

Faculty of Information and Communication Technology

Doctor of Philosophy

AN IMPROVED ENERGY-EFFICIENT CLUSTERING PROTOCOL TO PROLONG THE WIRELESS SENSOR NETWORK LIFETIME

ALI ABDUL-HUSSIAN HASSAN ALHMOOD

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this thesis entitled "An Improved Energy-Efficient Clustering Protocol to Prolong the Wireless Sensor Network Lifetime" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

DEDICATION

First and foremost, Alhamdulillah Almighty for all the blessings of health, wisdom and patience and to overcome all the difficulties that I faced in my PhD journey.

I would like to dedicate these years of hard work to my father, who taught me patience and success and gave me advice.

My beloved mother, who provided me with affection, love and support, and had her prayer, I would not have reached this result.

My dear wife who stood beside me in good and bad times, and she endured the suffering of alienation and gave me psychological and moral support to complete this thesis.

Finally, I would like to dedicate this work to my children-Hussien and Zahraa to be an asset to them in the future.

1. nous

Thanks to all my family members who supported me psychologically and emotionally.

ABSTRACT

A wireless sensor network (WSN) is an important part of the Internet of Things (IoT). However, sensor nodes of a WSN-based IoT network are constraining with the energy resources. A clustering protocol provides an efficient solution to ensure energy saving of nodes and prolong the network lifetime by organizing nodes into clusters to reduce the transmission distance between the nodes and base station (BS). However, existing clustering protocols suffer from issues concerning the clustering structure that adversely affects the performance of these protocols. In this study, we propose an Improved Energy-Efficient Clustering Protocol (IEECP) to prolong the lifetime of the WSN. The proposed IEECP consists of three sequential parts. First, an optimal number of clusters is determined for the overlapping balanced clusters. Then, the balanced-static clusters are formed on the basis of a modified Fuzzy C-means algorithm by integrating this algorithm with a centralized mechanism to reduce and balance the energy consumption of the nodes. Lastly, cluster heads (CHs) are selected in optimal locations with the rotation of the CH function among members of the cluster based on a new CH selection-rotation algorithm by combining a back-off timer mechanism for CH selection and rotation mechanism for CH rotation. In particular, the proposed protocol reduces and balances the energy consumption of nodes by improving the clustering structure, where IEECP is suitable for networks that require a long lifetime. The simulation results prove that the IEECP prolongs the network lifetime better than Energy efficient clustering protocol based on K-means (EECPK-means)-midpoint algorithm (EECPK-means), Traffic-Aware Channel Access Algorithm (TACAA), and an optimal clustering mechanism based on Fuzzy C-means (OCM-FCM) protocols based on the First node die and Weighted first node die. Furthermore, IEECP performs better than the above protocols in terms of the energy dissipation in the network and the number of messages received by BS.

PROTOKOL PENGKELASAN EFISIEN TENAGA YANG DITINGKATKAN UNTUK MEMANJANGKAN JANGKA MASA RANGKAIAN SENSOR TANPA WAYAR

ABSTRAK

Rangkaian sensor tanpa wayar (WSN) adalah bahagian penting dalam Internet of Things (IoT). Walau bagaimanapun, node sensor rangkaian IoT berasaskan WSN menjadi semakin terhad dengan sumber tenaga. Protokol pengelompokan menyediakan penyelesaian yang cekap untuk memastikan penjimatan tenaga nod dan memanjangkan jangka hayat rangkaian dengan menyusun nod ke dalam kelompok untuk mengurangkan jarak penghantaran antara nod dan stesen pangkalan (BS). Namun, protokol pengelompokan yang ada mengalami masalah mengenai struktur pengelompokan yang mempengaruhi prestasi protokol ini. Dalam kajian ini, kami mengusulkan protokol pengkelasan efisien tenaga yang ditingkatkan (IEECP) untuk memanjangkan jangka hayat rangkaian IoT berasaskan WSN. IEECP yang dicadangkan terdiri daripada tiga bahagian berturutan. Pertama, bilangan kelompok yang optimum ditentukan untuk kelompok seimbang yang bertindih. Kemudian, kelompok-kelompok seimbang-statik dibentuk berdasarkan algoritma Fuzzy C-means yang dimodifikasi dengan mengintegrasikan algoritma ini dengan mekanisme terpusat untuk mengurangkan dan mengimbangkan penggunaan tenaga nod. Terakhir, kepala kluster (CH) dipilih di lokasi yang optimum dengan putaran fungsi CH di antara anggota kluster berdasarkan algoritma pemilihan-putaran CH baru dengan menggabungkan mekanisme back-off timer untuk pemilihan CH dan mekanisme putaran untuk putaran CH. Khususnya, protokol yang dicadangkan mengurangkan dan menyeimbangkan penggunaan tenaga nod dengan memperbaiki struktur pengelompokan, di mana IEECP sesuai untuk rangkaian yang memerlukan jangka hayat yang panjang. Hasil simulasi membuktikan bahawa IEECP memanjangkan jangka hayat rangkaian lebih baik daripada protokol pengelompokan cekap Tenaga berdasarkan algoritma K-means (EECPK-means) -midpoint (EECPK-mean), Traffic-Aware Channel Access Algorithm (TACAA), dan pengelompokan optimum mekanisme berdasarkan protokol Fuzzy C-means (OCM – FCM) berdasarkan mati nod Pertama dan mati nod pertama berwajaran. Tambahan pula, IEECP berprestasi lebih baik daripada protokol di atas dari segi kehilangan tenaga dalam rangkaian dan jumlah mesej yang diterima oleh BS.

