

Faculty of Electronics and Computer Engineering

Yap Jim Hui

Master of Science in Electronic Engineering

DESIGN OF A HIGH EFFICIENCY MULTIPLE-INPUTS SINGLE-OUTPUT SWITCH CAPACITOR-BASED DC-DC CONVERTER FOR ENERGY HARVESTING SYSTEM

YAP JIM HUI

UNI Faculty of Electronics and Computer Engineering KA

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this thesis entitled "Design of A High Efficiency Multiple-Inputs Single-Output Switch Capacitor-Based DC-DC Converter for Energy Harvesting System" is the result of my research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in the candidature of any other degree.

	WALAYSIA (ICH)
	st state
Signature	
Name	: Yap Jim Hui
Date	Seannin
	اونيۈم سيتي تيڪنيڪل مليسيا ملاك
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA

APPROVAL

I declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Master of Science in Electronic Engineering.

DEDICATION

For my lovely parents, my supervisor, Associate Professor Dr. Wong Yan Chiew, my cosupervisor, Associate Professor Dr. Kok Swee Leong, my colleagues and my friends.

ABSTRACT

Thermoelectric generators (TEGs) module acts as a source to harvest thermal energy and convert the temperature gradient into DC voltage. Due to its low electricity produced, the DC-DC converter is the key module to boost minimal voltage to feasible electricity. The setback of existing converter topology such as inductor-based is the off-chip component makes fully integrated on-chip system a challenging task. Thus, the research focuses on the design of a cross-coupled charge pump in power management energy harvesting circuitry together with a start-up circuit and control circuit to form a regulated battery-less power management system. Multiple energy sources, RF and thermal energy have been used as the supply for the auxiliary circuitry and cross-coupled charge pump in the research. The proposed cross-coupled charge pump is designed based on an analytical approach that investigates the transistor's size, the switching pulse's frequency, the switching pulse's slew rate and the capacitor's size. The peak efficiency of the cross-coupled charge pump has been improved by analyzing these four main parameters. The proposed system can function at a minimum voltage of 30mV and achieve a step-up voltage of 1.2V in a fully integrated chip. The major contribution of this work is the design of the cross-coupled charge pump has successfully achieved an efficiency of 70.86%. RF and TEG signal are utilized as voltage supply and input for the entire power management system. Due to the multiple energy harvesting sources, auxiliary circuitries can be fully integrated to form an on-chip power management system without an external inductor, capacitor and antenna to support the power management system and only occupy a chip size of $1.9358 mm^2$. Implementation of on-chip antenna for RF auxiliary circuitry achieves a more compressive fully integrated on-chip system. In overall, the entire design configuration has managed to reduce the mismatch of the off-chip component on the on-chip power management system as well as to reduce the package of the chip size.

REKA BENTUK SUIS KAPASITOR KEMASUKAN-BERBILANG KELUARAN-TUNGGAL BERKECEKAPAN TINGGI BERDASARKAN PENUKAR DC-DC UNTUK SISTEM PENUAIAN TENAGA

