

IMPROVED TESTING CHARACTERIZATION ON RADIO FREQUENCY CONNECTOR IN CALIBRATION SYSTEM

DOCTOR OF PHILOSOPHY IN MANUFACTURING ENGINEERING

2021

Faculty of Manufacturing Engineering

Tan Ming Hui

Doctor of Philosophy in Manufacturing Engineering

IMPROVED TESTING CHARACTERIZATION ON RADIO FREQUENCY CONNECTOR IN CALIBRATION SYSTEM

TAN MING HUI

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this thesis entitled "Improved Testing Characterization On Radio Frequency Connector In Calibration System" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I hereby declare that I have checked this thesis and in my opinion this thesis is adequate in terms of scope and quality for the award the degree of Doctor of Philosophy in Manufacturing Engineering.

Signature VSIA :	
Supervisor Name :	PM DR AHMAD YUSAIRI BANI HASHIM
Date :	05 July 2021
كل مليسيا ملاك	اونيۇمرسىتى تيكنىڭ
UNIVERSITI TEK	NIKAL MALAYSIA MELAKA

DEDICATION

To my beloved family.

ABSTRACT

For extending the dynamic range of measuring equipment, radio frequency connectors are found in a wide variety of electronic types of equipment. An important part of characterizing RF microwave circuits and devices required precision in S-parameters measurement. Variety type of dimension and frequency range can be found with RF connector. The main issue is the RF connector neglects the insertion loss causing an unknown error contributed to an RF system in calibration. The unknown insertion loss could create a phenomenon that triggered a false failure in the RF system. The objective of this study is to develop and calculate the Error normalize ratio for characterizing RF connectors, identify the unique RF connector characterization process and techniques associate with measurement uncertainty calculation by using the vector network analyzer, and integrate the power sensor calibration system with RF connector mismatch into the component of the calculation. This is to determine the methodology into several effective techniques of RF connector insertion loss, port match, measurement uncertainty, decision rule to a newly developed product specification in an RF manufacturing process into a power sensor calibration system as the final product to the end customer. In addition, the method applied in this study refers to the international requirements example ANSI/NCSL Z540.3 released in the year 2006, ISO/IEC 17025:2017 released in the year 2017, and ISO GUM (JCGM 100:2008) released in the year 2008 to meet the quality results. The expected outcome of this study would provide a summary of RF connector mismatch is extremely important to an RF measurement system that required extensive research by applying appropriate equipment in precision measurement.

PENAMBAHBAIKAN UJIAN PADA PENCIRIAN PENYAMBUNG RADIO

FREKUENSI DALAM SISTEM PENENTUUKURAN

ABSTRAK

Radio Frekuensi terdapat pelbagai penyambung dalam jenis peralatan elektronik untuk memperluaskan julat dinamik mengukur peralatan. Pengukuran keperincian tepat adalah satu bahagian penting dalam mencirikan Radio Frekuensi dalam bidang gelombang mikro litar dan peranti elektronik memerlukan kejituan dalam pengurukan S-Parameter. Penyambung Radio Frekuensi boleh didapati dalam mana-mana jenis dimensi dan kekerapan julat frequensinya. Masalah utamanya ialah penyambung Radio Frekuensi ia tidak dapat dibaca kehilangannya terhadap julat frekuensi adalah punca utama kepada kegagalan dalam satu system Radio Frequensi. Objektif projek ini adalah untuk mewujudkan satu proses yang baru untuk mencirikan penyambung Radio Frekuensi menggunakan penganalisis rangkaian yang unik iaitu nisbah Error Normalize bersama dengan ketidakpastian dalam pengukuran yang dibaca oleh perkakas Vector Network Analyzer, menyatukan system kalibrasi pembaca kuasa dengan nisbah kehilangan penyambung Radio Frequensi. Untuk menentukan metodologi dalam cara yang tertentu untuk mengira kehilangan penyambung Radio Frequensi, ketidakpastian dalam pengukuran, peraturan keputusan spesifikasi diambil kira semasa pembuatan dalam sector perkilangan dalam system kalibrasi pembaca kuasa sebagai satu product yang akan disampaikan kepada pelanggan. Di samping itu, penganalisa ini juga merujuk kepada piawai antarabangsa seperti ANSI/NCSL Z540.3 diperkenalkan pada tahun 2006, ISO/IEC 17025:2017 diperkenalkan pada tahun 2017, dan ISO GUM (JCGM 100:2008) yang diperkenalkan pada tahun 2008 untuk mencapai tahap kualiti yang ditentukan. Pada akhir tesis ini akan mengemukan satu ringkasan membimbing terhadap kehilangan penyambung Radio Frequensi adalah sangat penting dalam satu system Radio Frequenci iaitu memerlukan kajian yang sangat perinci untuk menentukan kejituan dalam system kalibrasi.

