

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Wongani Clement Kizito Salima

Master of Mechanical Engineering (Product Design)

2021

PRODUCT REDESIGN BY TOPOLOGY OPTIMIZATION FOR ADDITIVE MANUFACTURING PROCESS

WONGANI CLEMENT KIZITO SALIMA

A thesis submitted in fulfillment of the requirements for the degree of Master of Mechanical Engineering (Product Design)

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this project entitled "Product Redesign by Topology Optimization for Additive Manufacturing Process" is the result of my own research except as cited in the references. The project report has not been accepted for any degree and is not concurrently submitted in the candidature of any other degree.

Signature	: Sale
Name	Wongani Clement Kizito Salima
Date	: 14 August 2021
	اونيوم سيتي تيكنيكل مليسيا ملاك
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA

APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project report is adequate in terms of scope and quality for the award of the degree of Master of Mechanical Engineering (Product Design)

Signature	: Il
Supervisor Name	: Dr Faiz Redza Bin Ramli
Date	14 August 2021
	اويونرسيتي بيڪنيڪل مليسيا ملاك UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEDICATION

To the service of God Almighty, my country and the world

ABSTRACT

This research evaluates an Alcoa bearing bracket commonly used on control surfaces of aircraft. The study seek to redesign the Alcoa bracket to minimize the weight while fitting in the same target design envelope and meeting the technical requirements and this is achieved by using the Topology Optimization (TO) technique. The objectives of this research are; to obtain the best TO model based on strength to weight ratio, von Mises stress, displacement, mass, and factor of safety by varying weight retentions between 10%-70% using solidThinking Inspire, then to optimize build orientation for the minimum amount of support structures using Fusion 360, and to obtain the required geometric compensations of the Alcoa bracket by using an Artificial Neural Network (ANN) tool in MATLAB to produce a more accurate bracket by controlling deformations occurring due to residual stresses after the Additive Manufacturing (AM) heating process. The methodology has three sections, the first section deals with pre-analysis and topology optimization, where three materials (15-5PH Steel, Ti6Al4V ELI-0406, and Ti-6Al-2Sn-4Zr-6Mo) were compared, and one material was selected for the design process based on material physical properties then topology optimization process was performed to obtain a design with excellent strength to weight ratio, von Mises stress, displacement, mass, and factor of safety. The second section deals with build orientation optimization in Fusion 360 to obtain the minimum amount of support structure during AM process. The third section deals with the ANN tool to make the required geometric compensations on the bracket which help to control deformation arising due to the AM heating process, a conformity check was conducted to validate and show the improvements achieved on the bracket after the ANN tool was implemented then the section finalizes with 3D printing of the bracket just to visualize the outcome of the TO process since the study's focus is entirely on computer simulations and not experiments. In the results, Ti-6Al-2Sn-4Zr-6Mo was selected as the material to use for the design process, the results also selected a 40% volume retention as the best model amongst the seven (7) iterations conducted, while the other results selected Rank 1 as the best-optimized build orientation amongst the thirteen (13) Ranks, while in the ANN results, it was found that before compensation, the conformity score of the deformed nodes after AM simulation was 76.312 for bracket with Cartesian mesh and 85.196 for bracket with Lavered tetrahedral mesh while the conformity score after the AM simulation of the compensated bracket the conformity was 89.726 on Cartesian mesh bracket and 94.342 on Layered tetrahedral mesh bracket showing that there was an increase in conformity after the compensation. Finally, the TO model was printed by a 3D printer and it showed similar dimensions to the bracket's CAD model. In conclusion, the research selected a 40% volume retention using Ti-6Al-2Sn-4Zr-6Mo, also selected Rank 1 build orientation, and achieved 59.75% and 61.784% reduction in conformity error for Cartesian and Layered tetrahedral mesh respectively.