ABSTRAK

Modul penjana termoelektrik (TEG) bertindak sebagai sumber untuk menuai tenaga haba dan menukar kecerunan suhu menjadi voltan arus terus (DC). Oleh sebab tenaga elektriknya yang rendah, penukar DC-DC merupakan modul utama untuk meningkatkan voltan yang rendah. Kemunduran topologi penukar DC-DC yang sedia ada seperti penukar DC-DC yang berasas induktor adalah komponen off-chip dan menyebabkan system on-chip bersepadu sepenuhnya sebagai tugas yang mencabar. Oleh itu, penyelidikan ini berfokus pada reka bentuk pam cas bersilang dalam litar penuaian tenaga pengurusan kuasa bersama dengan litar permulaan dan litar kawalan untuk membentuk sistem pengurusan kuasa tanpa bateri yang diatur. Sumber tenaga berganda, RF dan tenaga haba telah digunakan sebagai bekalan untuk litar tambahan dan pam cas bersilang dalam penyelidikan. Kerja penyelidikan ini berfokus pada penyelidikan pam cas bersilang CMOS yang berkecekapan tinggi. Oleh itu, pam cas bersilang yang direka berdasarkan pendekatan analitik pada ukuran transistor, frekuensi daya, kadar kepantasan daya dan ukuran kapasitor. Keupayaan puncak pam cas bersilang telah bertambah berdasarkan analisis pada empat parameter utama ini. Sistem yang direka dapat berfungsi dengan voltan minimum 30mV dan mencapai voltan sebanyak 1.2V dalam cip bersepadu sepenuhnya. Sumbangan utama daripada penyelidikan ini adalah reka bentuk pam cas bersilang yang berjaya mencapai keupayaan sebanyk 70.86%. Tenaga RF dan TEG digunakan sebagai bekalan voltan dan input untuk keseluruhan sistem pengurusan kuasa. Disebabkan pelbagai jenis sumber penuaian tenaga digunakan, litar tambahan dapat digabungkan sepenuhnya untuk membentuk sistem pengurusan kuasa on-chip tanpa induktor luaran, kapasitor dan antena untuk menyokong sistem pengurusan kuasa dan hanya menempati ukuran cip yang hanya 1.9358mm². Implementasi antena on-chip untuk litar tambahan RF mencapai sistem cip bersepadu yang lebih mampat Oleh itu, konfigurasi ini telah mengurangkan ketidaksesuaian komponen off-chip pada sistem pengurusan kuasa on-chip dan dapat mengurangkan paket ukuran chip.

ACKNOWLEDGEMENTS

First and foremost, I would like to extend my appreciation to Universiti Teknikal Malaysia Melaka (UTeM) for giving me an opportunity and a research platform to pursue my master here.

My utmost appreciation goes to my primary supervisor, Associate Professor Dr Wong Yan Chiew, for all her guidance, technical support and motivation. Her valuable advice always gives me clear insight and direction throughout my research development. It was my greatest pleasure to have an opportunity to involve in the analogue chip design field from scratch, where I gained much knowledge and skills in this field. Her willingness to spend time guiding me on the research has been greatly appreciated. Besides, I would like to also express my gratitude to my co-supervisor for his support during my research.

I would like to extend my special thanks to my colleagues for their support to teach and help me in handling the instruments as well as set up for collecting the bare die bench measurement.

G:Gü

10 61

At last, I wish to thank my beloved parents and friends for their unceasing moral support and encouragement during my research studied.

TABLE OF CONTENTS

			IAUI
DE	CLAR	ATION	
AP	PROV	AL	
DE	DICA	ΓΙΟΝ	
AB	STRA	СТ	i
AB	STRA	Κ	ii
AC	KNOV	VLEDGEMENTS	iii
TA	BLE (DF CONTENTS	iv
LIS	ST OF	TABLES	vii
LIS	ST OF	FIGURES	viii
LIS	ST OF	ABBREVIATIONS	xiii
LIS	ST OF	PUBLICATIONS	XV
СН	APTE	R	
1.	INT	RODUCTION	1
	1.1	Background	1
	1.2	Problem Statement	4
	1.3	Research Objective	4
	1.4	Research Questions EKNIKAL MALAY SIA MELAKA	6
	1.5	Scope of Research	6
	1.6	Contribution of Research	6
	1.7	Thesis Outline	6
2.	LIT	ERATURE REVIEW	8
	2.1	Introduction	8
	2.2	Integrated Energy Harvesting Power Management System	8
	2.3	Start-up Mechanism	9
	2.4	CMOS Voltage Booster	12
		2.4.1 Inductor-based Converter	12
	2.5	2.4.2 Switched-capacitor Converter	14
	2.5	Control Circuit	20
	2.0	Power Management System for Energy Harvesting System	24
	2.1	2.7.1 Input Voltage	26
		2.7.1 Input voltage	26
		2.7.2 Power Conversion Efficiency (PCE)	20
		2.1.5 SHICOH AFEA	30

