

Faculty of Manufacturing Engineering

Muhamad Firdauz bin Abd. Rasid

Master of Science in Manufacturing Engineering

MULTI OBJECTIVE PERFORMANCES OPTIMIZATION OF HYBRID ROTARY ULTRASONIC ASSISTED MICRO DRILLING ON CHEMICALLY STRENGTHENED GLASS

MUHAMAD FIRDAUZ BIN ABD. RASID

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this thesis entitled "Multi Objective Performances Optimization of Hybrid Rotary Ultrasonic Assisted Micro Drilling on Chemically Strengthened Glass" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature • Name Muhamad Firdauz Bin Abd. Rasid 30/08/2021 Date UNIVERSITI EKNIKAL MALAYSIA MELAKA

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Manufacturing Engineering.

Signature : Supervisor Name : Associate Professor Dr. Raja Izamshah Bin Raja Abdullah 30/08/2021 Date **UNIVERSITI TEKNIKAL MALAYSIA MELAKA**

DEDICATION

My beloved father, mother, family, supervisor, and supportive friends accompany me along the problematic pathway in my university life.

ABSTRACT

The usage of chemically treated strengthened glass has become a revolutionary and steadily increased for the past decade, predominantly by the electronic devices industry. Chemically treated strengthened glass offered a great strength as a result of a postproduction chemical process by means of an ion-exchange process that improved scratching, impact and bending strength, as well as increased temperature stability which makes it as a preferred material for electronic panel display devices application such as mobile phone and tablet PCs screen, camera lens, optical component and many more. In such aforementioned applications, micro holes drilling is required to serve for particular purposes such as camera lenses, speakers and proximity sensors. However, due to the inherent properties of chemical treated toughened glass, stronger under compressive stress and weak under tension, it is a challenge for the subsequent secondary manufacturing process such as hole drilling. Conventional drilling process towards this glass tends to generate high tensile stress that consequently affects the hole performances and accuracy. This study proposed a significant advancement in improving the hole drilling quality using a hybrid machining technique. The hybrid technique combines two of established machining processes into a new combined setup known as Rotary Ultrasonic Assisted Drilling (RUAD). In order to obtain desired drilling quality specifications, namely, hole quality (burr area), and drilling thrust force, the ultrasonic machining and amplitude function performances are investigated. The Burr shape characterization and quantification are processed using the JAVA digital image processing software ImageJ, which is captured using the optical microscope (EMZ-13T Meiji Techno). Meanwhile, the thrust force measurement will be obtaining using kistler dynamometer (9257 B) The machine parameter, namely cutting speed in the range of 1000-3500 rpm, feed rate (0.5-1 mm/min), ultrasonic frequency ranging between 20 and 27 kHz, and amplitude (1-3 µm), were used. The aluminium oxide (Al2O3) slurry was applied within the machining ultrasonic environment. The 5% of concentration slurry circulated inside a designated slurry pool. The electroplated diamond tool was used to perform the drilling process. The experimental run based on the statistical Taguchi matrix was executed, comprising a different machining parameter. The further investigation proceeded by using statistical Response Surface Methodology for finding the best set of optimal machining parameter and satisfactory validation index. Based on the compromises decision between the responses on cutting speed and feed rate, the optimized parameter of drilling CSG glass was selected is 6511 rpm and 0.50 mm/min under RUAD condition of 27 kHz (ultrasonic frequency) and 1 µm (amplitude), with with the highest desirability index with 97.5%. The responses which are the burr area accuracy entry and exit with the machining trust force having relative percentage error with 1.03%, 0.99%, and 0.37% respectively compared to prediction model values. Besides, the analytical results demonstrated that, the presence of the intermittent ultrasonic vibration amplitude was able to minimize the chipping area and enhance the hole quality with acceptable tolerance value.

