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ABSTRACT 

This research evaluates an Alcoa bearing bracket commonly used on control surfaces of 
aircraft. The study seek to redesign the Alcoa bracket to minimize the weight while fitting 
in the same target design envelope and meeting the technical requirements and this is 
achieved by using the Topology Optimization (TO) technique. The objectives of this 
research are; to obtain the best TO model based on strength to weight ratio, von Mises stress, 
displacement, mass, and factor of safety by varying weight retentions between 10%-70% 
using solidThinking Inspire, then to optimize build orientation for the minimum amount of 
support structures using Fusion 360, and to obtain the required geometric compensations of 
the Alcoa bracket by using an Artificial Neural Network (ANN) tool in MATLAB to produce 
a more accurate bracket by controlling defonnations occurring due to residua] stresses after 
the Additive Manufacturing (AM) heating process. The methodology has three sections, the 
first section deals with pre-analysis and topology optimization, where three materials (15-
5PH Steel, Ti6A14V ELl-0406, and Ti-6A1-2Sn-4Zr-6Mo) were compared, and one material 
was selected for the design process based on material physical properties then topology 
optimization process was performed to obtain a design with excellent strength to weight 
ratio, von Mises stress, displacement, mass, and factor of safety. The second section deals 
with build orientation optimization in Fusion 360 to obtain the minimum a.mount of support 
strncture during AM process. The third section deals with the ANN tool to make the required 
geometric compensations on the bracket which help to control deformation arising due to 
the AM heating process, a conformity check was conducted to validate and show the 
improvements achieved on the bracket after the ANN tool was implemented then the section 
finalizes with 3D printing of the bracket just to visualize the outcome of the TO process 
since the study' s focus is entirely on computer simulations and not experiments. In the 
results, Ti-6Al-2Sn-4Zr-6Mo was selected as the material to use for the design process, the 
results also selected a 40% volume retention as the best model amongst the seven (7) 
iterations conducted, while the other results selected Rank I as the best-optimized build 
orientation amongst the thirteen (13) Ranks, while in the ANN results, it was found that 
before compensation, the conformity score of the deformed nodes after AM simulation was 
76.312 for bracket with Cartesian mesh and 85.196 for bracket with Layered tetrahedral 
mesh while the confonnity score after the AM simulation of the compensated bracket the 
conformity was 89.726 on Cartesian mesh bracket and 94.342 on Layered tetrahedral mesh 
bracket showing that there was an increase in conformity after the compensation. Finally, 
the TO model was printed by a 3D printer and it showed similar dimensions to the bracket's 
CAD model. In conclusion, the research selected a 40% volume retention using Ti-6Al-2Sn-
4Zr-6Mo, also selected Rank 1 build orientation, and achieved 59.75% and 61.784% 
reduction in conformity error for Cartesian and Layered tetrahedral mesh respectively. 