REKABENTUK SEMULA PRODUK DENGAN PENGOPTIMUMAN TOPOLOGI UNTUK PROSES PEMBUATAN TAMBAHAN

ABSTRAK

Penyelidikan ini menilai pendakap Alcoa yang kebiasaannya digunakan pada permukaan kawalan pesawat. Kajian ini bertujuan untuk merekabentuk semula pendakap Alcoa untuk meminimumkan berat sambil menyesuaikan sasaran rekabentuk serta memenuhi syaratsyarat teknikal dan ini dicapai dengan menggunakan teknik pengoptimuman topologi (TO). Objektif untuk penyelidikan ini adalah; untuk mendapatkan model TO terbaik berdasarkan nisbah kekuatan kepada berat, tegasan von Mises, sesaran, jisim, dan faktor keselamatan dengan mengubah pengekalan berat di antara 10% - 70% menggunakan solidThinking Inspire, kemudian untuk mengoptimumkan orientasi binaan bagi meminimumkan jumlah struktur sokongan menggunakan Fusion 360, dan untuk mendapatkan pampasan geometrik yang diperlukan oleh pendakap Alcoa menggunakan alat perisian rangkaian neural buatan (ANN) dalam MATLAB untuk menghasilkan pendakap yang lebih tepat untuk mengawal ubahbentuk disebabkan oleh tegasan baki selepas proses pemanasan Pembuatan Tambahan (AM). Metodologi ini terdiri daripada tiga bahagian, bahagian pertama melibatkan praanalisis dan pengoptimuman topologi, di mana tiga bahan (Keluli 15-5PH, Ti6Al4V ELI-0406, dan Ti-6Al-2Sn-4Zr-6Mo) dibanding dan satu bahan telah dipilih berdasarkan sifat fizikal bahan dan kemudian proses pengoptimuman topologi telah dilakukan untuk mendapatkan rekabentuk yang mempunyai nisbah kekuatan kepada berat, tegasan von Mises, sesaran, jisim dan faktor keselamatan yang paling baik. Bahagian kedua melibatkan pengoptimuman orientasi binaan dalam Fusion 360 untuk meminimumkan jumlah struktur sokongan semasa proses AM. Bahagian ketiga melibatkan alat perisian ANN untuk mendapatkan pampasan geometrik yang diperlukan oleh pendakap bagi membantu mengawal peningkatan ubahbentuk disebabkan oleh proses pemanasan AM, semakan pematuhan telah dilaksanakan untuk mengesahkan dan untuk menunjukkan perubahan yang telah dicapai oleh pendakap selepas alat perisian ANN dilaksanakan dan bahagian ini diakhiri dengan pencetakan 3D pendakap hanya bertujuan untuk visualisasi hasil proses TO kerana kajian ini memfokuskan kepada simulasi komputer dan bukan kepada eksperimen. Dalam hasil penyelidkan, Ti-6Al-2Sn-4Zr-6Mo telah dipilih sebagai bahan yang digunakan dalam proses rekabentuk, hasil juga menunjukkan pengekalan isipadu 40% telah dipilih sebagai yang terbaik di antara tujuh (7) lelaran yang dilakukan, manakala Kedudukan 1 dipilih sebagai pengoptimuman terbaik orientasi binaan di antara tiga belas (13) kedudukan, manakala untuk keputusan ANN, ia telah didapati bahawa sebelum pampasan, skor pematuhan untuk ubahbentuk nod setelah simulasi AM adalah 76.312 untuk pendakap dengan jaringan Cartesian dan 85.196 untuk pendakap dengan jaringan tetrahedron berlapis sementara skor pematuhan selepas simulasi AM untuk pendakap dengan pematuhan pampasan adalah 89.726 pada pendakap jaringan Cartesian dan 94.342 pada pendakap tetrahedron berlapis yang mana ini menunjukkan bahawa terdapat peningkatan kepatuhan setelah pampasan. Akhir sekali, model TO telah dicetak menggunakan pencetak 3D dan ia menunjukkan dimensi yang sama berbanding model CAD pendakap. Kesimpulannya, kajian ini telah memilih pengekalan isipadu 40% menggunakan Ti-6Al-2Sn-4Zr-6Mo, juga Kedudukan I orientasi binaan, dan mencapai pengurangan ralat pematuhan sebanyak 59.75% dan 61.784% bagi jaringan Cartesian dan tetrahedral berlapis masing-masing.