	2.8	Comparison of Benchmarking	30
	2.9	Design Challenges	35
	2.9	Research Gap	35
	2.10	Summary	37
3.	МЕТ	THODOLOGY	38
	3.1	Introduction	38
	3.2	Research Flow	38
	3.3	Research Design	39
		3.3.1 Design and Analysis of the Energy Harvesting Circuit	39
	3.4	Proposed Power Management System Topology and Specification	39
		3.4.1 Top-level Description	40
		3.4.2 Start-Up Mechanism	43
		3.4.2.1 RF Rectifier	43
		3.4.2.2 On-chip Antenna	44
		3.4.3 Cross-coupled Charge Pump	43
		3.4.3.1 Design Parameters of Cross-coupled Charge Pump	49
		3.4.4 Logic Control Circuit	51
		3.4.4.1 Ultra-low Voltage Ring Oscillator	51
		3.4.4.2 Non-overlapping clock generator	53
		3.4.4.3 Comparator	55
		3.4.4.4 Buffer	57
	3.5	Summary	58
4.	RESI	ILTS AND DISCUSSION	59
	4.1	Introduction	59
	4.2	RF Rectifier	59
	4.3	Cross-coupled charge pump	60
		4.3.1 Transient Result of Cross-coupled charge pump	60
		4.3.2 Periodic Steady-State	68
		4.3.3 Efficiency comparison of the cross-coupled charge pump with the	ne
		UNIVEstate-of-art pion KAL MALAYSIA MELAKA	69
	4.4	Logic Control Circuit	69
		4.4.1 Ultra-Low Voltage Self-Oscillator	69
		4.4.2 Non-Overlapping Clock Generator	70
		4.4.3 Comparator	72
		4.4.4 Buffer	72
	4.5	Operation of the Closed Loop Power Management System	74
		4.5.1 Closed-Loop system of Cross-coupled Charge Pump	74
	4.6	Layout and Post-layout Circuit Performance	78
		4.6.1 Layout Description	79
		4.6.2 Post-layout Simulation Results	81
	4.7	Test Setup and Measurement Result of Cross-coupled charge pump	82
	4.8	Design Parameters Consideration of Low Voltage Cross-Coupled Charge	
		Pump	89
		4.8.1 Switching Frequency	89
		4.8.2 Pumping Capacitance	90
		4.8.3 Sizing of Transistor	90
		4.8.4 Slew Rate of Switching Pulse	94
	4.9	Summary	96

5.	CON	ICLUSION AND RECOMMENDATIONS	97
	5.1	Conclusion	97
	5.2	Recommendation	100
	5.3	Summary	101
REI	FEREN	ICES	102

LIST OF TABLES

TABLE	TITLE	AGE		
2.1	State-of-the-art of switched-capacitor DC-DC converter			
3.1	Specification of RF rectifier	44		
3.2	Specification of the cross-coupled charge pump	47		
3.3	Parameters of Cross-Coupled Charge Pump	48		
3.4	Specification of logic gate control	52		
3.5	Parameters of ultra-low voltage self-oscillator	52		
3.6	Specification of the non-overlapping clock generator	54		
3.7	Parameters of a non-overlapping clock generator	54		
3.8	Specification of comparator	56		
3.9	Parameters of the voltage divider	57		
4.1	Power consumption of the components in the cross-coupled charge pump	62		
4.2	Relationship between input voltage versus output voltage and current	63		
4.3	Relationship between resistive load and the efficiency			
4.4	Relationship between number of stages and the efficiency	66		
4.5	Comparison of cross-coupled charge pump by using different pumping			
	capacitor and frequency	90		
4.6	Comparison of the efficiency of the cross-coupled charge pump between			
	slow slew rate and fast slew rate clock signal	95		

