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ABSTRACT 

 

 

Nowadays, rubber blend nanocomposites have fascinated most researchers to be utilized in engine 

mounting. Graphene nanoplatelets (GNPs) have been known to have outstanding properties in 

physical, mechanical, electrical and thermal. In some applications, structures and components may 

be subjected to harsh service conditions such as high heat, liquid and dynamic stress. This research 

is aimed to explore the swelling and thermal effects on the physical and mechanical properties of 

NR/EPDM filled graphene nanoplatelets (GNPs) for engine mounting. In Stage 1, the effect of the 

thermal cycle on the tensile properties of NR/EPDM blends and NR/EPDM nanocomposites were 

studied. The NR/EPDM blends and NR/EPDM nanocomposites were prepared through melt 

compounding. Then, both materials were subjected to a thermal cycle before their tensile properties 

were measured. In Stage 2, both NR/EPDM blends and NR/EPDM nanocomposites were subjected 

to oil immersion in three types of oil medium; brake oil, gear oil and engine oil to assess their effects 

on the tensile properties. In Stage 3, the oil-immersed composites were subjected to dynamic loading 

to determine the fatigue life cycles due to more critical tensile properties under swelling media. 

Finally, the findings were further supported by swelling behaviour and compositional (FTIR), 

structural (XRD), thermal (DMTA) and morphological characteristics (SEM). Thermally affected 

NR/EPDM nanocomposites showed higher performance under tensile stress at the thermal cycles of 

60°C and 120°C if compared to NR/EPDM blend. The tensile strength and modulus of elongation 

at 100% and 300% for nanocomposites were consistently 30-60% higher than NR/EPDM blend due 

to reinforcing effects of GNPs and their good interaction with the matrix which supported by the 

higher crosslink density in NR/EPDM nanocomposites. The declination in tensile properties with the 

increased thermal cycle was due to the chain embrittlement effect and in line with the increase in 

amorphous phases showing by the broadening of XRD spectra. Furthermore, the NR/EPDM 

nanocomposites exhibited better performance under the effect of swelling media in comparison with 

NR/EPDM blends. The immersion in gear and engine oil caused a major deterioration to both 

materials and caused sudden drops in tensile properties. The increment in elongation at break once 

immersed in oils was due to the softening effect of the rubber chains and re-distribution of GNPs 

sheets observed in XRD and FTIR analyses. The morphological analysis also verified that the 

swelling process caused the formation of wrinkles and cracking on both rubber surfaces, which 

appears to reduce in NR/EPDM nanocomposites. The swollen NR/EPDM blend and nanocomposites 

were further tested under fatigue stress. The unswollen and swollen nanocomposites exhibited higher 

resistance towards dynamic stress with maximum fatigue life higher than the blends about 105 cycles. 

The morphological analysis illustrates a more wrenching pattern on the fatigue fracture of the 

NR/EPDM nanocomposites. This has proven that the NR/EPDM nanocomposites can withstand 

thermal cycles, oils and fluctuating stress better than NR/EPDM blend and showed higher potential 

to be utilized as engine mounting material.  
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KESAN PENGAMPULAN DAN HABA PADA SIFAT MEKANIKAL NR/EPDM 

TERISI NANOKEPINGAN GRAFIN UNTUK PENCAGAK ENJIN 

 

ABSTRAK 

 

 

 

Kini, nanokomposit adunan getah telah menarik minat ramai penyelidik untuk digunakan dalam 

pencagak enjin. Grafin nanokepingan (GNPs) telah diketahui mempunyai ciri-ciri luar biasa 

dalam fizikal, mekanikal, elektrik dan haba. Dalam beberapa aplikasi, struktur dan komponen 

berkemungkinan terdedah kepada keadaan perkhidmatan yang teruk seperti haba, cecair dan 

tegasan beban dinamik. Kajian ini bertujuan untuk mengkaji dan membandingkan kesan 

pengampulan minyak dan haba pada sifat fizikal dan mekanikal adunan NR/EPDM dan NR/EPDM 

nanokomposit terisi GNPs untuk pencagak enjin. Dalam Tahap 1, kesan kitaran terma pada sifat 

tegangan adunan dan nanokomposit dikaji. Adunan dan nanokomposit disediakan melalui 