ACKNOWLEDGEMENTS

Firstly, I wish to express my deep sense of gratitude to Dr. Faiz Redza bin Ramli from the Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka (UTeM) my research supervisor for giving me an opportunity to work under his great supervision for the completion of my degree - Master of Mechanical Engineering (Product Design). His continuous humble guidance, encouragement, valuable time, and useful suggestions, helped me complete this project in time. I am also sincerely grateful to him for providing me with his personal 3D Printer to use in my apartment towards this project work to allow me to have more time working on the 3D printer.

I am very grateful to Dr. Mohd Afzanizam Bin Mohd Rosli (Deputy Dean from the Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka (UTeM)) for his continuous prompt support, information, and guidance during my stay at the university. I would like also to thank all the project coordinators for swiftly guiding the students in completing their various research work in time. I should also appreciate all the university personnel at different levels, they have made my interaction and stay at the university filled with wonderful memories.

With much joy, I would like also to express gratitude to my new friends in Malaysia both local and international for making my stay in Malaysia feel like home away from home.

يتى تىكنىكا ملىسىا ملاك

Finally, yet importantly, I would like to thank my beloved family members and friends back home for their blessings and best wishes for the successful completion of this project.

TABLE OF CONTENTS

PAGE

DEC	LARA'	TION	
APPI	ROVAL	L	
DED	ICATI	ON	
ABST	FRAC	ſ	i
ABST	FRAK		ii
ACK	NOWL	EDGEMENT	iii
TAB	LE OF	CONTENTS	iv
LIST	OF TA	ABLES	vi
LIST	OF FI	GURES	vii
LIST	OF AI	BREVIATIONS	xiii
LIST	OF SY	MBOLS	xiv
СНА	PTER		
1	INTE	RODUCTION	1
1,	11	Background	1
	1.1	Problem Statement	1
	1.2	Research Objective	5
	1.5	Scope of Research	5
	1.5	Thesis Outline	6
	1.5	Thesis Outline	0
2.	LITE	RATURE REVIEW	8
	21	Introduction	- 8
	2.1	Alcoa Bracket	8
	24.24	2.2.1 Design Boundary and Loading Conditions Provided During	0
		the Alcoa Challenge	9
	23	Introduction to Topology Optimization (TO)	10
	2.4	Introduction to Additive Manufacturing	13
	2.5	Build Orientation Optimization	15
	2.0	2.5.1 Volume of Support	18
	26	Additive Manufacturing deformation	19
	2.7	Previous Part Compensation Methodologies Implemented in AM	19
	2.8	Artificial Neural Network to counteract thermal deformations	21
	2.9	Literature Summary	22
2	MET	HODOLOCY	20
J.	21	Introduction	29
	3.1	Research Design	30
	2.4	3.2.1 Research Design Explanation	31
		3.2.2 Design Requirements Loading and Boundary Conditions	37
		3.2.2 Materials Under Consideration	34
	33	The Pre-Analysis and Topology Optimization Simulation Setup	38
	5.5	3 3 1 FFA Pre-Analysis	30
		3.3.2 Selecting Model Based on Excellent Strength to Weight Datio	39
		Von Mises Stress Displacement and Easter of Safety	11
		3.3.3 Topology Optimization Process	41
		5.5.5 Topology Optimization Trocess	42