ACKNOWLEDGEMENTS

First and foremost, all praises are due to Allah for providing me with the strength, perseverance, and wisdom to have this work done on time.

I would like to express my deepest gratitude to my supervisor Dr. Wahidah binti Md Shah for her intellectual guidance and kind support that given to me during the period of this study.

In addition, I wish to extend my warmest thanks to my co-supervisor Dr. Mohd Fairuz bin Iskandar, and all UTeM staff, Faculty of Information and Communication Technology for their support during my study.

Many special thanks to my family for their support and encouragement, especially for my parents and my wife.

Last but not least, thanks to all my friends for their help, support and for keeping this period of study as enjoyable as possible; thanks to everyone else who was involved directly or indirectly.

TABLE OF CONTENTS

	INOL
DECLARATION	
APPROVAL	
DEDICATION	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	ix
LIST OF APPENDICES	xiii
LIST OF ABBREVIATIONS	xiv
LIST OF SYMBOLS	xix
LIST OF PUBLICATIONS	XX

CHAPTER

1.	INT	TRODUCTION	1
	1.1	Background LAYS/4	1
	1.2	Research motivations	6
	1.3	Problem statement	7
	1.4	Research questions	13
	1.5	Research objectives	14
	1.6	Contributions	14
	1.7	Research scope	16
	1.8	Organization of the thesis	18
		she l l - · / - · · · · · · ·	
2.	LIT	ERATURE REVIEW	20
	2.1	Introduction	20
	2.2	Internet of things TITEKNIKAL MALAYSIA MELAKA	20
		2.2.1 IoT overview	20
		2.2.2 Architecture of IoT	21
		2.2.3 WSN-IoT relationship	23
	2.3	Wireless Sensor Network (WSN)	23
		2.3.1 Sensor deployment in WSN	24
		2.3.2 OSI and WSN stacks	26
		2.3.3 Routing protocols in wireless sensor networks	27
	2.4	Clustering protocols	30
	2.5	Clustering attributes	32
		2.5.1 Cluster characteristics	32
		2.5.1.1 The clustering approach	32
		2.5.1.2 Clustering topology	32
		2.5.1.3 Clustering size	33
		2.5.1.4 Cluster connectivity	33
		2.5.2 Nodes characteristics	33
		2.5.2.1 Nodes capacity	34
		2.5.2.2 Nodes movement	34
		2.5.2.3 Nodes functionality	34

		2.5.2.4 Nodes position	35
		2.5.3 CH characteristics	35
		2.5.3.1 CH rotation	35
		2.5.3.2 CH selection approach	35
		2.5.3.3 CH selection priority	36
	2.6	Problems of energy consumption in clustering protocol	38
	2.7	A systematic review for the clustering protocols	41
		2.7.1 The cluster head selection	56
		2.7.1.1 The CH selection method	61
		2.7.1.2 The centralized approach	64
		2.7.1.3 Distributed approach	67
		2.7.1.4 Hybrid approach	68
		2.7.1.5 CH selection parameters	69
		2.7.1.6 CH selection scope	75
		2.7.1.7 Possible research directions for the CH selection	76
		2.7.1.8 The back-off mechanism overview	82
		2.7.2 Cluster formation issue	82
		2.7.2.1 The distributed approach	88
		2.7.2.2 The centralized approach	89
		2.7.2.3 Possible research directions for the formation of clusters	91
		2.7.3 The CH rotation issue	96
		2.7.3.1 Possible research directions in the CH functionality	99
		2.7.4 The number of clusters issue	102
		2.7.4.1 Overview of the mathematical energy consumption model	107
		the user to compute the number of clusters	
		2.7.4.2 The findings from the methods for the number of clusters	111
		2.7.5 Research gap in the current clustering protocols	111
	2.8	Related works	114
		2.8.1 Method for related works identification	114
		2.8.2 Related works: a critical review	116
	2.9	Summary/ERSITI TEKNIKAL MALAYSIA MELAKA	122
3.	RES	SEARCH METHODOLOGY	123
	3.1	Introduction	123
	3.2	Research methodology description	123
	3.3	Problem Awareness (PA) phase	125
	3.4	Designing and Development (D&D)	126
		3.4.1 A modified energy model to determine the optimal number of	127
		clusters	
		3.4.2 The proposed M-FCM algorithm to divide the network into balance	130
		cluster	
		3.4.3 CH Selection and Rotation Algorithm (CHSRA)	132
	3.5	Evaluation of the proposing clustering protocol	134
		3.5.1 The network simulation parameters	135
		3.5.2 Evaluation method and metrics	136
		3.5.2.1 The first phase of the evaluation	138
		3.5.2.2 The second phase of the evaluation	143
	3.6	Summary	147