PENGOPTIMUMAN PRESTASI PELBAGAI OBJEKTIF BAGI PENGGERUDIAN MIKRO HIBRID TERBANTU ULTRASONIK UNTUK KACA YANG DIPERKUAT SECARA KIMIA

ABSTRAK

Penggunaan kaca diperkuat kimia telah menjadi revolusi dan terus meningkat untuk dekad yang lalu terutamanya oleh industri alat elektronik. Gelas diperkuat secara kimia menawarkan kekuatan hebat hasil daripada proses kimia pasca pengeluaran dengan cara proses pertukaran ion yang meningkatkan daya tahan calar, kesan dan kekuatan lenturan, serta peningkatan kestabilan suhu yang menjadikannya sebagai bahan pilihan untuk aplikasi elektronik peranti paparan panel seperti skrin telefon mudah alih dan tablet PC, lensa kamera, komponen optik, dan sebagainya. Dalam aplikasi seperti tersebut, penggerudian lubang mikro diperlukan untuk tujuan tertentu seperti lensa kamera, pembesar suara dan sensor jarak. Walau bagaimanapun, disebabkan sifat-sifat yang wujud dari kaca yang dirawat kimia di mana tegasan mampatan yang kuat dan lemah di bawah ketegangan menjadikannya sebagai cabaran untuk proses seterusnya iaitu penggerudian lubang. Proses penggerudian konvensional pada kaca akan cenderung menghasilkan tekanan tegangan tinggi yang seterusnya memberi kesan kepada prestasi lubang dan ketepatannya. Kajian ini mencadangkan signifikasi kemajuan dalam meningkatkan kualiti gerudi lubang menggunakan teknik mesin hibrid. Teknik hibrid menggabungkan dua proses pemesinan yang digabungkan ke dalam satu proses dikenali sebagai Rotary Assisted Drilling (RUAD). Untuk mendapatkan spesifikasi kualiti penggerudian yang diinginkan, iaitu, kualiti lubang (luas serpihan) dan daya tujahan penggerudian, prestasi pemesinan ultrasonik dan fungsi amplitud diselidiki, Pencirian dan pengukuran bentuk serpihan diproses dengan menggunakan perisian pemprosesan gambar digital JAVA ImageJ, yang ditangkap menggunakan mikroskop optik (EMZ-13T Meiji Techno). Sementara itu, pengukuran daya tujah akan dilakukan dengan menggunakan dynamometer kistler (9257 B) Parameter mesin, iaitu kecepatan pemotongan dalam julat 1000-3500 rpm, kadar suapan (0,5-1 mm/min), frekuensi ultrasonik antara 20 dan 27 kHz, dan amplitud (1-3 µm), digunakan-pakai. Buburan aluminium oksida (Al2O3) diterapkan dalam lingkungan ultrasonik semasa pemesinan. 5% kepekatan buburan beredar di dalam kolam buburan yang dicipta. Alat berlian adur digunakan untuk melakukan proses penggerudian. Jalanan eksperimen berdasarkan matriks Taguchi statistik digunakan dimana yang terdiri dari parameter pemesinan yang berbeza. Penyiasatan kemudian diteruskan dengan menggunakan statistik Surface Respon Metodologi untuk mencari set pemesinan optimum terbaik parameter dan indeks pengesahan yang memuaskan.Berdasarkan keputusan kompromi antara tindak balas mengenai kecepatan pemotongan dan kadar suapan, parameter optimum penggerudian kaca CSG yang dipilih adalah 6511 rpm dan 0,50 mm/min di bawah kondisi RUAD 27 kHz (frekuensi ultrasonik) dan 1 µm (amplitud), dengan dengan indeks keinginan tertinggi iaitu 97.5%. Respon ketepatan kemasukan dan luar kawasan serpihan dengan kekuatan kepercayaan pemesinan, mempunyai ralat peratusan relatif masing-masing dengan 1.03%, 0.99%, dan 0.37% berbanding dengan nilai model ramalan. Selain itu, hasil analisa menunjukkan bahawa, kehadiran amplitud getaran ultrasonik dapat meminimumkan kawasan celah dan meningkatkan kualiti lubang dengan nilai toleransi yang dapat diterima..

ACKNOWLEDGEMENTS

First of all, I would like to thank my project manager, Associate Professor Dr. Raja Izamshah Bin Raja Abdullah, and my co-supervisor, Associate Professor Dr. Mohd Shahir Bin Kasim of the Faculty of Manufacturing Engineering at Teknikal Malaysia Melaka University (UTeM). Whenever I ran into a trouble spot or had a question about my research or writing, the door to these supervisors was always open.