		3.3.4 (Optimized Model Selection	43
		3.3.5 1	Redesign Selected TO Model	44
		3.3.6 1	Redesigned Model FEA Analysis and Validation	44
	3.4	Optimiz	ze Build Orientation	44
	3.5	Artificia	al-Neural-Network (ANN) and 3D Print	45
		3.5.1	Artificial-Neural-Network (ANN)	45
		3.5.2 3	3D Printing of The TO Alcoa Bracket	56
		3.5.3 1	Methodology Summary	56
4.	RESU	LTS AN	ID DISCUSSIONS	58
	4.1	Introduc	ction	58
	4.2	FEA Pre	e-Analysis and Topology Optimization Results and Discussion	58
		4.2.1 I	FEA Pre-Analysis Results and Discussion	58
		4.2.2 \$	Selecting Model with Excellent Strength to Weight Ratio,	
		ľ	Mass, Von Mises Stress, Factor of Safety, and Displacement	60
		4.2.3	Topology Optimization Results and Discussion	64
		4.2.4 (Optimized Model Selection	66
		4.2.5 H	Redesign Selected TO Model	70
		4.2.6 F	Redesigned Model FEA Analysis and Validation	71
	4.3	Optimiz	ed Build Orientation Results and Discussion	75
		4.3.1 (Optimized build orientation – Autodesk Fusion 360	75
	4.4	Artificia	al-Neural-Network (ANN), and 3D Print Results and Discussion	176
		4.4.1 J	Artificial-Neural-Network (ANN) Results	76
		4.4.2 = 3	3D Print of the TO Alcoa Bracket	87
		4.4.3 H	Results Summary	90
5.	CON	LUSIO	N AND RECOMMENDATIONS	91
	5.1	Conclus	ion	91
	5.2	Contribu	ution and impact of research findings	92
	5.3	Recomm	nendations	93
REFE	RENC	ES UN	IIVERSITI TEKNIKAL MALAYSIA MELAKA	94

LIST OF TABLES

TABLE	TITLE	PAGE		
Table 2.2	Related literature summary			
Table 3.1	Mechanical properties of additively manufactured components processed			
	in 60 μ m layers, values obtained from (Renishaw, 2017b) materia	al		
	datasheet.	40		
Table 3.2	Mechanical properties obtained from (T-g, 1810) material datasheet	41		
Table 3.3	Fusion 360 Orientation Setup 45			
Table 3.4	Additive Process Parameters	47		
Table 3.5	Trial Results of the ANN Architecture	50		
Table 3.6	Printer settings, Scott (2019)	56		
Table 4.1	Bracket material mass	60		
Table 4.2	Topology optimization evaluation matrix	69		
	اونيوم سيتي تيكنيكل مليسيا ملاك			
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA			

LIST OF FIGURES

FIGURE	TITLE	PAGE	
Figure 1.1	Alcoa Bearing bracket		
Figure 1.2	A380 Landing Gear Door Bracket, (Divakaran et al. 2018)		
Figure 2.1	Original Alcoa Bracket (Conditions, 2016)	9	
Figure 2.2	Boundary Conditions (Conditions, 2016)	9	
Figure 2.3	Loading Conditions (Conditions, 2016)	10	
Figure 2.4	Sizing, shape, and topology optimization, (Bendsøe and Sigmund, 2004)	11	
Figure 2.5	Topology Optimization with design domain and boundary condition on the	e	
	left(0), with various iteration results shown, Jankovics and Barari (2019)	13	
Figure 2.6	Additive Manufacturing processes, (Ahangar et al., 2019)	14	
Figure 2.7	Support in Respect to Angle (Ga et al, 2018)	16	
Figure 2.8	Part with Created Supports (Ga et al, 2018)	18	
Figure 3.1	Methodology Flowchart	30	
Figure 3.2	(a) Existing bracket (Conditions, 2016), (b) Design and non-design region	S	
		31	
Figure 3.3	Boundary conditions (Conditions, 2016)	33	
Figure 3.4	Load cases (Conditions, 2016)	33	
Figure 3.5	Existing bracket design envelop	34	
Figure 3.6	Strength (σf) plotted against density (ρ) (σf represents yield strength for	or	
	metals and polymers, compressive strength for ceramics, tear strength for	r	
	elastomers, and tensile strength for composites. (S. Ragavendra et al 1992	2)	