LIST OF FIGURES

FIGURE	TITLE	PAGE	
2.1	Block diagram of a general power management system	9	
2.2	Red box shows the cold start-up circuit		
2.3	Cross-coupled charge pump forms cold start-up circuit	11	
2.4	Inductor-based converter (Wang, 2014)	13	
2.5	Inductor-based converter with MOSFET implementation	13	
2.6	Switched-capacitor converter (Wang, 2014)	15	
2.7	Operation of the switched-capacitor converter when the switch of Φ 1closes (Wang, 2014)	15	
2.8	Operation of the switched-capacitor converter when the switch of Φ 2 closes (Wang, 2014)	16	
2.9	UCross-coupled charged pump L MALAYSIA MELAKA	16	
2.10	Block diagram of the oscillator		
2.11	Control Circuit	23	
3.1	Flow chart of the design procedure	38	
3.2	Top-level description of the battery-less power management system		
	with cross-coupled charge pump	42	
3.3	(a) P-channel and (b) N-channel MOSFET diode-connected transistor		
3.4	RF Rectifier	44	

3.5	2 spiral slot each with 27 turns on an aluminium top metal M6 (Masius	
	and Wong ,2019).	45
3.6	The effect of number of turns for spiral-slot antenna on the frequency	
	(Masius and Wong ,2019).	45
3.7	The simulated radiation pattern at 900 MHz for (a) xz-plane, (b) yz-	
	plane, and (c) xy-plane (Masius and Wong ,2019).	46
3.8	Output voltage from cross-coupled charge pump versus	
	Dickson charge pump (Kimura, 2015)	47 48
3.9	Single-stage of the cross-coupled charge pump	49
3.10	Comparison of clock signal between a single inverter and three stacked	
	inverters (Bose et al. 2018)	51
3.11	Single-stage ultra-low voltage self-oscillator	53
3.12	Complementary clock signal for the cross-coupled charge pump	
	(Eid and Rodriguez-villegas, 2017) LAYSIA MELAKA	53
3.13	Non-overlapping clock generator	55
3.14	Comparator	57
4.1	Output voltage and current are produced by the RF rectifier	59
4.2	Output voltage of cross-coupled charge pump without load	61
4.3	Transient response of cross-coupled charge pump with 1.6Mohm	
	load resistor	61
4.4	Relationship between an input voltage and an output voltage	63

4.5	Relationship between an input voltage and output current	64
4.6	Plot of input voltage versus efficiency	64
4.7	Plot of efficiency versus resistive load	65
4.8	Plot of output current versus output voltage	66
4.9	Number of stages versus efficiency	67
4.10	Number of stages versus output voltage	67
4.11	Number of stages versus output current	67
4.12	Periodic steady-state of output voltage from the cross-coupled charge	
	pump	68
4.13	Transient response of output voltage from the cross-coupled charge	
	pump	69
4.14	Transient response of the ultra-low voltage self-oscillator	70
4.15	Two-phase signal without overlapping with each other	71
4.16	Overlapping of two-phase signal	71
4.17	U Transient response of comparator ALAYSIA MELAKA	72
4.18	Switching pulse signal without using buffer	73
4.19	Switching pulse signal with buffer	73
4.20	Cross-coupled charge pump based battery-less power management	
	System	75
4.21	Output voltage and the non-overlapping clock signal	76

4.22	2 Output voltage and current from battery-less power management for	
	30mV input (ii) Reference voltage, the scaled-down voltage at the	
	coupled charge pump and supply voltage	77
4.23	Output voltage and current from battery-less power management for	
	30mV input (ii) Reference voltage, the scaled-down voltage at the	
	coupled charge pump and supply voltage	78
4.24	Layout of the battery-less power management system with cross-coupled	
	charge pump	80
4.25	Layout of the cross-coupled charge pump	81
4.26	Schematic of the post-layout simulation of a battery-less power	
	management system with cross-coupled charge pump	81
4.27	Response of output voltage without load	82
4.28	Optical image of bare die	83
4.29	Test setup to measure bare die	83
4.30	UProbing machine EKNIKAL MALAYSIA MELAKA	84
4.31	Manual probing on the bare die	84
4.32	Resistance of the measuring probe	84
4.33	Plot of input voltage (Vin) versus output voltage (Vout) of the switch-	
	capacitor converter power management unit	87
4.34	Plot of output voltage by comparing between bench measurement	t
	and simulation by using different load resistor	87