4.	DE	SIGN OF THE PROPOSED FRAMEWORK	148
	4.1	Introduction	148
	4.2	A modified energy model	148
		4.2.1 Estimation of Cover value	152
	4.3	The proposed M-FCM algorithm	155
	4.4	CH Selection and Rotation Algorithm (CHSRA)	160
		4.4.1 CH selection phase	161
		4.4.2 CH rotation phase	165
	4.5	Summary	169
5.	RE	SULT AND DISCUSSION	170
	5.1	Introduction	170
	5.2	The evaluation of the number of clusters in different scenarios	171
	5.3	The evaluation of the formation of balanced clusters	176
	5.4	The evaluation of the CH Selection and Rotation Algorithm (CHSRA)	180
		5.4.1 The evaluation of the energy consumption and the number of	181
		rounds for the selected CHs based on the proposed mechanism for	
		the CH rotation	
		5.4.2 The evaluation of the proposed objective function for the CH	186
		selection in the back-off timer mechanism based on energy	
		consumption	
	5.5	The evaluation of the performance for the proposed protocol	188
		5.5.1 The evaluation of the network lifetime	188
		5.5.2 The evaluation of the energy dissipation in the inefficient network	191
		5.5.3 The number of messages received by the BS	194
	5.6	Summary	195
6.	CO	NCLUSION AND FUTURE WORKS	197
	6.1	Introduction , aligned , aligned , and a set of the set	197
	6.2	The proposed framework	198
		6.2.1 The modified mathematical energy model	198
		6.2.2 The Modified Fussy C-Means algorithm (M-FCM)	199
		6.2.3 The CH Selection and Rotation Algorithm (CHSRA)	200
	6.3	Evaluation of the Proposed Framework	201
	6.4	Contributions of this work	203
	6.5	Limitation and future work	204
Rŀ	EFER	ENCES	205
AF	PPEN	DICES	230

LIST OF TABLES

TABLE	TITLE	PAGE
1.1	Gap display	8
1.2	The problem in the clustering factors	11
1.3	The deficiency of the evaluation parameters.	13
1.4	The research mapping	15
2.1	The relationship between WSN and IoT	23
2.2	Clustering designing issues	45
2.3	Methods and parameters for the CH selection	57
2.4	The formation of clusters in the literature	84
2.5	The CH rotation mechanisms with the specific threshold value	97
2.6	Different methods for determining the number of clusters	103
2.7	The features and weaknesses of the related works	121
3.1	The simulation parameters	135
4.1	The details of the scenarios	154
4.2	The optimal value of C_{over}	155
5.1	The number of clusters for the EECPK-Means and TACCA protocols	174
5.2	The number of clusters for the OCM-FCM protocol	175
5.3	The number of clusters in the proposed protocol	175

- 5.4 The cluster size in different observations based on clustering 177 algorithms
- 5.5 The comparison of results based on clustering algorithms 178

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	4-Stage IoT architecture (Boyes et al., 2018)	2
1.2	Scope of this study	18
2.1	Basic architecture for sensor node in WSN (Poe and Schmitt,	24
	2009)	
2.2	Deployment strategies in WSNs (Damuut and Gu, 2014)	25
2.3	WSN protocol stack (Yang, 2014)	27
2.4	Taxonomy of routing protocols	28
2.5	The categories of hierarchical routing protocols	29
2.6	Cluster-based protocol process (Younis et al., 2008)	31
2.7	Clustering protocol attributes	37
2.8	Sources of energy consumption in the cluster-based protocol	41
2.9	Literature Investigation Method (LIM)	44
2.10	The distribution of issues	51
2.11	The simulation platforms used in the literature	52
2.12	The simulation scenarios used in the literature	52
2.13	The evaluation parameters for the network lifetime	53
2.14	The performance evaluation parameters	55
2.15	The classification of the CH selection methods	63