35

Figure 3.7 Ten	sile strength of commercially pure titanium and various titanium	
allo	ys, and 0.2% yield strength (Specified minimum values) (Eli, 2000)	36
Figure 3.8 Mec	chanical properties of metallic materials - minimum values from data	
shee	ets (Inovar, 2020)	37
Figure 3.9 Met	thodology for ANN Model-based CAD Geometry Compensation	
(Cho	owdhury and Anand, 2016)	46
Figure 3.10 Und	deformed and Deformed Geometry Comparison	48
Figure 3.11 Fee	edforward ANN Model Schematic (Chowdhury and Anand, 2016b)	49
Figure 3.12 Fee	ed-forward ANN architecture model to be used for geometric	
com	pensation	51
Figure 3.13 Line	ear Regression of the ANN training performance	52
Figure 3.14 Tra	ined ANN schematic implementation of the STL compensation	
gene	eration	53
Figure 3.15 Poi	int Cloud Schematic Methodology for TO Model Conformity Score	
Calc	اونيوم سيتي تيكنيكل مليسيا ملاculation	54
Figure 4.1 15-5	5PH Steel Von Mises Stress Results by the Horizontal Force	59
Figure 4.2 Ti-6	6A1-4V ELI-0406 Von Mises Stress Results by the Horizontal Force	59
Figure 4.3 Ti-6	Al-2Sn-4Zr-6Mo Von Mises Stress Results by the Horizontal Force	60
Figure 4.4 Com	nparison of Maximum Tensile/Compressive Stress to Weight Ratio of	
15-5	5PH Steel, Ti6A14V ELI-0406 and Ti-6A1-2Sn-4Zr-6Mo	61
Figure 4.5 Com	nparison of Maximum Von Mises Stress Between 15-5PH Steel,	
Ti6A	Al4V ELI-0406, and Ti-6Al-2Sn-4Zr-6Mo under loads of 5560.277 N,	
834(0.416 N and 11120.550 N as Applied on the Bracket	61

viii

Figure 4.6 Comparison of Maximum Displacement Between 15-5PH Steel, Ti6Al4V		
ELI-0406, and Ti-6Al-2Sn-4Zr-6Mo under loads of 5560.277 N, 8340.416		
N, and 11120.550 N	62	
Figure 4.7 Comparison Minimum Factor of Safety Between 15-5PH Steel, Ti6Al4V		
ELI-0406, and Ti-6Al-2Sn-4Zr-6Mo under loads of 5560.277 N, 8340.416		
N, and 11120.550 N	62	
Figure 4.8 Volume Retentions of (a) 70%, (b) 60%, (c) 50%, (d) 40%, (e) 30%,		
(f) 20%, and (g) 10%	66	
Figure 4.9 Topology Optimization Results of (a) Mass, (b) Von Mises Stress,		
(c) Maximum Displacement, and (d) Minimum Factor of Safety for		
Various Percentages of Volume Retained	68	
Figure 4.10 Unsmoothed and Smoothed Alcoa Bracket (40% Volume Retention		
Model)	71	
Figure 4.11 Re-designed Model Results	72	
Figure 4.12 Comparison of Minimum Factor of Safety Between Existing Model and		
Re-designed Model TI TEKNIKAL MALAYSIA MELAKA	73	
Figure 4.13 Comparison of Mass Between Existing Model and Re-designed Model	73	
Figure 4.14 Comparison of Strength to Weight ratio Between Existing Model and		
Re-designed Model	74	
Figure 4.15 Comparison of Max Von Mises Stress Between Existing Model and		
Re-designed Model	74	
Figure 4.16 Comparison of Max Displacement Between Existing Model and		
Re-designed Model	75	
Figure 4.17 Build Orientation Results	76	
Figure 4.18 TO Alcoa Bracket Dimension 7		