4.35	Plot of supply voltage (Vdd) versus output voltage (Vout) of switc	h-
	capacitor converter power management system	88
4.36	Plot of the distance between transmitter and bare die versus supp	ly
	(Vdd)	88
4.37	Parametric sweep of transistor's width	92
4.38	Plot of efficiency versus transistor's width	92
4.39	Parametric sweep of transistor's length	93
4.40	Plot of efficiency versus transistor's length	93
4.41 4.42	Plot of efficiency versus the ratio of width and length by varying the length of the transistor Plot of efficiency versus the ratio of width and length by varying the	94
	width of the transistor	94
4.43	Clock signal 1 with a slew rate of 25ns	96
4.44	Clock signal 2 with a slew rate of 10ps AYSIA MELAKA	96

LIST OF ABBREVIATIONS

AC	-	Alternating Current
ССМ	-	Continuous Conduction Mode
CMOS	-	Complementary Metal-Oxide-Semiconductor
СР	-	Charge Pump
Cstore	-	Storage Capacitor
DC	-	Direct Current
DCM	-	Discontinuous Conduction Mode
DRC	E.	Design Rule Check
EMI	EK.	Electromagnetic Interference
FET	F -	Field Effect Transistor
FSM	200	Finite State Machine
Iin		Inductor Current
IoT	للك	اونىۋىر سىتى ئىكىنىInternet of Things
LC	_	Inductor-Capacitor
LVS	UNIV	Layout Versus Schematic MALAYSIA MELAKA
MOSFET	-	Metal-Oxide Semiconductor Field Effect Transistor
MPPT	-	Maximum Power Point Tracking
NMOS	-	N-type Metal-Oxide-Semiconductor
PCE	-	Power Conversion Efficiency
PEX	-	Parasitic Extraction
PMOS	-	P-type Metal-Oxide-Semiconductor
Q	-	Quality Factor
RCI	-	Recursive Current Injection
RF	-	Radio Frequency
TEG	-	Thermoelectric generator
Vin	-	Input voltage
Vdd	-	Supply Voltage

Vstore	-	Storage Voltage
WBAN	-	Wireless Body Area Network
WSN	-	Wireless Sensor Node
ZCS	-	Zero Current Switching

LIST OF PUBLICATIONS

JOURNALS

Yap. J. H., and Wong. Y. C., 2019. A 30mV Input Battery-less Power Management System. *Bulletin of Electrical Engineering and Informatics*, 8(4), pp. 1169–1179.

Yap. J. H., and Wong. Y. C., 2021. A Complete Design and Development of a Miniature Battery-less Power Management Unit for Powering Biomedical Implant. *Journal of Engineering Science and Technology*, 16 (5), October 2021.

CHAPTER 1

INTRODUCTION

1.1 Background

The concept or implementation of energy harvesting implies for implantable biomedical devices has been given interest for the researchers to gain new relevance. An implantable medical device is one of the bioelectronics that involving sensors, chips and tiny power sources. Examples of implantable devices are pacemaker, cochlear implants, brain neurostimulators, etc. In the consideration of the volume, usage flexibility and convenience, these appliances are basically with a tiny battery assembled on it as the power source. Due to the continuous growth and revolution of the integrated circuit, the integrated microsystem had been open up windows of hope to give a solution to the complete system in a tiny and lightweight form. Nonetheless, an issue occurs when a battery is depleted and has to be replaced or recharged. This becomes challenging work to replace or take out the batteries of the biomedical devices which have been put underneath human skin or inside of the human body. Furthermore, the replacement of a battery beneath the body is dangerous as the leakage of mercury of the battery has brought up a health issue in a long term. Therefore, researchers had been put huge efforts into finding an efficient and easy way to make autonomous power on and self-rechargeable power supplies for these wearable devices.