ACKNOWLEDGEMENTS

First and foremost, I would like to take this opportunity to express my sincere acknowledgement to my supervisor, Associate Professor Dr Ahmad Yusairi bin Bani Hashim from the Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka (UTeM) for his essential supervision, support and encouragement towards the completion of this thesis. Associate Professor Dr. Ahmad Yusairi bin Bani Hashim had been supervised me and giving a lot of advice and suggestions in the evaluation of microwave measurement. Also, to my co-supervisor, Professor Dr. Mohd Rizal Salleh, Universiti Teknikal Malaysia Melaka (UTeM) who constantly supported my journey.

Special thanks to all my family, mother, father, siblings and peers for their moral support in completing this degree. Lastly, thank you to everyone who had been to the crucial parts of realization of this project.

TABLE OF CONTENTS

DEC	LAR	ATION	
APP	ROV	AL	
DED	ICAT	TION	
ABS	TRAG	CT	i
ABS'	TRA	X	ii
ACK	NOW	VLEDGEMENTS	iii
TAB	LE O	F CONTENTS	iv
LIST	OF	TABLES	vii
LIST	C OF 1	FIGURES	X
LIST	C OF S	SYMBOLS AND ABBREVIATIONS	xvi
LIST	OF	APPENDICES	xix
LIST	C OF 1	PUBLICATIONS	XX
CHA	PTE	R	
1.	INT	RODUCTION	1
	1.1	Background of The Study	1
	1.2	Network Analyzer and Radio Frequency Overview	3
	1.3	Problems of Statement	6
	1.4	Objective	9
	1.5	Scope of Research	10
	1.6	Expected Outcome of The Research	10
	1.7	Thesis Outline in The Research	11
		chi l l l l l l l l l l l l l l l l l l l	
2.	LIT	ERATURE REVIEW	13
	2.1	RF Connector Overview	13
		2.1.1 Introduction of RF Connector AL AVELA MELAKA	13
		2.1.2 RF Connector Mismatch	14
		2.1.3 RF Connector Frequency Range	16
	2.2	Network Analyzer Overview	22
		2.2.1 Introduction of Vector Network Analyzer	22
		2.2.2 Evolution of Vector Network Analyzer	24
		2.2.3 Network Analyzer Measurement	36
		2.2.4 Typical Sample of Data-based System	39
		2.2.5 A Basic VNA Operation Mode	41
		2.2.6 VNA Full 2-Ports S ₂₁ or S ₁₂ Calibration	43
	2.3	Fixed Attenuator in RF System Application	46
		2.3.1 Introduction of 849x Series Fixed Attenuator	46
		2.3.2 Pi-pad Fixed Attenuator	48
		2.3.3 Audit Device Fixed Attenuator	50
	-	2.3.4 Determine the Specification to RF Connector Mismatch	53
	2.4	Calibration Kits for VNA	62
		2.4.1 Mechanical Precision Broadband Loads	66
		2.4.2 Offset Short and Open in Mechanical Calibration Kits	69
		2.4.3 Mechanical Calibration Kits Sliding Loads	72