Figure 4.19 Alcoa Bracket with Cartesian Mesh 78				
Figure 4.20 Deformed TO Alcoa Bracket from AM Simulation 7				
Figure 4.21 A Comparison of the Deformed (Color) with the Undeformed				
(in Wireframe) TO Alcoa Bracket.	78			
Figure 4.22 (a and b) Point Cloud Comparison of the Deformed (+Black) and the				
Undeformed (* Green) TO Alcoa Bracket	79			
Figure 4.23 Compensated STL Generated Using ANN	80			
Figure 4.24 Comparison of AM Simulated from Compensated Geometry (+ Blue) and				
the Undeformed TO Model Point Cloud (* Green) (a-Shows Side View,				
b- Shows front and c-Shows the Bracket Point Cloud in 3D)	81			
Figure 4.25 Alcoa Bracket with Cartesian Mesh	82			
Figure 4.26 A Comparison of the Deformed (Color) with the Undeformed				
(in Wireframe) TO Alcoa Bracket from AM Simulation Before				
Compensation, (a) Plan View, and (b) Front View	83			
Figure 4.27 Point Cloud Comparison of the Deformed (. Red) with the Undeformed				
(. Green) TO Alcoa Bracket Before Compensation. (a) Plan View and				
(b) Front View	84			
Figure 4.28 Notable Deflection Changes Observed after (a) Compensation but Before				
AM Process and (b) Pre-Compensation but Soon after the AM Process.	85			
Figure 4.29 A Comparison Between Compensated Geometry from AM Process				
(. Blue) and the Undeformed TO Model Point Cloud (. Green), (a) Plan				
View and (b) Front View	86			
Figure 4.30 The Additive Manufactured Alcoa Bracket, (a & b) Rear Side				
Comparison, (c & d) Plan View Comparison, (e & f) Side View				
Comparison, (g) Isometric view	90			

LIST OF ABBREVIATIONS

STA	-	Solution Treated & Aged		
CS	-	Conformity Score		
ТО	-	Topology Optimization		
PLA	-	Polylactic Acid		
3D	-	Three Dimensional		
ID	-	Identity		
MSE		Mean Square Error		
AM	-	Additive Manufacturing		
DfAM	-	Design for Additive Manufacturing		
ANN	-	Artificial Neural Network		
FEA	-	Finite Element Analysis		
FEM	-	Finite Element Method		
SIMP	-	Solid Isotropic Material with Penalization		
CAD	-	Computer-Aided-Design		
ISE	-	Isotropic-Solid or Empty		
SSD	-	Solid-State Drive		
CPU	-	Central Processing Unit		
UTS	-	Ultimate Tensile Strength		
STL	-	Stereolithography		
STEP	-	Standard for the Exchange of Product Data		

LIST OF SYMBOLS

D,d	-	Diameter
kg	-	Kilogram
g	-	gram
N	-	Newton
m	-	Meter
K	-	Kelvin
mm	-	millimeter
MPa	-	Mega Pascal
GPa	-	Giga Pascal
lbf	-	Pound-force
°C	_	Celcius

xii

CHAPTER 1

INTRODUCTION

1.1 Background

Fuel economy improvement in aircraft is very important in reducing carbon emissions that negatively impact the environment as stated by Jankovics and Barari (2019). As regulations keep on tightening, the use of more lighter, non-traditional components is becoming a favorable option in meeting the targets. In aircraft, lighter materials not only improve fuel economy but also allows it to carry more load. Krishna and M G (2020) pointed out that a small reduction in the weight of each bracket will have a greater impact on the overall weight of the aircraft. But these components must comply with the safety regulations. There are several ways of achieving these compliant lighter components but this research will put much focus on using the Topology Optimization (TO) method and Additive Manufacturing (AM) in the design process.