2.16	The CH selection parameters for the static network	74
2.17	The CH selection parameters for the dynamic network	75
2.18	The weaknesses in the CH selection based on the distributed	78
	methods and selection scope	
2.19	The analysis for the CH selection	81
2.20	Classification for cluster formation methods	88
2.21	Formation of an imbalanced clusters size using FCM	94
2.22	The effect of the normalization condition on the membership value	95
2.23	Imbalance in energy consumption for the successive CHs of the	101
2.24	cluster Distribution of methods for determining the number of clusters on the studies	107
2.25	The basic elements of the radio energy consumption model (Tyagi and Kumar, 2013)	108
2.26	اونيوس سيني نيڪ The related works identification	115
3.1	The workflow of the IEECP over network lifetime	124
3.2	Research Methodology (RM) of this study	125
3.3	Problem Awareness (PA) phase	126
3.4	The difference between the conventional energy model and the	129
	modified energy model	
3.5	Flow chart for divide network into balance clusters	131
3.6	The CHSRA steps	133
3.7	The evaluation method	137

4.1	The overlapping clusters based on the disk model: a- the disk	149
	model, b- the difference in the radius between overlapping clusters	
	and separate clusters	
4.2	The pseudo code of the M-FCM algorithm	158
4.3	The formation of clusters	159
4.4	The CH selection mechanism using the backward and forward	162
	distance	
4.5	The flow chart of the proposing model for CH Selection and	167
	Rotation (CHSRA)	
4.6	The flow chart of the proposed framework	168
5.1	The number of clusters based on average energy consumption	172
5.2	Variation in the size of the clusters	179
5.3	The cost of the total intra-distance for the formation of balanced clusters	180
5.4	The energy consumption based on the functionality type for nodes	183
	in the EECPK-means KNIKAL MALAYSIA MELAKA	
5.5	The number of rounds for the first and last node that becomes a	183
	CH in the EECPK-Means protocol	
5.6	Determination of the T value for CH rotation threshold	184
5.7	The energy consumption based on the functionality type for nodes	185
	in IEECP	
5.8	Energy consumption of the successive CHs of the cluster based on	185
	the rotation mechanisms of EECPK-Means and the IEECP	

5.9	The number of rounds for the first and last node that becomes a	186
	CH in the IEECP protocol based on dynamic threshold	
5.10	The standard deviation of the energy consumption for CHs	187
5.11	The number of alive nodes for different comparison protocols	189
5.12	The comparison of the network lifetime for the comparative	190
	protocols	
5.13	The rounds that the half nodes have died (HND)	191
5.14	The energy consumption of the effective network	193
5.15	Energy dissipation in an ineffective network	193
5.16	The number of messages received by the BS	194

```
UNIVERSITI TEKNIKAL MALAYSIA MELAKA
```

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	The number of clusters based on the simulation at a certain	230
	number of nodes	
В	The energy consumption and the number of rounds for the	231
	selected CHs based on the CH rotation mechanism	
C	The number of alive nodes over time for different comparison	232
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA	

LIST OF ABBREVIATIONS

3D	-	Three-dimensional
ABC	-	Artificial Bee Colony Optimization
ACO	-	Ant Colony Optimization Optimization
ADV	-	The advertisement message received
BS	MALAY	Base Station
СН	State -	Cluster Head
CHSRA	TEK)	Cluster Head Selection Rotation Algorithm
Cj	Lind -	The cluster centroid
СМ	Ainn	Centralized Mechanism
CoV	م <u>يا</u> ملاك	اويوم سيني ترمند The coefficient of variation
Cover	UNIVERS	The overlapping distance among clusters LAKA
d	-	Transmission distance
$d(x_i, c_j)$	-	The distance between node and centroid
D&D	-	Designing and Development Phase
DAC	-	Distances Adjuster Coefficient
<i>d</i> _{BCH}	-	The distance to nearest backward CH
d_{BS}	-	The distance between the sensor node x and the BS
d_c	-	distance to the cluster centroid or the current CH
DCEM	-	delay-constrained energy multi-hop protocol