Energy harvesting has opened up great value and possibility in renewable alternatives for a conventional battery. The reason for its extensive development because renewable energy can transform into a useful power source that is easy to obtain, lesstedious replacement compares with battery and the most important is it produces clean, pollution-free energy. Energy harvesting system has the potential to be used in health applications that are severely all volume-constrained, limiting the use of external passives for power delivery. While, in recent, ultra-low voltage becomes a point of merit in a future market demand especially in biomedical implants. One of the renewable energy, thermal energy has been given focus by the researchers now. Thermoelectric energy harvesting can convert thermal energy from human skin or waste heat energy into a small amount of DC electricity. Due to its characteristic of resilience towards environmental change, TEG becomes an attractive solution in the energy harvesting field (Ogawa et al., 2016). There are some examples of good heat sources in our daily application such as the heat from the refrigerator, air conditioner and laptop as they are almost operated continuously (Bose, Anand and Johnston, 2018). A thermoelectric generator is used to generate an electrical voltage from thermal energy. It is small in size, cost-effective and portable which has high potential to give autonomous power to a miniaturized and wearable electronic gadget that operates at very low power. Heat energy is one of the forms of energy that can be harvested for use in medical appliances as it can be captured from the human body. Previous research studies showed that thermal heat from the body can give electrical voltage to power up wearable biomedical devices. The only well-known practical application of the TEGs on a human body is the Seiko Thermal Wristwatch. It is a great inventory of wearable device that contains a thermoelectric generator that withdraws thermal body heat and converts the thermal gradient into electricity. According to Selvarathinam and Anpalagan (2016), the exact amount of human thermal heat that can be drawn out is permitted by a phenomenon called Carnot Efficiency. The equation of Carnot Efficiency is as following:

$$Carnot \ Efficiency = \frac{Tbody - Tambient}{Tbody} \tag{1}$$

Where;

Tbody = Body Temperature

Tambient = Ambient Temperature

The Carnot Efficiency yields to roughly 3.2%, showing that the quantity of energy that is managed to be harvested from body heat is from 2.4 W to 4.8 W. Nonetheless, the amount of energy depends on the difference between the body and ambient temperature. From the previous research, the maximum amount of heat energy that can be extracted from the body is from the neck area, forehead, and wrist area as these parts are not covered by clothing. One study from Leonov (2011) indicates that a vast amount (~100 W) of heat energy is available on the body, and only electrical power in the milliwatt range can be retrieved from body heat. According to Rozgi (2017), for more efficient operation, to gain a 20mV, a temperature difference of 4 °C temperature is needed. The researcher carried out this experiment based on the thermal heat from a human arm. This small thermal variation is hard to power on the harvester as most of the existing thermal-based energy harvesters need significantly more than 1 or 2 °C to power on the harvesting circuit. In Jiang et al. (2017), a 3.5K of a temperature gradient from the body of a rat and thermoelectric generator was used to demonstrate a real environment condition. In the future, there is a possibility that WSN or the BAN are transmitted or received the data by using the power from the body heat.

In this work, we find out that 1°C can produce 30mV. Thus, only 30mV is used as the minimum voltage for the harvester.

1.2 Problem Statement

There are many kinds of voltage booster work together with energy harvesting sources. However, it is a challenging task to design a high-efficiency voltage booster that can accept an ultra-low input voltage as well as fully integrated on an on-chip system. In past research, most voltage booster is designed by the off-chip components such as an inductor, capacitor and kicked started via an external electrical startup (Ogawa et al., 2016). Although the existing architecture can achieve high efficiency, 92% converter efficiency but with the single-inductor topology (Rozgi, 2017). There is research presented a fully integrated boost converter by replacing the physical inductor with an integrated metal-track inductor and managed to give a regulated 1.1V but the drawback is the 39% low efficiency (Hernandez and Noije, 2015). Acceptance of low input voltage for a boost converter is also another concern. One of the existing cross-coupled charge pumps for a low-power on-chip application is able to achieve an efficiency of 58.72 % but with a 1.2V supply voltage (Jiang et al., 2017). In a summary, off-chip components, external start-up circuitries and the limitation of low input voltage acceptance become the motivation for designing a high-efficiency cross-coupled charge pump with low input voltage acceptance that can fully integrate into a battery-less power management system in the research.

1.3 Research Objective

This research aims to propose a multiple-input single-output DC-DC switched capacitor converter for energy harvesting system. Methodology focus on the design of DC-DC switch capacitor converter and the auxillary circuit such as RF rectifier and logic gate control circuitries that will impact on the efficiency of converter.