I would also like to thank the experts involved in this research project: Mr. Mohd Hanafiah Bin Mohd Isa, Mrs. Siti Aisah Binti Khadisah and all the assistive engineers at the Faculty of Manufacturing Engineering. The project could not have been successfully conducted without their passionate involvement and feedback.

I would also like to acknowledge the Royal Malaysian Police Technical College Commander to understand me to continue my part-time mode research at the Universiti Teknikal Malaysia Melaka Melaka (UTeM). I am gratefully indebted to the resources that have been given.

Finally, throughout my years of study, I would love to express my deepest profound gratitude to my parents and my wife, Mrs. Nurul Jannah Binti Mat Nor, and all my family to give me unfailing continuous encouragement. Without them, this achievement would not have been feasible. Thank you,

Muhamad Firdauz Bin Abd. Rasid,

March, 2021

TABLE OF CONTENTS

					PAGE
Dŀ	ECLA	RATIC	N		
AI	PRO	VAL			
DE		ATION			•
	55ТК/ 26тр				1
AI A(SIN KNO	AK MUFT	CEMEN	TS	11 iii
	BLE	OF CC	NTENTS	S	iv
LI	ST O	F TABI	LES	5	vii
LI	ST OI	F FIGU	RES		X
LI	ST O	F APPE	INDICES		xviii
LI	ST O	F ABBI	REVIATI	ONS	xix
LI	ST O	F SYM	BOLS	NG	XX
LI	ST OI	F PUBI	LICATIO	NS	xxii
CI	IAPT	ER			
1.	INT	RODU	CTION		1
	1.1	Resea	rch Backg	ground	1
	1.2	Proble	m Statem	nent	4
	1.3	Resea	rch Objec	tives	5
	1.4	Scope	s of Study		5
	1.5	Pilot 7	Test	ludy	0
	1.0	Thesis	Organiza	ation	9
	1.7	1 nesh	Allin I		
2.	LIT	ERAT	URE REV	/IEW	10
	2.1	Introd	uction	اويبۇم سىت ئىكنىكا ملىس	10
	2.2	Glass	history **		10
		2.2.1	Chemica 2.2.1.1	ally strengthened glass Gorilla glass	13 17
		2.2.2	Advanta	ges and limitation	19
	2.3	Drilliı	ng		20
	2.4	Micro	-holes Dr	illing on Glass	21
	2.5	Ultras	onic-assis	ted in Micro-drilling	27
	2.6	Challe	enge on G	lass Drilling	31
	2.7	Drillii	ng Parame	ters	33
		2.7.1	I hrust I	orce drill modelling	33 24
		2.1.2		Effect of drilling speed on force and edge	54 35
			2.1.2.1	chipping	55
			2722	Effect of feed rate on force and edge chinning	37
			2.7.2.3	Effect of ultrasonic vibration on force and edge	38
			2.7.2.3	chipping	20
			2.7.2.4	Effect of slurry concentration on force and edge	39
				chipping	
		2.7.3	Drilling	back-plate, jig and fixtures	40
		2.7.4	Type of	cutting tools	43

			2.7.4.1	Diamond tool	45
			2.7.4.2	Geometrical design drill bit	49
			2.7.4.3	Micro-drilling tool in hard-brittle material	50
	2.8	Design	n of Expe	riment (DoE)	60
		2.8.1	Taguchi	orthogonal arrays	62
			2.8.1.1	S/N ratio	64
			2.8.1.2	Analysis of variance (ANOVA)	67
		2.8.2	Respons	se surface methodology	68
			2.8.2.1	Central composite design (CCD)	70
			2.8.2.2	Application of RSM in process optimization and	72
				modelling	
			2.8.2.3	Optimization using desirability function	73
	2.9	Summ	nary	· F	75
3	ME'	гнор	OLOGY		76
	3.1	Introd	uction		76
	3.2	Mater	ial Selecti	on	70 79
	3.2	Metho	nd and Pro	ocedure	80
	5.5	331	Phase 1.	Concentual design and experimental setup	80
		332	Phase 2.	Selection electronlated diamond tool	80
		333	Phase 3.	Investigation on the effects of RUAD parameters	81
		334	Phase 4°	Ontimization of RUAD parameter	81
		335	Phase 5.	Validation work	82
	34	Condi	icting The	• Experiment	83
	5.1	341	Design of	of experiment	83
		342	Tool sel	ection	88
		3.4.3	lig desig	n	88
		344	Liltrason	ic environment setup	91
		345	CNC mi	lling machine	92
	35	Measi	iring instr	ument G. V.	92
	5.5	3 5 1	Burr are		92
		352	Thrust fo	TEKNIKAL MALAYSIA MELAKA	94
		353	Statistic	al data analysis	95
	36	Stages	Division		96
	5.0	361	Pilot tes	t	96
		3.6.2	Screenir	ng stage	97
		363	Ontimiz	ation stage	97
		364	Validati	on stage	97
	3.7	Summ	ary		98
4	RFS		ND DISC	TUSSION	00
	4.1	Introd	uction		99
	4.2	Screet	ning Stage		100
		4.2.1	First nh	ase: Jig elimination	100
		4.2.2	Second	phase: Taguchi orthogonal array	103
		1.2.2	4,2,2,1	Interaction of array type of its towards the CSG	114
			4.2.2.2	Interaction of higher ultrasonic amplitude in	114
			1,	RUAD process	117

