastly depicts that kenaf fibre incorporated in hybrid composites exhibits superior impact strength and displays its potential use in structural and automotive industries (Davoodi et al., 2010; Atiqah et al., 2014, Ramesh et al., 2016).