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ABSTRACT 

Vibration has become a major concern nowadays due to its tendency to produce undesirable 
noise and to potentially result in a harmful response. Generally, there are two ways to control 
the level of vibration in machines or structures. One of the techniques is by isolating the 
receiver of the vibration from the source. Isolation is a feasible solution if the level of 
vibration of the source cannot be altered. In some cases, the source of the vibration must be 
suppressed, hence isolation may not be a feasible solution. For these cases, the dynamic 
vibration absorber (DV A) is normally used. This is done by attaching another single-degree
of-freedom (SDOF) oscillating system onto the vibrating primary structure. The DVA is 
designed to have a natural frequency similar to the troublesome frequency of the primary 
structure. Many of the currently available passive dynamic vibration absorbers are not fully 
efficient in suppressing the vibration of the primary structure due to narrow operating 
frequency bandwidth. The performance of the DV A deteriorates even more in the application 
where the structure's troublesome frequency varies over time and it requires constant 
retuning of its natural frequency. Its low tolerance towards frequency mistuning may 
increase the level of vibration. Thus, it is necessary to design a DV A with efficient tuning 
capability and less sensitive towards mistune. In this study, the nonlinear dynamic vibration 
absorber (NDV A) with a tuneable piecewise linear stiffness mechanism which behaves 
similar to hardening stiffuess mechanism was designed. The hardening stiffness is proven to 
perform better due to the larger suppression bandwidth. However, unlike the hardening 
stiffness mechanism, the proposed piecewise linear stiffness mechanism offers better tuning 
capability. The mechanism is composed of a cantilever beam constrained by two limit blocks 
which are adjustable in both horizontal and vertical directions. Firstly, the analytical study 
was performed before developing the NDV A to study its static and dynamic characteristics. 
The characterization study of the NDV A includes different limit block configurations 
(horizontal position and vertical gap), input amplitude, mass, and stiffness. Once the NDVA 
was fabricated, the analytical results were then validated experimentally by conducting 
quasi-static and dynamic measurements. The quasi-static measurement was done by exciting 
the base of the NDV A at low frequency to measure for force-deflection relationship. As for 
dynamic measurement, the base of the NDVA was once again excited on the electrodynamic 
shaker using sweep-up and sweep down of the excitation frequency between 10 Hz to 40 
Hz. Finally, the performance of the NDVA in suppressing the vibration of the primary 
structure was measured and compared with its equivalent linear DV A. This was done by 
attaching the NDV A on the structure connected to the shaker and was excited using a similar 
range of sweep-up and sweep down excitation frequency. The results show a promising 
performance of the NDV A with an increase in suppression frequency bandwidth compared 
to its equivalent linear DV A. 



PENYERAP GETARAN DINAMIK JALUR LEBAR TAK LINEAR MENGGUNAKAN 

KEKAKUAN LINEAR SESECEBIS UNTUK PENYERAPAN GETARAN STRUKTUR 

YANG BERKESAN 

ABSTRAK 

Getaran telah menjadi kebimbangan utama pada masa kini disebabkan oleh 
kecenderungannya untuk menghasilkan getaran yang tidak diingini dan menghasilkan 
tindak balas yang berpotensi berbahaya. Secara umumnya, terdapat dua cara untuk 
mengawal kadar getaran pada sesebuah mesin atau struktur. Salah satu cara adalah dengan 
mengasingkan penerima getaran daripada puncanya. Pengasingan adalah cara yang sesuai 
jika tahap getaran pada puncanya tidak berubah. Dalam sesetengah keadaan, punca 
getaran mesti dikurangkan, of eh itu pengasingan bukan cara yang sesuai. Untuk keadaan 
ini, penyerap getaran dinamik (DVA) biasanya digunakan. Ia dilaksanakan dengan 
menghubungkan sistem getaran satu darjah kebebasan (SDOF) pada struktur utama yang 
bergetar. D VA ini direka supaya mempunyai frekuensi tab ii yang sama dengan frekuensi 
bermasalah pada struktur utama. Kebanyakan penyerap getaran dinamik pasif sedia ada 
tidak berkesan sepenuhnya dalam mengurangkan getaran struktur utama kerana ia 
mempunyai lebarjalur frekuensi yang kecil. Prestasi DVAjuga menjadi lebih merosot dalam 
aplikasi di mana frekuensi bermasalah pada struktur berubah-ubah mengikut masa dan 
sering kali memerlukan penyesuaian semulafrekuensi tabiinya. Daya tahannya yang rendah 
terhadap salah suaian frekuensi akan meningkatkan lagi tahap getaran. Oleh itu, adalah 
perlu untuk mencipta sebuah DVA yang mempunyai kemampuan penyesuaian yang cekap 
dan kurang sensitif terhadap salah suaian frekuensi. Dalam kajian ini penyerap getaran 
dinamik tak linear (NDVA) dengan mekanisma kekakuan linear sesecebis boleh ubah yang 
mempunyai sifat yang sama seperti mekanisma pengerasan kekakuan telah direka. 
Pengerasan kekakuan ini telah terbukti lebih berkesan kerana mempunyai lebar jalur 
penyerapan yang lebih besar. Waiau bagaimanapun, tidak seperti mekanisma pengerasan 
kekakuan, mekanisma linear sesecebis ini mempunyai kemampuan penyesuaian yang lebih 
baik. Mekanisma ini terdiri daripada jalur rasuk yang dikekang oleh dua blok penghalang, 
di mana jarak melintang dan jarak menegaknya boleh dilaraskan. Pertamanya, kajian 
analitikal pada NDVA dijalankan sebelum mereka bentuk NDVA ini untuk mengkaji ciri-ciri 
statik dan dinamiknya. Kajian pencirian ini dijalankan dengan menggunakan beberapa 
parameter seperti konfigurasi blok penghalang (jarak melintang dan menegak), tahap 
ketinggian masukan, jisim dan kekakuan. Setelah NDVA direka bentuk, hasil ujikaji 
analitikal kemudiannya disahkan secara eksperimen dengan menggunakan cara 
pengukuran seakan-statik dan dinamik. Pengukuran seakan-statik dilakukan dengan 
mengenakan getaran pada tapak NDVA menggunakan penggoncang padafrekuensi rendah 
untuk mengukur daya dan pemesongan. Untuk pengukuran dinamik tapak ND VA digetarkan 
mengunakan frekuensi menaik dan menurun antara 10 Hz ke 40 Hz. Akhirnya prestasi 
NDVA dalam menyerap getaranpada struktur utama diukur dan dibandingkan dengan DVA 
linear. Hasilnya menunjukkan prestasi NDVA yang baik dengan peningkatan lebar jalur 
frekuensi berbanding dengan DVA linear. 
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5.28 

5.29 

Measured (a) response and (b) phase angle of the structure for the 

linear DV A (solid) and the NDV A with different limit block 

position, Yi = 1 mm (dashed), xi = 2 mm (dashed-dotted), and xi = 3 

mm (dotted) at xi= 45 mm and Xb = 0.25 mm 

Measured response of the primary structure for different input 

amplitude, xb = 0.1 mm (solid), xb = 0.15 mm (dotted), and xb = 

0.2 mm (dashed-dotted), and xb = 0.25 mm (dashed) 

Measured response of the primary structure for different mass ratio. 

µ = 0.04 (solid), µ= 0.05 (dotted), andµ= 0.06 (dashed) with xb = 

0.25 mm 
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