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ABSTRACT 

 

 

The usage of chemically treated strengthened glass has become a revolutionary and 

steadily increased for the past decade, predominantly by the electronic devices industry. 

Chemically treated strengthened glass offered a great strength as a result of a post-

production chemical process by means of an ion-exchange process that improved 

scratching, impact and bending strength, as well as increased temperature stability which 

makes it as a preferred material for electronic panel display devices application such as 

mobile phone and tablet PCs screen, camera lens, optical component and many more. In 

such aforementioned applications, micro holes drilling is required to serve for particular 

purposes such as camera lenses, speakers and proximity sensors. However, due to the 

inherent properties of chemical treated toughened glass, stronger under compressive stress 

and weak under tension, it is a challenge for the subsequent secondary manufacturing 

process such as hole drilling. Conventional drilling process towards this glass tends to 

generate high tensile stress that consequently affects the hole performances and accuracy. 

This study proposed a significant advancement in improving the hole drilling quality using 

a hybrid machining technique. The hybrid technique combines two of established 

machining processes into a new combined setup known as Rotary Ultrasonic Assisted 

Drilling (RUAD). In order to obtain desired drilling quality specifications, namely, hole 

quality (burr area), and drilling thrust force, the ultrasonic machining and amplitude 

function performances are investigated. The Burr shape characterization and quantification 

are processed using the JAVA digital image processing software ImageJ, which is captured 

using the optical microscope (EMZ-13T Meiji Techno). Meanwhile, the thrust force 

measurement will be obtaining using kistler dynamometer (9257 B) The machine 

parameter, namely cutting speed in the range of 1000-3500 rpm, feed rate (0.5-1 mm/min), 

ultrasonic frequency ranging between 20 and 27 kHz, and amplitude (1-3 µm), were used. 

The aluminium oxide (Al2O3) slurry was applied within the machining ultrasonic 

environment. The 5% of concentration slurry circulated inside a designated slurry pool. 

The electroplated diamond tool was used to perform the drilling process. The experimental 

run based on the statistical Taguchi matrix was executed, comprising a different machining 

parameter. The further investigation proceeded by using statistical Response Surface 

Methodology for finding the best set of optimal machining parameter and satisfactory 

validation index. Based on the compromises decision between the responses on cutting 

speed and feed rate, the optimized parameter of drilling CSG glass was selected is 6511 

rpm and 0.50 mm/min under RUAD condition of 27 kHz (ultrasonic frequency) and 1 µm  

(amplitude), with with the highest desirability index with 97.5%. The responses which are 

the burr area accuracy entry and exit with the machining trust force having relative 

percentage error with1.03%, 0.99%, and 0.37% respectively compared to prediction model 

values. Besides, the analytical results demonstrated that, the presence of the intermittent 

ultrasonic vibration amplitude was able to minimize the chipping area and enhance the hole 

quality with acceptable tolerance value.   
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PENGOPTIMUMAN PRESTASI PELBAGAI OBJEKTIF BAGI PENGGERUDIAN 

MIKRO HIBRID TERBANTU ULTRASONIK UNTUK KACA YANG DIPERKUAT 

SECARA KIMIA 

 

ABSTRAK 

 

Penggunaan kaca diperkuat kimia telah menjadi revolusi dan terus meningkat untuk dekad 

yang lalu terutamanya oleh industri alat elektronik. Gelas diperkuat secara kimia 

menawarkan kekuatan hebat hasil daripada proses kimia pasca pengeluaran dengan cara 

proses pertukaran ion yang meningkatkan daya tahan calar, kesan dan kekuatan lenturan, 

serta peningkatan kestabilan suhu yang menjadikannya sebagai bahan pilihan untuk 

aplikasi elektronik peranti paparan panel seperti skrin telefon mudah alih dan tablet PC, 

lensa kamera, komponen optik, dan sebagainya. Dalam aplikasi seperti tersebut, 

penggerudian lubang mikro diperlukan untuk tujuan tertentu seperti lensa kamera, 

pembesar suara dan sensor jarak. Walau bagaimanapun, disebabkan sifat-sifat yang 

wujud dari kaca yang dirawat kimia di mana tegasan mampatan yang kuat dan lemah di 

bawah ketegangan menjadikannya sebagai cabaran untuk proses seterusnya iaitu 

penggerudian lubang. Proses penggerudian konvensional pada kaca akan cenderung 

menghasilkan tekanan tegangan tinggi yang seterusnya memberi kesan kepada prestasi 

lubang dan ketepatannya. Kajian ini mencadangkan signifikasi kemajuan dalam 

meningkatkan kualiti gerudi lubang menggunakan teknik mesin hibrid. Teknik hibrid 

menggabungkan dua proses pemesinan yang digabungkan ke dalam satu proses dikenali 

sebagai Rotary Assisted Drilling (RUAD). Untuk mendapatkan spesifikasi kualiti 

penggerudian yang diinginkan, iaitu, kualiti lubang (luas serpihan) dan daya tujahan 

penggerudian, prestasi pemesinan ultrasonik dan fungsi amplitud diselidiki. Pencirian dan 

pengukuran bentuk serpihan diproses dengan menggunakan perisian pemprosesan gambar 

digital JAVA ImageJ, yang ditangkap menggunakan mikroskop optik (EMZ-13T Meiji 

Techno). Sementara itu, pengukuran daya tujah akan dilakukan dengan menggunakan 

dynamometer kistler (9257 B) Parameter mesin, iaitu kecepatan pemotongan dalam julat 

1000-3500 rpm, kadar suapan (0,5-1 mm/min), frekuensi ultrasonik antara 20 dan 27 kHz, 

dan amplitud (1-3 µm), digunakan-pakai. Buburan aluminium oksida (Al2O3) diterapkan 

dalam lingkungan ultrasonik semasa pemesinan. 5% kepekatan buburan beredar di dalam 

kolam buburan yang dicipta. Alat berlian adur digunakan untuk melakukan proses 

penggerudian. Jalanan eksperimen berdasarkan matriks Taguchi statistik digunakan 

dimana yang terdiri dari parameter pemesinan yang berbeza.Penyiasatan kemudian 

diteruskan dengan menggunakan statistik Surface Respon Metodologi untuk mencari set 

terbaik parameter pemesinan optimum dan indeks pengesahan yang 

memuaskan.Berdasarkan keputusan kompromi antara tindak balas mengenai kecepatan 

pemotongan dan kadar suapan, parameter optimum penggerudian kaca CSG yang dipilih 

adalah 6511 rpm dan 0,50 mm/min di bawah kondisi RUAD 27 kHz (frekuensi ultrasonik) 

dan 1 µm (amplitud), dengan dengan indeks keinginan tertinggi iaitu 97.5%. Respon 

ketepatan kemasukan dan luar kawasan serpihan dengan kekuatan kepercayaan 

pemesinan, mempunyai ralat peratusan relatif masing-masing dengan 1.03%, 0.99%, dan 

0.37% berbanding dengan nilai model ramalan. Selain itu, hasil analisa menunjukkan 

bahawa, kehadiran amplitud getaran ultrasonik dapat meminimumkan kawasan celah dan 

meningkatkan kualiti lubang dengan nilai toleransi yang dapat diterima..  
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