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ABSTRACT 

 

 

Radio frequency (RF) and microwave switches are important components in RF front end, 

as they control the signal circulation path. Up to now, many different types of RF and 

microwave switches have been designed. They usually have a very wide passband with no 

specific band selectivity. With the increasingly complex spectrum environment and the 

increased communication modes, the traditional design method has the drawback of large 

circuit size, high impedance matching loss, and high fabrication cost. Researchers have 

recently become interested in a microwave switch with integrated filtering response, which 

has the potential to solve these issues. Thus, several research works have been done to 

develop a filter integrated switch (FIS). Based on the literature, most of the previous studies 

introduced reflective FISs having a problem of extremely low reflection coefficient at the 

ports that are not switched to the antenna or called OFF-state ports. In this research work, a 

reconfigurable resonator-based absorptive filter integrated switch (FIS) was presented for 

the industrial, scientific, and medical (ISM) band. Three types of reconfigurable resonators 

were utilized (L-shape, ring, and T-shape resonator). The FIS was made up of two absorptive 

resonators, reconfiguring between band-stop and band-pass responses, and integrated with a 

single pole double throw (SPDT) switch. In particular, the FIS circuit was designed for the 

purpose of switching between the transmitter (Tx) mode and the receiver (Rx) mode, as well 

as to filter both the transmitted and received signals. A simple mathematical analysis of 

isolation and insertion loss of filter integrated SPDT switch was discussed. PIN diodes were 

used as the switching elements for the SPDT switch and to reconfigure between the band-

stop and band-pass responses. The band-stop response was the ultimate reason for the 

isolation between the transmitter (Tx) and receiver (Rx). While the bandpass response was 

the ultimate reason for selecting the wanted signal. The proposed absorptive FIS design 

could be used for ISM band applications at an operation frequency of 2.45 GHz. As a result, 

the proposed FIS design exhibited 2 dB of insertion loss and better than 38 dB of isolation. 

The measurement results showed a good agreement with the simulation results. Therefore, 

the key advantages of the proposed FIS design include low insertion loss, high isolation and 

good reflection coefficient at both ON- and OFF-state ports. In addition, the proposed FIS 

has an absorptive feature with a smaller number of PIN diodes while maintaining a compact 

size. 
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REKA BENTUK SUIS BERSEPADU PENAPIS PENYERAP MENGGUNAKAN 

PENYALUN HILANG PADA JALUR ISM 2.4 GHz 

 

 

ABSTRAK 

 

 

Suis frekuensi radio (RF) dan gelombang mikro adalah komponen penting di bahagian 

depan RF untuk mengawal peredaran isyarat. Sehingga kini, banyak jenis suis RF dan 

gelombang mikro telah direka bentuk. Suis-suis ini biasanya mempunyai ciri jalur-lepas 

yang sangat luas tetapi tiada pemilihan jalur tertentu. Melihat kepada persekitaran 

frequensi spektrum yang semakin kompleks dan mod komunikasi yang semakin meningkat, 

kaedah reka bentuk tradisional mempunyai kekurangan dari segi saiz litar yang besar, 

kehilangan padanan yang tinggi, dan peningkatan kos pembuatan. Para penyelidik baru-

baru ini telah berfokus kepada suis gelombang mikro dengan penapis bersepadu, yang 

berpotensi untuk menyelesaikan masalah-masalah ini. Oleh itu, beberapa kerja 

penyelidikan telah dilakukan untuk suis bersepadu penapis (FIS). Berdasarkan literatur, 

kebanyakan penyelidikan terdahulu telah memperkenalkan FIS reflektif yang mempunyai 

masalah pekali pantulan yang sangat rendah di liang yang tidak beralih ke antena atau 

dipanggil liang berkeadaan tertutup. Suis bersepadu penapis berpenyerap yang berasaskan 

resonator yang dapat dikonfigurasi dilaporkan dalam tesis penyelidikan ini untuk jalur 

industri, saintifik, dan perubatan (ISM). Tiga jenis resonator yang dapat dikonfigurasi telah 

dipilih iaitu bentuk L, cincin, dan bentuk T. FIS ini terdiri daripada dua resonator 

berpenyerap, konfigurasi antara sambutan jalur-henti dan jalur-lepas, dan disatukan 

dengan suis satu kutub dua lontar (SPDT). Secara khusus, litar FIS ini dirancang untuk 

tujuan pensuisan antara mod pemancar (Tx) dan mod penerima (Rx), serta untuk menyaring 

isyarat yang dihantar dan yang diterima. Satu analisis mudah matematik untuk pemencilan 

dan kehilangan sisipan SPDT bersepadu penapis telah dibincangkan. Diod-diod PIN 

digunakan sebagai elemen peralihan untuk SPDT dan untuk mengkonfigurasi antara 

sambutan jalur-henti dan jalur-lepas. Sambutan jalur-henti adalah ciri utama prestasi 

pemencilan antara pemancar (Tx) dan penerima (Rx). Manakala, sambutan jalur-lepas 

adalah sebab utama untuk memilih isyarat yang dikehendaki dan menghalang isyarat 

gangguan. Reka bentuk FIS berpenyerap yang dicadangkan ini dapat digunakan untuk 

aplikasi jalur ISM pada frekuensi 2.45 GHz. Hasilnya, FIS yang dicadangkan menghasilkan 

kehilangan sisipan sebanyak 2 dB dan pemencilan yang melebihi 38 dB. Hasil pengukuran 

menunjukkan persamaan yang hampir dengan hasil simulasi. Oleh itu, kelebihan utama reka 

bentuk FIS yang dicadangkan ini adalah kehilangan penyisipan yang rendah, pemencilan 

tinggi dan pekali pantulan yang baik di kedua-dua liang berkeadaan terbuka dan tertutup. 

Selain itu, FIS berpenyerap ini mempunyai bilangan diod PIN yang sedikit disamping 

mengekalkan saiz litar yang padat. 
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