penyebatian lebur. Kemudian kedua-duanya dikenakan kitaran terma sebelum diuji untuk 

penentuan sifat tegangan. Dalam Tahap 2, adunan dan nanokomposit NR/EPDM direndam dalam 

tiga jenis medium minyak; minyak brek, minyak gear dan minyak enjin untuk menilai kesannya 

terhadap sifat tegangan. Dalam Tahap 3, komposit terendam minyak dikenakan beban dinamik 

untuk menentukan kitaran hayat lesu kerana sifat tegangan yang lebih kritikal dibawah pengaruh 

medium pengampulan. Akhirnya, penemuan disokong lanjut dengan tingkah laku pengampulan dan 

ciri-ciri komposisi (FTIR), struktur (XRD), haba (DMTA) dan morfologi (SEM). Nanokomposit 

NR/EPDM yang terjejas teruk menunjukkan prestasi yang lebih tinggi di bawah tegasan tegangan 

pada kitaran haba 60 °C dan 120 °C jika dibandingkan dengan adunan NR/EPDM. Kekuatan 

tegangan dan modulus pemanjangan pada 100% dan 300% untuk nanokomposit secara konsisten 

adalah 30-60% lebih tinggi daripada kekuatan adunan disebabkan oleh kesan penetulangan GNPs 

dan interaksi yang baik dengan matriks dan disokong oleh ketumpatan paut silang yang lebih tinggi 

dalam nanokomposit. Pengurangan sifat tegangan dengan kenaikan kitaran haba disebabkan oleh 

kesan perapuhan rantaian dan ia selaras dengan peningkatan fasa amorfus yang ditunjukkan oleh 

pelandaian spektra XRD. Selain itu, nanokomposit mempamerkan prestasi yang lebih baik di 

bawah pengaruh media pengampulan berbanding adunan. Rendaman dalam minyak gear dan enjin 

menyebabkan kemerosotan utama kepada kedua-dua bahan dan menyebabkan penurunan 

mendadak dalam sifat tegangan. Peningkatan pemanjangan pada takat putus setelah direndam 

dalam minyak adalah disebabkan oleh kesan pelembutan rantaian getah dan penaburan semula 

kepingan GNP yang turut diperhatikan dalam analisa XRD dan FTIR. Analisis morfologi 

mengesahkan proses pengampulan menyebabkan pembentukan keriput dan keretakan pada 

permukaan getah, yang kelihatan lebih berkurang pada nanokomposit. Adunan dan nanokomposit 

yang terampul diuji dengan lebih lanjut di bawah tekanan lesu. Nanokomposit yang terampul dan 

tidak terampul mempamerkan ketahanan yang lebih tinggi terhadap tegasan dinamik dengan hayat 

lesu maksimum yang lebih tinggi daripada adunan kira-kira 105 kitaran. Analisis morfologi 

menggambarkan corak perengkuh yang lebih teruk pada patah lesu bagi nanokomposit. Ini telah 

membuktikan bahawa nanokomposit NR/EPDM boleh menahan kitaran haba, minyak dan tekanan 

turun naik yang lebih baik daripada adunan NR/EPDM dan menunjukkan potensi yang lebih tinggi 

untuk digunakan sebagai bahan pencagak enjin. 
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CHAPTER 1  

 

 

INTRODUCTION 

 

1.1 Background 

Engine mounts are a critical component in passenger cars. Its function is to isolate 

the vibration from an engine to the car body (Ooi and Ripin, 2014). They are two categories 

of engine mount; passive engine mount and active engine mount. Mostly passive engine 

mount is made from elastomeric materials either, natural or synthetic rubber or the blend of 

the rubber. These elastic mounts were first introduced in the 1930s using rubber-based 

components, being small in size and relatively cheap (Yu et al., 2001). Together with engine 

mounts, these materials are widely used for various automotive parts such as shock absorbers, 

rubber tires, seals, gaskets, lining, etc. The superior property of cured elastomer is the ability 

to undergo stretching to a large extent and resume its original shape when force is removed. 