			4.2.2.3	Interaction of dual-edge removal drill bit on the CSG	115
			4.2.2.4	Interaction of slurry concentration in RUAD process	115
		4.2.3	Third pl	hase: Consecutive depth objective	116
			4.2.3.1	Interaction of ultrasonic frequency in RUAD process	123
		4.2.4	Fourth p	bhase: Mid-point test	125
			4.2.4.1	Interaction of lower spindle speed towards the CSG	128
		4.2.5	Fifth ph	ase: Systematic tracking increment	129
			4.2.5.1	Interaction of feed rate towards the CSG	143
		4.2.6	Sixth ph	ase: Limitation cutting speed test	144
		4.2.7	Screenin	ng stage summary	147
	4.3	Optim	ization St	tage	152
		4.3.1	First pha	ase: FCCD Justification	152
			4.3.1.1	Summary of the first phase	167
		4.3.2	Second	phase: Direct test	170
		4.3.3	Third pl	nase: FCCD design scheme procedure	175
		4.3.4	Fourth p	bhase: ANOVA response and RSM factorial	182
			4.3.4.1	Burr entry area accuracy response	183
			4.3.4.2	Burr exit area accuracy response	186
		1	4.3.4.3	Thrust force response	190
		4.3.5	Fifth ph	ase: Optimization responses	193
	4.4	Valida	ation Stag	e A A A A A A A A A A A A A A A A A A A	200
		4.4.1	First ph	ase: Alibi verification	200
		4.4.2	Second	phase: Validation process	202
	4.5	Summ	nary		204
		.1			
5.	COI	NCLUS	ION AN	او بيوم إسبيم المحافظة DRECOMMENDATIONS	206
	5.1	Concl	usion 🤎		206
	5.3	Recon	nmendatio	ons for future work MALAYSIA MELAKA	210
RE	FER	ENCES	5		212
AP	PENI	DICES			234

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Summarise of the revolutionary in glasses history (Kurkjian and Prindle,	13
	2005)	
2.2	Comparison of traditional mechanical micro-holes drilling in the glass	25
	with their main feature characteristics	
2.3	Comparison of non-traditional mechanical micro-holes drilling in the glass with their main feature characteristics	26
2.4	Advantages and disadvantages for both types of diamond core drill bit	47
2.5	Comparison between CSG and SLG	51
2.6	Summary of varies drilling tool used by previous research scholars in	53
	producing micro-holes for hard-brittle material	
2.7	The polynomial equation model in RSM	69
3.1	Mechanical properties of Glass 3 CSG	79
3.2	Design of Experiment (DOE) refer to factorial design of Taguchi	85
	Orthogonal Array L8 (27) method	
3.3	Face-centered Central Composite Design (FCCD) method	87
4.1	Manipulated variables with minimum and maximum parameters	104
4.2	Taguchi Orthogonal Array L8 (27) experiment results	105
4.3	Drilling performances	106