Topology optimization refers to a form of the structural optimization process that is designed to obtain an optimal geometry based on a set of constraints. Jankovics and Barari (2019) explained that finite element analysis is used iteratively in determining the amount of material that should be kept in the current solid mesh and which amount of material should be set to void. This means that for a given design domain, the optimized component will use the least amount of material for the maximum stiffness. Even though topology optimization has the capability of creating compliant optimal structures for a given constraint and design domain, it does not take manufacturability into account because the structures it creates are often impossible to manufacture using traditional processes. Therefore, one way of avoiding these impossibilities or difficulties is using AM in the design process.

AM is a set of new fabrication technologies that overcome many limitations encountered in traditional manufacturing methods. It enables the creation of complex shapes from a single-step process than the many process steps from traditional processes where sometimes are not feasible in creating complex shapes. AM produces components directly from Computer-Aided-Design (CAD) data. The objects are created by adding layer upon layer, this is in contrast to the conventional manufacturing methods that remove material from the initial workpiece. During AM process, support materials are deposited during each layer and the support materials must be removed in the post-processing step. Support structures ensure successful printing of overhang structures as demonstrated by Vanek et al. (2014). Lalehpour and Barari (2016) as well pointed out that deposition speed is also affected by the support structures, the material is wasted and surface finish quality is also reduced.

Unda (2012) used topology optimization on engine accessory components with an objective to minimize the weight of a mounting bracket. The main parameter was the behavior of the bracket's shape. Stresses were computed for different shapes and compared to determine the best model under predetermined conditions. Deshmukh and Sontakke (2014) presented a static, model, harmonic response analysis of an engine mounting bracket using ANSYS 15.0 and the study showed that the proposed model of the bracket provided 12.5% weight reduction while maintaining an acceptable level of harmonic response and yield stress.

It is through these similar studies that it can be confirmed that topology optimization of components has a greater impact on the performance of the components as well as greater weight saving. Therefore, this research seek to redesign an existing Alcoa bearing bracket commonly used on control surfaces of various aircraft by means of topology optimization for minimum weight while fitting in the target envelope and meeting the technical requirements and various methods to allow for AM.

2

1.2 Problem Statement

Figure 1.1 shows the Alcoa bearing bracket understudy commonly used on control surfaces of various aircraft while Figure 1.2 is an example of a Landing gear door bracket (similar to the bracket understudy, but the bracket understudy in this paper is much smaller in size and weight).

Figure 1.2 : A380 Landing Gear Door Bracket, (Divakaran et al. 2018)

Product development through advanced finite element analysis and structural optimization is a growing concern and focus in the aerospace industry. Reducing the weight of aircraft components has an impact on fuel usage, emission levels, and the amount of cargo that can be carried. In an attempt to optimize various aircraft components for minimum weight, Alcoa fastening systems engaged in various case studies, Figure 1.1 above shows one of the case studies with a challenge to redesign the existing bracket to minimize the weight from the total weight of 868g (Sammut-Bonnici and McGee, 2002) by topology

optimization. Even though topology optimization has the capability of creating compliant optimal structures for a given constraint and design domain, it does not take manufacturability into account because the structures it creates are often impossible to manufacture using traditional processes. Therefore, one way of avoiding these impossibilities is by using AM in the design process.