2.4.3 Mechanical Calibration Kits Sliding Loads

		2.4.4 Lumped Element Transmission Line	75
		2.4.5 Terminated Transmission Line	77
		2.4.6 Open Circuit Termination	80
		2.4.7 Short Circuit Termination	82
		2.4.8 Electronic Automatic Calibration Module	83
	2.5	Measurement Uncertainty	86
		2.5.1 Type A Uncertainty Contributor	89
		2.5.2 Type B Uncertainty Contributor	92
		2.5.3 Expanded Uncertainty	95
	2.6	Power Sensor Calibration Factor Mathematic Model	98
		2.6.1 Introduction of Power Sensor Calibration Factor	98
		2.6.2 Power Sensor Systematic and Random Error	100
		2.6.3 1mW Power Meter Calibration Procedure	104
		2.6.4 Combined Power Sensor CF with RF Connector Loss	105
	2.7	Summary	108
3.	RE	SEARCH METHDOLOGY	109
	3.1	Methodology of Radio Frequency Connector Characteristic	109
		3.1.1 RF Connector Characteristic from 300 kHz until 50 GHz	109
		3.1.2 Process Flow For RF Connector Characterization	111
		3.1.3 VNA Setup Process From 300 kHz To 50 GHz	112
	3.2	Power Sensor S ₁₁ Parameter Calibration System Process	114
		3.2.1 Improved Power Sensor Calibration Factor System Process	116
	3.3	Summary	118
		shell I K - · K - · · · · · ·	
4.	RES	SULTS AND DISCUSSION	120
	4.1	PXIe-5632 NI VNA Characterize with Anritsu Calibration Kits	120
		4.1.1 RF Connector Insertion Loss S_{12} and S_{21}	121
		4.1.2 Network Analyzer S_{12} and S_{21} Offset	123
		4.1.3 Analysis of PXIe-5632 S ₁₂ , S ₂₁ and Average Comparison	124
		4.1.4 DUT Insertion Loss S ₁₂ and S ₂₁ Offset Compensation	126
		4.1.5 Device Under Test Before and After Offset Measurement	128
	4.2	E8364B VNA Characterize with Hewlett Packard Calibration Kits	129
		4.2.1 VNA S_{11} Port One Ecal (Ecal S1p)	129
		4.2.2 VNA and Mechanical Cal Kit S_{11} One Port (M Cal S1p)	133
		4.2.3 VNA With Ecal Full two Port (Ecal F2p)	137
		4.2.4 Mechanical Cal Kit Full Two Port (M Cal F2p)	141
		4.2.5 Overall Results in Linear Magnitude and Loss in dB	145
		4.2.6 EN Ratio For S_{11} One Port Calibration (S1p)	148
		4.2.7 EN Ratio For Full Two Port Calibration (F2p)	151
		4.2.8 Correlation Mechanical and Electronic Calibration Kits	153
	4.3	Audit Device 3 dB Fixed Attenuator	155
		4.3.1 Compute Audit Device Limits from Calibration Results	156
		4.3.2 Benefit of Audit Device	156
		4.3.3 RF Connector Decision Rule	156
	4.4	Mismatch And Insertion Loss Measurement Uncertainty Calculation	166

	4.4.1	Type A Evaluation of Uncertainty For 8 5 GHz VNA	168
	4.4.2	PXIe-5632 Experimental Transmission S ₂₁ Analysis	170
	4.4.3	PXIe-5632 Experimental Transmission S ₁₂ Analysis	172
	4.4.4	Mini-Circuit VAT-3 Transmission Error and Limit	174
	4.4.5	The Variance of VNA S ₂₁ and S ₁₂	176
	4.4.6	Type A Uncertainty Calculation	177
	4.4.7	Type A Uncertainty Associated with Transmission Reading	178
	4.4.8	Validate Type A Uncertainty S_{21} and S_{12} Correlation	180
	4.4.9	Verification of PXIe-5632 VNA Results with Other OEM	182
	4.4.10	Summary of Type A Uncertainty Discussion	184
	4.4.11	Type B Evaluation of Uncertainty For 8.5 GHz VNA	185
	4.4.12	Summary of Type B Uncertainty Discussion	192
	4.4.13	VNA Directivity Validation Using Mechanical Kits	192
	4.4.14	VNA Mismatch Validation with 3 dB Fixed Attenuator	197
	4.4.15	VNA Reflection and Transmission Improvement	198
	4.4.16	PXIe-5632 VNA Limitation and Future Improvement	200
	4.4.17	Summary of Expanded Uncertainty Discussion	202
4.5	Power	Sensor Calibration Factor System Experimental	203
	4.5.1	Power Sensor S ₁₁ Calibration from 300 kHz until 8.5 GHz	203
	4.5.2	Power Sensor Uncertainty from 300 kHz until 8.5 GHz	212
4.6	Concl	usion Remarks	220
	E		
5. CO	NCLUS	SION AND RECOMMENDATIONS	222
5.1	Concl	usion of The Study	222
5.2	Recon	nmendation and Improvement	224
5.3	Type A	A and Type B Uncertainty Gap Analysis	226
REFERE	NCES ICES	VERSITI TEKNIKAL MALAYSIA MELAKA	228 241