REKABENTUK SEMULA PRODUK DENGAN PENGOPTIMUMAN TOPOLOGJ 
UNTUK PROSES PEMBUATAN TAMBAHAN 

ABSTRA.K 

Penyelidikan ini menilai pendakap Alcoa yang kebiasaannya digunakan pada permukaan 
kawa/an pesawat. Kajian ini bertujuan untuk merekabentuk semu/a pendakap Alcoa untuk 
meminimumkan berat sambil menyesuaikan sasaran rekabentuk serta memenuhi syarat­
syarat teknikal dan ini dicapai dengan menggunakan teknik pengoptimuman topologi (I'O). 
Objektif untuk penyelidikan ini adalah; untuk mendapatkan model TO terbaik berdasarkan 
nisbah kekuatan kepada berat, tegasan von Mises, sesaran, jisim, dan faktor kese/amatan 
dengan mengubah pengekalan berat di antara I 0% - 70% menggunakan solidThinking 
Inspire, kemudian untuk mengoptimumkan orientasi binaan bagi meminimumkan jumlah 
struktur sokongan menggunakan Fusion 360, dan untuk mendapatkan pampasan geometrik 
yang diperlukan oleh pendakap Alcoa menggunakan alat perisian rangkaian neural buatan 
(ANN) dalam MATLAB untuk menghasilkan pendakap yang lebih tepat untuk mengawai 
ubahbentuk disebabkan oleh tegasan baki selepas proses pemanasan Pembuatan Tambahan 
(AM). Metodologi ini terdiri daripada tiga bahagian, bahagian pertama melibatkan pra­
analisis dan pengoptimuman topologi, di mana tiga bahan (Keluli l 5-5PH, Ti6Al4V ELl-
0406, dan Ti-6Al-2Sn-4Zr-6Mo) dibanding dan satu bahan telah dipibh berdasarkan s~fat 
fizika/ bahan dan kemudian proses pengoptimuman topo/ogi telah dilakukan untuk 
mendapatkan rekabentuk yang mempunyai nisbah kekuatan kepada berat, tegasan von 
Mises, sesaran,jisim dan.faktor keselamatan yang paling baik. Bahagian kedua melibatkan 
pengoptimuman orientasi binaan dalam Fusion 360 untuk meminimumkan jumlah struktur 
sokongan semasa proses AM. Bahagian ketiga melibatkan alat perisian ANN untuk 
mendapatkan pampasan geometrik yang diperlukan oleh pendakap bagi membantu 
mengawal peningkatan ubahbentuk disebabkan oleh proses pemanasan AM, semakan 
pematuhan telah dilaksanakan untuk mengesahkan dan untuk menunjukkan perubahan yang 
telah dicapai oleh pendakap selepas alat perisian ANN dilaksanakan dan bahagian ini 
diakhiri dengan pencetakan 3D pendakap hanya bertujuan untuk visualisasi hasi/ proses 
TO kerana kajian ini memfokuskan kepada simulasi komputer dan bukan kepada 
eksperimen. Dalam hasil penyelidkan, Ti-6Al-2Sn-4Zr-6Mo te/ah dipilih sebagai bahan 
yang digunakan dalam proses rekabentuk, hasil juga menunjukkan pengekalan isipadu 40% 
te/ah dipilih sebagai yang terbaik di antara tujuh (7) lelaran yang dilakukan, manakala 
Kedudukan 1 dipilih sebagai pengoptimuman terbaik orientasi binaan di antara tiga be/as 
(13) kedudukan, manakala untuk keputusan ANN, ia telah didapati bahawa sebefrlm 
pampasan, skor pematuhan untuk ubahbentuk nod setelah simulasi AM adalah 76.312 untuk 
pendakap dengan jaringan Cartesian dan 85.196 untuk pendakap dengan jaringan 
tetrahedron berlapis sementara skor pematuhan se/epas simulasi AM untuk pendakap 
dengan pematuhan pampasan adalah 89. 726 pada pendakapjaringan Cartesian dan 94.342 
pada pendakap tetrahedron berlapis yang mana ini menunjukkan bahawa terdapat 
peningkatan kepatuhan setelah pampasan. Akhir sekali, model TO telah dicetak 
menggunakan pencetak 3D dan ia menunjukkan dimensi yang sama berbanding model CAD 
pendakap. Kesimpulannya, kajian ini te/ah memilih pengekalan isipadu 40% menggunakan 
Ti-6Al-2Sn-4Zr-6Mo,juga Kedudukan 1 orientasi binaan, dan mencapai pengurangan ralat 
pematuhan sebanyak 59. 7 5% dan 61. 784% bagi jaringan Cartesian dan tetrahedra/ 
berlapis masing-masing. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Fuel economy improvement in aircraft is very important in reducing carbon 

emissions that negatively impact the environment as stated by Jankovics and Barari (2019). 

As regulations keep on tightening, the use of more lighter, non-traditional components is 

becoming a favorable option in meeting the targets. In aircraft, lighter materials not only 

improve fuel economy but also allows it to carry more load. Krishna and MG (2020) pointed 

out that a small reduction in the weight of each bracket will have a greater impact on the 

overall weight of the aircraft. But these components must comply with the safety regulations. 

There are several ways of achieving these compliant lighter components but this research 

will put much focus on using the Topology Optimization (TO) method and Additive 

Manufacturing (AM) in the design process. 