In 2016 Alcoa organized a challenge through crowdsourcing with an objective to redesign the bearing bracket in such a way that its topology and shape are optimized for minimum weight while fitting in the target envelope and meeting the technical requirements. During the challenge, the submitted designs were evaluated via FEA and ranked based on their strength-to-weight ratio, mechanical performance, and the cost associated with the additional manufacturing operations like removing support structures (GrabCAD, 2016). The challenge received 301 entries and the winner managed to obtain a bracket with mass: 220.509 g, ultimate load:4968 lbf (22098.76 N), Strength/Weight: 22.53 lbf/g or (100.23 N/g). But in all the 301 entries, little is known on documented methodologies used, etc because the challenge demanded that the submissions should have: STEP files, any render or image files (JPEG, PNG, etc), and any calculations or considerations and schematic showing the desired printing direction.

Recently, some authors who were not part of the challenge re-worked on the same part, for example, Wang (2017) was interested in developing successful molds by integrating TO with design for casting and design for AM principles. The Alcoa bracket was one of the case studies, the redesigned part (mold) was successfully cast and demonstrated improvements in mechanical performance and weight reduction. Flavio Di Fede (2019) discussed the structural optimization methodology for AM of the Alcoa Bracket. The paper focused on methodology, it did not demonstrate and compare different weight reductions in order to choose the best design that had a good weight/stiffness ratio and this trend has been observed to be common in most literature reviewed.

Therefore, this research seek to redesign the same Alcoa bearing bracket by TO for excellent strength to weight ratio, von Mises stress, displacement, mass, and factor of safety while fitting in the same target design envelope and meeting the technical requirements.

1.3 Research Objective

The objectives of the research are:

- To obtain the best TO model of the Alcoa bracket based on strength to weight ratio, von Mises stress, displacement, mass, and factor of safety by varying weight retentions between 10%-70% using solidThinking Inspire.
- b) To optimize build orientation for the minimum amount of support structures using Fusion 360.
- c) To obtain the required geometric compensations of the Alcoa bracket by using an Artificial Neural Network (ANN) tool in MATLAB to produce a more accurate bracket by controlling deformations occurring due to residual stresses after the AM heating process.

1.4 Scope of Research

This research covers the TO of an existing aircraft bracket by varying weight retentions between 10% - 70% of the total mass during simulation to obtain a design with the best strength to weight ratio, von Mises stress, displacement, mass, and factor of safety upon satisfying the design requirements. The CAD model of the bracket used in the TO process was obtained from GrabCaD (2016). Then the other part of the research seek to optimize the build orientation of the bracket during AM process to minimize the amount of

support structures and finally due to deformations which normally occur due to residual stresses after the AM heating process an Artificial Neural Network tool was applied to control the deformations. It should be mentioned that this research work mainly focused on computer simulations and not experiments, the TO bracket model obtained was additively manufactured to only visualize the outcome of the TO process.

1.5 Thesis Outline

Based on the objectives presented previously and the proposed approach, this research is made up of five (5) chapters, which are summarized as follows:

- Chapter 1. Introduction. This chapter presents the background of the study, the research problem, objectives, and the research scopes.
- Chapter 2. Literature review. This chapter starts with a brief introduction of the Alcoa bracket, then it presents topology optimization approaches and methods. This chapter also presents a brief introduction of additive manufacturing technologies including the advantages and disadvantages. The chapter also introduces briefly the build orientation optimization. Another section discusses additive manufacturing deformations in order to understand the causes and possibility of controlling them. There is also a section discussing previous part compensation methodologies implemented in AM to identify gaps and to justify Artificial Neural Network as a better approach for this paper. Then the chapter closes with an overview of the Artificial Neural Network to counteract thermal deformations and a summary table of main literature reviewed.
- Chapter 3. Methodology. This chapter presents the methodology that has been developed in redesigning the Alcoa bracket by using the topology

optimization method, build orientation optimization, and the Artificial Neural Network methodology used to control thermal deformations.

- Chapter 4. Results and discussion. This chapter presents and discusses the results of the topology optimization process, build orientation results and the Artificial Neural Network results in counteracting thermal deformations.
- Chapter 5. Conclusion and recommendations. This chapter summarizes the main conclusions as well as achievements of the work undertaken in this research and suggests areas for future work.

