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ABSTRACT 

Thermoelectric generators (TEGs) module acts as a source to harvest thermal energy and 

convert the temperature gradient into DC voltage. Due to its low electricity produced, the 

DC-DC converter is the key module to boost minimal voltage to feasible electricity. The 

setback of existing converter topology such as inductor-based is the off-chip component 

makes fully integrated on-chip system a challenging task. Thus, the research focuses on the 

design of a cross-coupled charge pump in power management energy harvesting circuitry 

together with a start-up circuit and control circuit to form a regulated battery-less power 

management system. Multiple energy sources, RF and thermal energy have been used as 

the supply for the auxiliary circuitry and cross-coupled charge pump in the research. The 

proposed cross-coupled charge pump is designed based on an analytical approach that 

investigates the transistor’s size, the switching pulse’s frequency, the switching pulse’s 

slew rate and the capacitor’s size. The peak efficiency of the cross-coupled charge pump 

has been improved by analyzing these four main parameters. The proposed system can 

function at a minimum voltage of 30mV and achieve a step-up voltage of 1.2V in a fully 

integrated chip. The major contribution of this work is the design of the cross-coupled 

charge pump has successfully achieved an efficiency of 70.86%. RF and TEG signal are 

utilized as voltage supply and input for the entire power management system. Due to the 

multiple energy harvesting sources, auxiliary circuitries can be fully integrated to form an 

on-chip power management system without an external inductor, capacitor and antenna to 

support the power management system and only occupy a chip size of 1.9358 𝑚𝑚2. 
Implementation of on–chip antenna for RF auxiliary circuitry achieves a more compressive 

fully integrated on-chip system. In overall, the entire design configuration has managed to 

reduce the mismatch of the off-chip component on the on-chip power management system 

as well as to reduce the package of the chip size. 
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REKA BENTUK SUIS KAPASITOR KEMASUKAN-BERBILANG KELUARAN- 

TUNGGAL BERKECEKAPAN TINGGI BERDASARKAN PENUKAR DC-DC 

UNTUK SISTEM PENUAIAN TENAGA 

ABSTRAK 

Modul penjana termoelektrik (TEG) bertindak sebagai sumber untuk menuai tenaga haba 

dan menukar kecerunan suhu menjadi voltan arus terus (DC). Oleh sebab tenaga 

elektriknya yang rendah, penukar DC-DC merupakan modul utama untuk meningkatkan 

voltan yang rendah. Kemunduran topologi penukar DC-DC yang sedia ada seperti 

penukar DC-DC yang berasas induktor adalah komponen off-chip dan menyebabkan 

system on-chip bersepadu sepenuhnya sebagai tugas yang mencabar. Oleh itu, 

penyelidikan ini berfokus pada reka bentuk pam cas bersilang dalam litar penuaian tenaga 

pengurusan kuasa bersama dengan litar permulaan dan litar kawalan untuk membentuk 

sistem pengurusan kuasa tanpa bateri yang diatur. Sumber tenaga berganda, RF dan 

tenaga haba telah digunakan sebagai bekalan untuk litar tambahan dan pam cas bersilang 

dalam penyelidikan. Kerja penyelidikan ini berfokus pada penyelidikan pam cas bersilang  

CMOS yang berkecekapan tinggi. Oleh itu, pam cas bersilang yang direka berdasarkan 

pendekatan analitik pada ukuran transistor, frekuensi daya, kadar kepantasan daya dan 

ukuran kapasitor. Keupayaan puncak pam cas bersilang telah bertambah berdasarkan 

analisis pada empat parameter utama ini. Sistem yang direka dapat berfungsi dengan 

voltan minimum 30mV dan mencapai voltan sebanyak 1.2V dalam cip bersepadu 

sepenuhnya. Sumbangan utama daripada penyelidikan ini adalah reka bentuk pam cas 

bersilang yang berjaya mencapai keupayaan sebanyk 70.86%. Tenaga RF dan TEG 

digunakan sebagai bekalan voltan dan input untuk keseluruhan sistem pengurusan kuasa. 

Disebabkan pelbagai jenis sumber penuaian tenaga digunakan, litar tambahan dapat 

digabungkan sepenuhnya untuk membentuk sistem pengurusan kuasa on-chip tanpa 

induktor luaran, kapasitor dan antena untuk menyokong sistem pengurusan kuasa dan 

hanya menempati ukuran cip yang hanya 1.9358𝑚𝑚2. Implementasi antena on-chip untuk 

litar tambahan RF mencapai sistem cip bersepadu yang lebih mampat Oleh itu, 

konfigurasi ini telah mengurangkan ketidaksesuaian komponen off-chip pada sistem 

pengurusan kuasa on-chip dan dapat mengurangkan paket ukuran chip.  
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INTRODUCTION 

1.1 Background 

The concept or implementation of energy harvesting implies for implantable 

biomedical devices has been given interest for the researchers to gain new relevance.  An 

implantable medical device is one of the bioelectronics that involving sensors, chips and 

tiny power sources. Examples of implantable devices are pacemaker, cochlear implants, 

brain neurostimulators, etc. In the consideration of the volume, usage flexibility and 

convenience, these appliances are basically with a tiny battery assembled on it as the 

power source. Due to the continuous growth and revolution of the integrated circuit, the 

integrated microsystem had been open up windows of hope to give a solution to the 

complete system in a tiny and lightweight form. Nonetheless, an issue occurs when a 

battery is depleted and has to be replaced or recharged. This becomes challenging work to 

replace or take out the batteries of the biomedical devices which have been put underneath 

human skin or inside of the human body. Furthermore, the replacement of a battery 

beneath the body is dangerous as the leakage of mercury of the battery has brought up a 

health issue in a long term. Therefore, researchers had been put huge efforts into finding an 

efficient and easy way to make autonomous power on and self-rechargeable power 

supplies for these wearable devices.  