Topology optimization refers to a form of the structural optimization process that is 

designed to obtain an optimal geometry based on a set of constraints. Jankovics and Barari 

(2019) explained that finite element analysis is used iteratively in determining the amount 

of material that should be kept in the current solid mesh and which amount of material should 

be set to void. This means that for a given design domain, the optimized component will use 

the least amount of material for the maximum stiffness. Even though topology optimization 

has the capability of creating compliant optimal structures for a given constraint and design 

domain, it does not take manufacturability into account because the structures it creates are 

often impossible to manufacture using traditional processes. Therefore, one way of avoiding 

these impossibilities or difficulties is using AM in the design process. 
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AM is a set of new fabrication technologies that overcome many limitations 

encountered in traditional manufacturing methods. It enables the creation of complex shapes 

from a single-step process than the many process steps from traditional processes where 

sometimes are not feasible in creating complex shapes. AM produces components directly 

from Computer-Aided-Design (CAD) data. The objects are created by adding layer upon 

layer, this is in contrast to the conventional manufacturing methods that remove material 

from the initial workpiece. During AM process, support materials are deposited during each 

layer and the support materials must be removed in the post-processing step. Support 

structures ensure successful printing of overhang structures as demonstrated by Vanek et al. 

(2014 ). Lal eh pour and Barari (2016) as well pointed out that deposition speed is also affected 

by the support structures, the material is wasted and surface finish quality is also reduced. 

Unda (2012) used topology optimization on engine accessory components with an 

objective to minimize the weight of a mounting bracket. The main parameter was the 

behavior of the bracket's shape. Stresses were computed for different shapes and compared 

to determine the best model under predetermined conditions. Deshmukh and Sontakke 

(2014) presented a static, model, hannonic response analysis of an engine mounting bracket 

using ANSYS 15.0 and the study showed that the proposed model of the bracket provided 

12.5% weight reduction while maintaining an acceptable level of harmonic response and 

yield stress. 

It is through these similar studies that it can be confirmed that topology optimization 

of components has a greater impact on the performance of the components as well as greater 

weight saving. Therefore, this research seek to redesign an existing Alcoa bearing bracket 

commonly used on control surfaces of various aircraft by means of topology optimization 

for minimum weight while fitting in the target envelope and meeting the technical 

requirements and various methods to allow for AM. 
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1.2 Problem Statement 

Figure 1.1 shows the Alcoa bearing bracket understudy commonly used on control 

surfaces of various aircraft while Figure 1.2 is an example of a Landing gear door bracket 

(similar to the bracket understudy, but the bracket understudy in this paper is much smaller 

in size and weight). 

Figure 1.1 : Alcoa Bearing bracket 

Figure 1.2 : A380 Landing Gear Door Bracket, (Divakaran et al . 2018) 

Product development through advanced finite element analysis and structural 

optimization is a growing concern and focus in the aerospace industry. Reducing the weight 

of aircraft components has an impact on fuel usage, emission levels, and the amount of cargo 

that can be carried. In an attempt to optimize various aircraft components for minimum 

weight, Alcoa fastening systems engaged in various case studies, Figure 1.1 above shows 

one of the case studies with a challenge to redesign the existing bracket to minimize the 

weight from the total weight of 868g (Sammut-Bonnici and McGee, 2002) by topology 
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optimization. Even though topology optimization has the capability of creating compliant 

optimal structures for a given constraint and design domain, it does not take 

manufacturability into account because the structures it creates are often impossible to 

manufacture using traditional processes. Therefore, one way of avoiding these 

impossibilities is by using AM in the design process. 

In 2016 Alcoa organized a challenge through crowdsourcing with an objective to 

redesign the bearing bracket in such a way that its topology and shape are optimized for 

minimum weight while fitting in the target envelope and meeti11g the technical requirements. 

During the challenge, the submitted designs were evaluated via FEA and ranked based on 

their strength-to-weight ratio, mechanical performance, and the cost associated with the 

additional manufacturing operations like removing support structures (GrabCAD, 2016). 