LIST OF TABLES

TABLE	TITLE	PAGE
1.1	RF connector usable Frequency Range	2
2.1	Wavelength respect to RF connector type capability	17
2.2	Revealed the contrast of 3 variants VNA	26
2.3	PXIe-5632 hardware configuration	33
2.4	VNA Test model specifications and conditions	35
2.5	Seven Type-B uncertainty components for PXIe-5632 VNA	92
4.1	Real and imaginary convert to linear magnitude (insertion loss)	132
4.2	Conversion for linear magnitude into loss in dB	132
4.3	Conversion for real and imaginary into degree	132
4.4	Adaptor delay calculated at 50 GHz	140
4.5	Accreditation scope for the transmission coefficient	149
4.6	EN Ratio S ₁₁ One Port Calibration	150
4.7	EN Ratio full two port calibration	151
4.8	Comparison of Audit Device Measurement	157
4.9	Compute the limits for audit device from 7 to 8.5 GHz	158
4.10	Standard model specifications and conditions.	159
4.11	The 1, 2 and 3 Sigma specification unit	163
4.12	ISO17025 Guardband 25% specification	165
4.13	Z540.3 Specification	165
4.14	ISO17025 guard banding 25% versus Z540.3 specification	166
4.15	Five repeated measurement S_{21} calibrated from PXIe-5632	170
4.16	Five repeated measurement S_{12} calibrated from PXIe-5632	173

LIST OF TABLES

TABLE	TITLE PA	GE
4.17	S_{21} and S_{12} repeated measurement error up to 8.5 GHz	175
4.18	Variance S ₂₁ and S ₁₂	177
4.19	Standard deviation of S_{21} and S_{12}	178
4.20	Example of calibration report with Type A uncertainty	179
4.21	Delta of mean calculated from S_{21} and S_{12}	181
4.22	S_{21} delta between PXIe-5632 and ZNB20	183
4.23	S ₁₂ delta between PXIe-5632 and ZNB20	184
4.24	Uncertainty component's unit, evaluation and distribution type	186
4.25	Uncertainty calculation from 300 kHz to 5 GHz	187
4.26	Uncertainty calculation from 5 GHz to 8.5 GHz	190
4.27	Example of numerical value associate with expanded uncertainty	191
4.28	Directivity and source match accessories required	193
4.29	Fixed attenuator and VNA mismatch calculation in dB	197
4.30	Reflection and transmission distribution type changed from 300kHz to 5GHz	198
4.31	Reflection and transmission distribution type changed from 5GHz to 8.5GHz	199
4.32	Transmission S_{21} comparison with another manufacturer	200
4.33	Reflection and transmission tracking uncertainty with reference attenuator from 300 kHz to 5 GHz	202
4.34	Reflection and transmission tracking uncertainty with reference attenuator from 5 GHz to 8.5 GHz	202
4.35	Summary of improvement calibration technique NI PXIe-5632 with reference attenuator	203
4.36	PXIe-5632 as reference frequency source and power level setting	206
4.37	Agilent E9304A power sensor calibration factor	209
	•••	