DE	-	Differential Evolution algorithm
<i>d</i> _{FCH}	-	The distance to the nearest Forward CH
diff	-	The difference between K and the AV of numbers of clusters
d _{next}	-	The distance to the next-hop or the next CH.
DSP	-	Deterministic Sensor Placement
D _T	-	Cost difference in the distance
E _{AD}	-	The energy consumption for aggregation one bit
E _{CH-per-rnd}	-	The energy consumption per round for the CH
E_{com}	-	The energy consumption of the node
Edisp	BLAY	The energy dissipation
EECPK-means	-	Energy efficient clustering protocol based on K-means protocol
E _{elec}		The energy consumption in the electronic system for sending or
Flore		receiving one bit
Eini	inn -	The initial energy of the node
En-rnd	بيا ه	The energy consumption per round for the nodes
	ERS	The residual energy of the node TAMELAKA
E _{RX}	-	The energy consumption for the received node
E _{TH}	-	The threshold value for CH rotation
E _{TX}	-	The energy consumption for the transmitted node
Ev	-	Evaluation Phase
F	-	The objective function for CH selection
FABC	-	Fractional Artificial Bee Colony Optimization
FCM	-	Fuzzy C-mean algorithm
FL	-	Fuzzy logic algorithm

FLION	-	The fractional lion optimization algorithm
FND	-	The first node die
GA	-	Genetic algorithm
GPS	-	Global Positioning System
GWO	-	Grey Wolf Optimization algorithm
H_0	-	Null Hypothesis
На	-	Alternative Hypothesis
HC_{BS}	-	The hop count to BS
HND	-	The half node dies
ID	ALA	Identification number for the node
IEECP	show he -	Improved Energy Efficient Clustering Protocol
IoT	TEKN	Internet of Things
ISO	Files -	International Standardisation Organization
IT	AINA	Information Technology
K	بيا ملاك	اونيون سيني تي The number of clusters
KM	UNIVERS	K-means algorithm MALAYSIA MELAKA
L	-	Message size
LEACH	-	Low Energy Adaptive Clustering Hierarchy
LIM	-	Literature Investigation Method
LND	-	The last node dies
М	-	Dimensions of the square sensing area
M-FCM	-	Modified- Fuzzy C-mean algorithm
MN	-	member node
MRQ	-	The Main Research Question

MSE	-	The mean square error
Ν	-	The number of total nodes in the network
n	-	The number of the cluster's members
NMsg (BS)	-	The number of messages received by the BS
NoN	-	The number of neighbours for the node
non-DSP	-	non- Deterministic Sensor Placement
OCM-FCM	-	An optimal clustering mechanism based on Fuzzy-C means for
		wireless sensor networks
ON	-	Ordinary Node
OSI	ALA	Open System Interconnection
PA	way m-	Problem Awareness Phase
Pe	TEKM.	The Permittivity value of the cluster size
PSO	Eller -	Particle swarm optimization
R	* SAINO	The maximum number of rounds
r	يا ملاك	اونيوس سيتي تيك The current round
RAM	UNIVERS	Random Access Memory LAYSIA MELAKA
Rc	-	The transmission range for CH
R _{CHs}	-	The rounds of all CHs in the cluster at the ETH
<i>R_{HND}</i>	-	The round number that the half nodes dead HND occurs
RM	-	Research Methodology
R _n	-	The rounds of the member node in the cluster at the ETH
Rover	-	The overlapping clusters is more than
RP	-	The random probability for the CH selection
R _{sprt}	-	The radius of the separated clusters

RSS	-	The received signal strength
RSSI	-	Received Signal Strength Indicator
SA	-	Simulated Annealing
S_j	-	The cluster size
SN	-	The transmitter Sensor Node
Т	-	The ratio of the initial energy for the node
t	-	One-sample t-test
TACAA	-	Traffic-Aware Channel Access Algorithm for Cluster-Based
		Wireless Sensor Network
Tb	ALA	The node timer
ТСР	son -	Transmission Control Protocol
TDMA	TEKNI	Time Division Multiple Access
$TH_{cluster}$	Elec -	The threshold of the cluster size
UDP	SAINA.	User Datagram Protocol
VSC	بيا ملاك	The variation value in the size of the clusters
WFND	UNIVERS	The weighted first node dies factor MELAKA
WLND	-	The weighted last node died
WSN	-	Wireless Sensor Network
XBI	-	Xie and Beni's index

LIST OF SYMBOLS

d_0	- The threshold of the transmission distance
m	- The value of fuzzifier
\bar{x}	- The arithmetic mean for numbers
α and β	- The controlling parameters
3	- The threshold for terminate the algorithm operation
E _{fs}	- Energy consumption for the free space model
E _{amp}	- Energy consumption for the multipath model
ρ	- Nodes density
μ	- The membership of the node to the cluster
μ_0	- The population mean
σ	- The standard deviation