Energy harvesting has opened up great value and possibility in renewable 

alternatives for a conventional battery. The reason for its extensive development because 
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renewable energy can transform into a useful power source that is easy to obtain, less-

tedious replacement compares with battery and the most important is it produces clean, 

pollution-free energy. Energy harvesting system has the potential to be used in health 

applications that are severely all volume-constrained, limiting the use of external passives 

for power delivery. While, in recent, ultra-low voltage becomes a point of merit in a future 

market demand especially in biomedical implants. One of the renewable energy, thermal 

energy has been given focus by the researchers now. Thermoelectric energy harvesting can 

convert thermal energy from human skin or waste heat energy into a small amount of DC 

electricity. Due to its characteristic of resilience towards environmental change, TEG 

becomes an attractive solution in the energy harvesting field (Ogawa et al., 2016). There 

are some examples of good heat sources in our daily application such as the heat from the 

refrigerator, air conditioner and laptop as they are almost operated continuously (Bose, 

Anand and Johnston, 2018). A thermoelectric generator is used to generate an electrical 

voltage from thermal energy. It is small in size, cost-effective and portable which has high 

potential to give autonomous power to a miniaturized and wearable electronic gadget that 

operates at very low power.  Heat energy is one of the forms of energy that can be 

harvested for use in medical appliances as it can be captured from the human body. 

Previous research studies showed that thermal heat from the body can give electrical 

voltage to power up wearable biomedical devices. The only well-known practical 

application of the TEGs on a human body is the Seiko Thermal Wristwatch. It is a great 

inventory of wearable device that contains a thermoelectric generator that withdraws 

thermal body heat and converts the thermal gradient into electricity. According to 

Selvarathinam and Anpalagan (2016), the exact amount of human thermal heat that can be 

drawn out is permitted by a phenomenon called Carnot Efficiency. The equation of Carnot 

Efficiency is as following:  
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                       𝐶𝑎𝑟𝑛𝑜𝑡 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑇𝑏𝑜𝑑𝑦−𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡

𝑇𝑏𝑜𝑑𝑦
           (1) 

Where; 

𝑇𝑏𝑜𝑑𝑦 = Body Temperature 

𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡 = Ambient Temperature      

The Carnot Efficiency yields to roughly 3.2%, showing that the quantity of energy 

that is managed to be harvested from body heat is from 2.4 W to 4.8 W. Nonetheless, the 

amount of energy depends on the difference between the body and ambient temperature. 

From the previous research, the maximum amount of heat energy that can be extracted 

from the body is from the neck area, forehead, and wrist area as these parts are not covered 

by clothing. One study from Leonov (2011) indicates that a vast amount (~100 W) of heat 

energy is available on the body, and only electrical power in the milliwatt range can be 

retrieved from body heat. According to Rozgi (2017), for more efficient operation, to gain 

a 20mV, a temperature difference of 4 °C temperature is needed. The researcher carried out 

this experiment based on the thermal heat from a human arm. This small thermal variation 

is hard to power on the harvester as most of the existing thermal-based energy harvesters 

need significantly more than 1 or 2 °C to power on the harvesting circuit. In Jiang et al. 

(2017), a 3.5K of a temperature gradient from the body of a rat and thermoelectric 

generator was used to demonstrate a real environment condition. In the future, there is a 

possibility that WSN or the BAN are transmitted or received the data by using the power 

from the body heat. 
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In this work, we find out that 1°C can produce 30mV. Thus, only 30mV is used as 

the minimum voltage for the harvester.  

1.2 Problem Statement 

 There are many kinds of voltage booster work together with energy harvesting 

sources. However, it is a challenging task to design a high-efficiency voltage booster that 

can accept an ultra-low input voltage as well as fully integrated on an on-chip system. In 

past research, most voltage booster is designed by the off-chip components such as an 

inductor, capacitor and kicked started via an external electrical startup (Ogawa et al., 

2016). Although the existing architecture can achieve high efficiency, 92% converter 

efficiency but with the single-inductor topology (Rozgi, 2017). There is research presented 

a fully integrated boost converter by replacing the physical inductor with an integrated 

metal-track inductor and managed to give a regulated 1.1V but the drawback is the 39% 

low efficiency (Hernandez and Noije, 2015).  Acceptance of low input voltage for a boost 

converter is also another concern. One of the existing cross-coupled charge pumps for a 

low-power on-chip application is able to achieve an efficiency of 58.72 % but with a 1.2V 

supply voltage (Jiang et al., 2017). In a summary, off-chip components, external start-up 

circuitries and the limitation of low input voltage acceptance become the motivation for 

designing a high-efficiency cross-coupled charge pump with low input voltage acceptance 

that can fully integrate into a battery-less power management system in the research.  

1.3 Research Objective 

This research aims to propose a multiple-input single-output DC-DC switched 

capacitor converter for energy harvesting system. Methodology focus on the design of DC-

DC switch capacitor converter and the auxillary circuit such as RF rectifier and logic gate 

control circuitries that will impact on the efficiency of converter. 