LIST OF TABLES

TABLE	TITLE	PAGE
4.38	R&S NRP Z91 power sensor calibration factor	210
4.39	Agilent E9304A power sensor calibration factor reference to 100%	211
4.40	R&S NRP Z91 power sensor calibration factor reference to 100%	211
4.41	Power sensor S ₁₁ Type A uncertainty analysis	212
4.42	Power sensor NRP-Z91 comparison	213
4.43	Power sensor S_{11} uncertainty calculation from 300 kHz until 5 GHz	217
4.44	Power sensor S_{11} uncertainty calculation from 5 GHz until 8.5 GHz	218
4.45	Power sensor Type B uncertainty comparison	219
4.46	Power sensor uncertainty components detail	219
4.47	NRP-Z91 power sensor S ₁₁ calibration report	220
5.1	اونيۇى سىتى تېكىنىكل مليسىيا ملاك	223
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA	

ix

FIGURE	TITLE	PAGE
1.1	Reflected wave from a reflection plane	3
1.2	RF power loss in a system	6
1.3	Example of RF connector applied in a power level calibration system	7
1.4	High reject rate of RF connector in assembling or production line	8
1.5	Slotted (left) and slotless (right) RF connector inspection	9
1.6	RF connector failed visual inspection	9
2.1	Reflected energy measurement from an RF device	15
2.2	Male and female 2.4mm RF connector interconnect	18
2.3	A structure of Type K RF connector with air gap insulator	20
2.4	A pair of Sucoflex 526V cable to be used in RF connector calibration	22
2.5	A systematic of 12 error terms	24
2.6	A 50 GHz VNA split the screen into S_{11} , S_{22} , S_{21} and S_{22}	25
2.7	A compact PXIe-5632 VNA setup	27
2.8	A full two ports set up calibration with mechanical calibration kit	29
2.9	A PXIe-5632 VNA full two ports set up calibration	31
2.10	4-Ports VNA model E5080B	31
2.11	A ZNB8 VNA calibrating a power sensor mismatch	32
2.12	HP8510C (left) and N5230C (right) with different kit set up	34
2.13	S-parameter measured with a device	36
2.14	A matching impedance load attach to the transmission line	38
2.15	An illustration of VNA with a load at termination	38
2.16	Computer-based statistic model	40

FIGURE	TITLE	PAGE
2.17	A streamlined full 2 ports PNA block diagram	42
2.18	S_{11} 1-port calibration and S_{21} full 2-ports calibration	43
2.19	An electronic calibration kit applied in the 50 GHz VNA system	44
2.20	A VNA noise floor transition approximates at 8 GHz	46
2.21	Fixed attenuator in parallel	47
2.22	Basic Pi-pad fixed attenuator circuit design	48
2.23	Audit Device in a VNA calibration system	52
2.24	ISO17025 Guardbanding to a specification	54
2.25	Probability 1, 2, and 3 Sigma conform to a specification	56
2.26	Absolute amplitude accuracy ILC results	59
2.27	Anritsu K-Type mechanical calibration kit	63
2.28	A 2.4 mm mechanical calibration kits applied in this study	65
2.29	A pair of male and female broadband termination	67
2.30	A broadband load measured on a Smith Chart sweep until 50 GHz	68
2.31	A pair of 2.4 mm offset opens and shorts mechanical calibration kit	69
2.32	Offset open and short measured on a Smith Chart	70
2.33	A pair of 2.4 mm sliding loads to analyze the RF connector characteristic	73
2.34	A 2.4 mm sliding load plot in a VNA Smith Chart	73
2.35	Lossless transmission line corresponding circuit diagram	76
2.36	Source match and load match in an RF system	78
2.37	Z ₀ impedance in perfect load match	79
2.38	Open circuit end as full voltage and zero current	81