It absorbs considerable energy during the deformation (Hofmann, 1990). According to 

Samad and Ali (2010), the engine mount is preferred to avoid direct metal-to-metal contact 

between the engine and the car body. Elastomer material is used to produce engine 

mountings due to their ability to possess outstanding shock-absorbing characteristics and 

ability to exhibit crystallization when stretched (Alipour et al., 2013).  

In recent years, researchers and developers have made efforts focusing on improving 

engine mounting technology to achieve better vibration isolation, smooth vehicle movement, 

and noise reduction with good compression set and aging properties (Rashid et al., 2008). 

Material development is a significant contributor to the improvement of engine mounting. 
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New kinds of elastomers that permit specification of the amount of damping have been 

developed. Polymer materials or derivatives, especially elastomers, can be designed to 

withstand higher engine compartment temperatures. For this purpose, the optimization of 

formulation and processing techniques is crucial. The designed elastomers should provide 

specific dynamic properties that can sustain the varying vehicle environments over a certain 

period (Vahdati and Saunders, 2002). The effects of strain amplitude, repeat cycling, and 

temperatures are among important parameters in evaluating an engine mounting elastomer's 

potential. There are several elastomer systems available for engine mounting, such as natural 

rubber (NR), natural rubber/polybutadiene rubber (NR/BR) blend, nitrile rubber/ 

poly(methyl methacrylate) (NBR/PMMA), polyurethane (PU), epoxidized natural 

rubber/neoprene (ENR/CR) blend and ethylene-propylene-diene-monomer (EPDM)/nylon 6 

blend (Peng et al., 2015).  

A rubber blend is a combination of two or more dissimilar rubbers which useful to 

improve specific properties that are not inherent in a single rubber. It is also to combine each 

rubber type's dominant properties to develop new material for some specific properties 

(Sahakaro et al., 2011). The properties of any blend are functions of the adhesion between 

the components. While most of the blends are thermodynamically incompatible, many have 

been found to have technological importance (Bhowmick and Chakraborty, 1989). The 

chemical and physical blending of two or more polymers was a useful technique for 

preparing materials with properties lacking in the component polymers (Bartczak and 

Galeski, 2014). The properties of any blend are functions of the adhesion between the 

components. While most of the blends are thermodynamically incompatible, many have 

been found to have technological importance (Bhowmick and Chakraborty, 1989).  

Natural rubber (NR) can exhibit crystallization when stretched. Stress-induced 

crystallization can be used to increase modulus and resistance to deformation, preventing the 
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propagation of defects. In contrast, ethylene propylene diene monomer (EPDM) rubber has 

saturated hydrocarbon backbones, which usually impart good weathering oxidation and 

chemical resistance (Costa and Nunes, 1994). The vulcanized NR/EPDM systems have been 

extensively studied due to their superior performances in tires and other demanding 

applications (Nabil et al., 2012). Significant improvements in heat and ozone resistance 

(Motaung et al., 2011), chemical resistance, and reduction in compression set (Alipour et al., 

2013) of NR/EPDM blends have attracted researchers to explore further and improvise the 

NR/EPDM compounds formulation.  

Multiple studies have been conducted on elastomer-filled carbon black for engine 

mounting. Carbon black is a famous material in industrial rubber products as a commercial 

reinforcing filler and is extensively used when high strength is essentials (Nabil et al., 2012). 

The main uses of carbon black are as a reinforcing agent in rubber-based goods, such as tires, 

tubes, conveyer belts, cables, and engine mounting. The addition of carbon black can affect 

all phases of a rubber factory’s operation and the end products' performance characteristics 

due to its unique properties, which can produce strong interactions with any rubber, from 

tire components to industrial rubber products (Ramesan, 2005).  As a practical guide, an 

increase in a carbon black aggregate size or structure will improve cut growth and fatigue 

resistance. Carbon black also has higher tensile strength, tear strength, modulus, and 

abrasion resistance when compounded with rubber (Choi et al., 2003). However, the most 

considerable hindrance of carbon black as advanced industrial filler is their limitation in 

dispersion and distribution in viscous polymer matrices. Their surface properties increase 

the tendency for aggregations and agglomerations during processing and limit the further 

improvement of the composites’ physical and mechanical properties. The use of high loading 

carbon black increases the stickiness that is unfavorable in processing and reduces the 
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