4.4	Significant variables	112
4.5	Drilling process involved sets of cutting depth against ultrasonic	117
	frequency	
4.6	Drilling performances	118
4.7	Summary of runs in screening stage	150
4.8	Runs in first set of First phase optimization	154
4.9	Runs in second set of First phase optimization	157
4.10	Runs in third set of First phase optimization	159
4.11	Runs in fourth set of First phase optimization	162
4.12	Runs in fifth set of First phase optimization	164
4.13	Results from the first set to fifth set in the First phase	168
4.14	Runs in Second phase of optimization	170
4.15	Runs in Third phase of optimization	176
4.16	Result of the Third phase of optimization	176
4.17	Average result for the Third phase of optimization	182
4.18	ANOVA for response of burr entry area accuracy	184
4.19	R-Squared analysis for response surface quadratic model of burr entry	184
	area accuracy	
4.20	ANOVA for response of burr exit area accuracy	187
4.21	R-Squared analysis for response surface quadratic model of burr exit area	188
	accuracy	
4.22	ANOVA for response of the thrust force	191
4.23	R-Squared analysis for response surface quadratic model of the thrust	191
	force	

4.24	Optimization theoretical suggestion value	194
4.25	Experimental result for optimization theoretical suggestion value	195
4.26	Optimization result for burr entry area accuracy	197
4.27	Optimization result for burr exit area accuracy	197
4.28	Optimization result for machining thrust force	198
4.29	Results of alibi verification	201
4.30	Experimental result for validation theoretical suggestion value	203
4.31	RUAD optimization parameter setting	205
5.1	Recommendation propose set of hybrid Rotary Ultrasonic Assisted	208
	Micro Drilling (RUAD)	
5.2	General timeline of basic findings	209

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Hole entries of glasses on the tablet device	3
1.2	Edge chipping of chemically strengthened glass (a) hole entrance (b)	5
	hole exit	
1.3	Significant study on ultrasonic assisted drilling	8
1.4	Experimental result of ultrasonic drilling assisted by abrasive slurry	8
	used was alumina with 5% of the concentration	
2.1	Several types of genuine obsidian (Madison, 2016)	11
2.2	Graph of stress (σ) vs strain (ε)	15
2.3	(a) graph of Vickers hardness Hv of the indentation load P for	17
	isostatically compressed glasses (b) Bernhardt coefficient of the molar	
	ratio indentation size effect (Aakermann et al., 2015)	
2.4	Orthogonal Concept of Drilling (OCD) of the glass	21
2.5	Zorev's qualitative model	21
2.6	Deep-hole peck drilling cycle (Industry, 2016)	23
2.7	Summary of the method in producing micro holes on glass focuses on	24
	mechanical processes	

- 2.8 Different type of result in ultrasonic drilling (a) square hole, (b) 28
 triangle hole and (c) 3D shaped of micro-hole on silicon workpiece
 material (Das et al., 2017a)
- 2.9 Schematic diagram of material removal in USM process (a) 29 hammering action, (b) impact action and (c) cavitation erosion (Wang et al., 2013)
- Illustration of the experiment setup in executing ultrasonic micro
 drilling on the glass workpiece
- 2.11 The comparison of drilling force between traditional drilling and 30 ultrasonic drilling (Ding et al., 2014)
- 2.12 Exit chipping of micro holes drilled on ceramic material (a) without31 ultrasonic vibration and (b) with ultrasonic vibration (Liu et al., 2014)
- 2.13 The relationship of volume chipping to the cutting force (Sharma et 35 al., 2018)
- 2.14 Effects of drilling speed to the thrust force at a different frequency 36 (Zhang and Babitsky, 2011)
- 2.15 Effects of drilling speed on chipping at inlet and outlet of machined 37 holes (Noma et al., 2014)
- 2.16 Backing plate for minimize edge-chipping at exit holes surface(Ohzeki and Arai, 2011)
- 2.17 Exit drilled holes surfaces (a) without backing glass plate and (b) with 42backing glass plate and water as adhesion liquid (Park et al., 2002)
- 2.18 Drain type jig (Noma et al., 2014) 42