FIGURE	TITLE	PAGE
2.39	Z ₀ impedance behaves like an infinitely long transmission line	81
2.40	Short circuit termination as maximum current and zero voltage	82
2.41	Short circuit ended termination	83
2.42	A 2.4 mm electronic automatic calibration module support up to 50 GHz	84
2.43	PXIe-5632 forward and reverse calibration	91
2.44	An actual PXIe-5632 VNA setup applied in this study	93
2.45	A 3 dB fixed attenuator (Audit Device) under full two ports calibration	94
2.46	NI USB-5681 power sensor specification	99
2.47	PXIe-5652 power level accuracy specification	100
2.48	Power sensor calibration factor convert to dB chart	108
3.1	Methodology of the VNA selection process flow	110
3.2	One Port and full 2 ports S-Parameter measurement process flow	112
3.3	Integrate 3 dB Audit Device into the specification and calibration process	114
3.4	Power sensor S_{11} VNA calibration and uncertainty calculation process flow	v 116
3.5	Adopt VNA calibration and Audit Device into power sensor calibration fac process flow	tor 117
4.1	A DUT measured S ₁₂ and S ₂₁ in VNA	121
4.2	Analysis of S_{12} , S_{21} , and the average of S_{12} & S_{21}	122
4.3	VNA"Offset" measurement	123
4.4	VNA S_{12} and S_{21} offset measurement	124
4.5	Analysis of S_{12} , S_{21} , and the average of S_{12} and S_{21} comparison	126
4.6	A DUT before and after offset measurement	127
4.7	DUT before and after offset measurement xii	128

FIGURE	TITLE	PAGE
4.8	E8364 VNA Ecal S ₁₁ one port calibration technique	131
4.9	S ₁₁ Ecal kit one port calibration measured in a VNA	132
4.10	Mechanical cal kit S ₁₁ one port calibration	134
4.11	S ₁₁ one port calibration at the VNA test port	135
4.12	S ₁₁ one port calibration kits orientation in position	136
4.13	Mechanical calibration kit one port calibration measured in a VNA	137
4.14	50 GHz VNA full 2 ports calibration with Ecal kit	138
4.15	RF adaptor delay measured in VNA	139
4.16	Ecal full two port calibration thru	140
4.17	A 50 GHz RF connector measured in a VNA	141
4.18	Mechanical calibration kit full two port calibration	143
4.19	Mechanical calibration kit adaptor delay measured in VNA	144
4.20	Linear Magnitude for S1p NIKAL MALAYSIA MELAKA	145
4.21	Loss in dB for S1p	146
4.22	Linear Magnitude for F2p	147
4.23	Loss in dB for F2p	148
4.24	Correlation of one port calibration	151
4.25	Correlation of full two port calibration	152
4.26	The differences for single one port S_{11} and full two port S_{21}	153
4.27	The differences in the port match between S_{11} and S_{22}	154
4.28	History of an Audit Device from 2015 until 2018	155
4.29	Determine specification by using Audit Device	158

FIGURE	TITLE	PAGE
4.30	Sampling OQI check on the 3.5mm RF connector	160
4.31	Audit Device reflection and transmission coefficient	161
4.32	VNA S_{12} and S_{21} offset measurement	162
4.33	Nominal 3 dB fixed attenuator error population	169
4.34	Nominal 3 dB fixed attenuator distribution trend	169
4.35	Mini-Circuit VAT-3 OEM specification	171
4.36	Transmission S ₂₁ with repeated number of 5	172
4.37	Transmission S ₁₂ With repeated number of 5	174
4.38	Measurement error and limit control chart	176
4.39	Transmission S ₂₁ and S ₁₂ associate with Type A uncertainty	180
4.40	Correlation S ₂₁ and S ₁₂	181
4.41	ZNB20 transmission S ₂₁ and S ₁₂ absolute measurement	183
4.42	PXIe-5632 source second harmonics MALAYSIA MELAKA	186
4.43	Student-T table at 1.962	189
4.44	Student-T table at 95% confidence level	191
4.45	Directivity validation by using Anritsu verification kit from 300 kHz to 5 (left) and 5 GHz to 8.5 GHz (right)	GHz 194
4.46	PXIe-5632 port 1 directivity validation results from 300 kHz to 5 GHz	194
4.47	PXIe-5632 port 2 directivity validation results from 300 kHz to 5 GHz	195
4.48	PXIe-5632 port 1 directivity validation results from 5 GHz to 8.5 GHz	195
4.49	PXIe-5632 Port 2 Directivity Validation Results from 5 GHz to 8.5 GHz	196
4.50	Power Sensor Reflection S ₁₁ Calibration	204
4.51	R&S NRP Z91 Power Sensor S11 Results	204
	•	