The challenge received 301 entries a11d the winner managed to obtain a bracket with mass: 

220.509 g, ultimate load:4968 lbf (22098.76 N), Strength/Weight: 22.53 lbf/g or (100.23 

N/g). But in all the 301 entries, little is known on documented methodologies used, etc 

because the challenge dema11ded that the submissions should have: STEP files, any render 

or image files (JPEG, PNG, etc), and any calculations or considerations and schematic 

showing the desired printing direction. 

Recently, some authors who were not part of the challenge re-worked on the same 

part, for example, Wang (2017) was interested in developing successful molds by i11tegratiug 

TO with design for casting and design for AM principles. The Alcoa bracket was one of the 

case studies, the redesigned part (mold) was successfully cast a11d demonstrated 

improvements in mecha11ical performance and weight reduction. Flavio Di Fede (2019) 

discussed the structural optimization methodology for AM of the Alcoa Bracket. The paper 

focused on methodology, it did not demonstrate and compare different weight reductions in 
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order to choose the best design that had a good weight/stiffness ratio and this trend has been 

observed to be common in most literature reviewed. 

Therefore, this research seek to redesign the same Alcoa bearing bracket by TO for 

excellent strength to weight ratio, von Mises stress, displacement, mass, and factor of safety 

while fitting in the same target design envelope and meeting the technical requirements. 

1.3 Research Objective 

The objectives of the research are: 

a) To obtain the best TO model of the Alcoa bracket based on strength to weight 

ratio, von Mises stress, displacement, mass, and factor of safety by varying 

weight retentions between 10%-70% using solidThinking Inspire. 

b) To optimize build orientation for the minimum amount of support structures 

using Fusion 360. 

c) To obtain the required geometric compensations of the Alcoa bracket by 

using an Artificial Neural Network (ANN) tool in MATLAB to produce a 

more accurate bracket by controlling defo1mations occurring due to residual 

stresses after the AM heating process. 

1.4 Scope of Research 

This research covers the TO of an existing aircraft bracket by varying weight 

retentions between I 0% - 70% of the total mass during simulation to obtain a design with 

the best strength to weight ratio, von Mises stress, displacement, mass, and factor of safety 

upon satisfying the design requirements. The CAD model of the bracket used in the TO 

process was obtained from GrabCaD (2016). Then the other part of the research seek to 

optimize the build orientation of the bracket during AM process to minimize the amount of 
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support structures and finally due to deformations which normally occur due to residual 

stresses after the AM heating process an Artificial Neural Network tool was applied to 

control the deformations. It should be mentioned that this research work mainly focused on 

computer simulations and not experiments, the TO bracket model obtained was additively 

manufactured to only visualize the outcome of the TO process. 

1.S Thesis Outline 

Based on the objectives presented previously and the proposed approach, this 

research is made up of five (5) chapters, which are smnmarized as follows: 

• Chapter 1. Introduction. This chapter presents the background of the study, 

the research problem, objectives, and the research scopes. 

• Chapter 2. Literature review. This chapter starts with a brief introduction of 

the Alcoa bracket, then it presents topology optimization approaches and 

methods. This chapter also presents a brief introduction of additive 

manufacturing technologies including the advantages and disadvantages. The 

chapter also introduces briefly the build orientation optimization. Another 

section discusses additive manufacturing deformations in order to understand 

the causes and possibility of controlling them . There is also a section 

discussing previous part compensation methodologies implemented in AM to 

identify gaps and to justify Artificial Neural Network as a better approach for 

this paper. Then the chapter closes with an overview of the Artificial Neural 

Network to counteract thermal deformations and a summary table of main 

literature reviewed. 

• Chapter 3. Methodology. This chapter presents the methodology that has 

been developed in redesigning the Alcoa bracket by using the topology 

6 



optimization method, build orientation optimization, and the Artificial Neural 

Network methodology used to control thermal deformations. 

• Chapter 4. Results and discussion. This chapter presents and discusses the 

results of the topology optimization process, build orientation results and the 

Artificial Neural Network results in counteracting thermal deformations. 

• Chapter 5. Conclusion and recommendations. This chapter swnmarizes the 

main conclusions as well as achievements of the work undertaken in this 

research and suggests areas for future work. 
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