FIGURE	TITLE	PAGE		
4.52	Agilent E9304A Power Sensor S11 Results			
4.53	Power sensor calibration factor set up	206		
4.54	Anritsu SC7400 reference power sensor characterization calibration	207		
4.55	Power sensor E9304A attach to PXIe-5632 VNA	208		
4.56	Power sensor S ₁₁ reflection comparison	214		
4.57	VNA source match verification	214		
4.58	PXIe-5632 port 1 source match validation results	215		
	UTEM			
	اونيومرسيتي تيكنيكل مليسيا ملاك			
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA			

LIST OF SYMBOLS AND ABBREVIATIONS

Γ	-	Reflection Coefficient
$\Delta 0$	-	Measured Phase Shift
ł	-	Length in Meter
с	-	Speed of Light
λ	-	Wavelength
Er	-	Permeability
δLm	-	Correction To Mismatch Loss
δLk	-	Correction For Leakage For Signal Between Input And Output
δLr	- 167	Resolution of The Network Analyzer
Γ_{g}	A.	Network Analyzer Directivity
Γ_d	EKA	Reflection Coefficient of DUT
Γ_{s}	E	Reflection Coefficient of Standard
δUs	2300	Standard Uncertainty Contributor
δUd		Distribution Type Of Divisor
δUf	ملاك	Sensitivity Coefficient
δU(s)	INTR /	Standard Uncertainty Contributor
Zo		Impedance at Load
Ω	-	Ohm
00	-	Infinity
S-Parameter	-	Scattering Parameter
kHz	-	kilo Hertz
MHz	-	Mega Hertz
GHz	-	Giga Hertz
VNA	-	Vector Network Analyzer
SOLT	-	short/open/load/thru
S ₁₁	-	Port 1 Reflection Voltage (S ₁₁)

LIST OF SYMBOLS AND ABBREVIATIONS

S ₁₂	-	Reverse Transmission (S ₁₂)
S ₂₁	-	Forwards Transmission
S ₂₂	-	Port 2 reflection voltage
RF	-	Radio Frequency
VSWR	-	Voltage Standing Wave Ratio
S1p	-	Single 1 Port
F2p	- 14	Full 2 Ports
E Cal	and the second s	Electronic Calibration Kits
M Cal	TEN	Mechanical Calibration Kits
dB	Tiese a	Decibel
DC	in	Direct Current
f	ملاك	ويور سيتي بيڪيڪل ملسيا
SNA	UNIVE	Scalar Network Analyzer ALAYSIA MELAKA
DUT	-	Device Under Test
PNA	-	Programable Network Analyzer
Zin	-	Input Impedance
Z_0	-	Output Impedance
TRL	-	Transmission Reflection and Loads
PTS	-	Proficiency Testing Scheme
ILC	-	Inter laboratory Comparisons
РТ	-	Proficiency Testing

LIST OF SYMBOLS AND ABBREVIATIONS

EN Ratio	-	Error Normalize Ratio
0s21	-	Offset S ₂₁
0 _{s12}	-	Offset S ₁₂
A_{s21}	-	RF connector S ₂₁ Loss
A _{s12}	-	RF connector S ₁₂ Loss
SI Units	-	International System of Units
OQI	- 14	Output Quality Investigation
IF	and a second	Intermediate Frequency
BW	TER	Bandwidths
OEM	Takan .	Original Equipment Manufacturer
UUC	ahl	Unit Under Calibration
TAR	מאניב	Test Accuracy Ratio
TUR	UNIVE	Test Uncertainty Ratio MALAYSIA MELAKA