2.19	Jig for drilling with workpiece bending (a) concept of workpiece	42
	bending and (b) perspective view of fabricated jig (Noma et al., 2015)	
2.20	Geometry of spade type of micro-drill tool (Rajan et al., 2016)	44
2.21	Cutting edge discretization for twist drill type (Paul et al., 2005)	44
2.22	Type of mineral with level rate of hardness	46
2.23	Layer of diamond and diamond matrix composition in (a)	47
	electroplated diamond core drill and (b) sintered diamond core drill	
	(Industrial, 2010)	
2.24	SEM images of dual-edge removal electroplated diamond tool tip	50
2.25	An optical microscope images of the dual cylindrical removal	50
	electroplated diamond tool (Patent ID: CGL-17693)	
2.26	Damage resistance between glass type (Incorporated, 2013)	52
2.27	Failure load (Incorporated, 2013)	52
2.28	D-shaped cross-section micro drill (a) the tool and its cutting edge and	57
	(b) schematic drawing (Egashira et al., 2002)	
2.29	Three type cutting edge of flat drill shape polycrystalline diamond	57
	(Ohnishi et al., 2010)	
2.30	Electroplated abrasive grain tool (a) tool shape designed and (b) tool	58
	tip appearance (Mizobuchi and Ogawa, 2011)	
2.31	Flat drill shape polycrystalline diamond drill (Ohnishi et al., 2014)	58
2.32	Electroplated diamond tool (a) bottom view and (b) side view (Noma	59
	et al., 2015)	
2.33	Electroplated diamond tool with removing side (a) schematic drawing	59
	and (b) SEM photographs (Mizobuchi et al., 2016)	

2.34	Schematic drawing back tapered electroplated diamond tool	60
	(Mizobuchi et al., 2017)	
2.35	Embodies an illustration of the edge chipping (shaded in green color)	60
	at hole exit (Kumar and Singh, 2018b)	
2.36	Region of interest versus region of operability (Anderson and	62
	Whitcomb, 2017)	
2.37	Central composite design for three factors (Voyer, 2003)	71
2.38	Face-centered Central Composite Design (FCCD) for three factors	71
	(Voyer, 2003)	
2.39	The scenarios for the response (y) (a) 'the larger the better', (b) 'the	74
	smaller the better' and (c) 'the target is the best' (Myers et al., 2009)	
3.1	Flow chart of research work	78
3.2	Thin sheet glass 1.0 mm thickness	80
3.3	Parameters of control variable to gain the result as objective function	81
3.4	Illustration of 3D graph for response surface by the plotted data	82
	obtained WINNERSITI TEKNIKAL MALAYSIA MELAKA	
3.5	Summary of previous researcher parameter range studied	84
3.6	Design of Experiment (DOE) refer to centre of the midpoint range	86
	method	
3.7	Design of Experiment (DOE) refer to systematic increment cutting	86
	speed	
3.8	(a) dual edge removal type and (b) dual cylindrical removal type	88
3.9	Clamping jig designs	90

3.10	(a) ultrasonic apparatus setup, (b) ultrasonic spindle and (c) ultrasonic	91
	frequency and ultrasonic amplitude regulator	
3.11	CNC 3-axis milling machine (HAAS VF-1)	92
3.12	(a) Threshold of hole image and (b) Result of burr area	94
3.13	(a) position of Dynoware device and (b) thrust force graph	95
3.14	Type of response surface	96
4.1	Result of three runs (a), (b) and (c) by using drain type of jig	101
4.2	Result of three runs (a), (b) and (c) by using array type of jig and (d)	101
	close view of glass hole breaking apart	
4.3	Result of three runs (a), (b), and (c) by using the O-ring type of jig and	102
	(d) graph of unstable forces from all three directions	
4.4	Main effect plot for S/N ratios	113
4.5	Main effect plot for means	113
4.6	Ultrasonic drilling motion during the machining	114
4.7	Effect of abrasive slurry in ultrasonic drilling	116
4.8	Burr area accuracy on the hole entry for the Third phase	123
4.9	Higher ultrasonic frequency impact toward abrasive slurry	124
4.10	Range of upper and lower value for spindle speed	125
4.11	(a) glass cracks and (b) result of ultrasonic drilling by using 2500 rpm	127
	spindle speed	
4.12	(a) drill hole and (b) result of ultrasonic drilling by using 4500 rpm	128
	spindle speed	

4.13	(a) drilled hole and (b) result of ultrasonic drilling by using 4500 rpm	129
	of spindle speed, 0.5 mm/min of feed rate, and 0.8 mm of drilling	
	depth	
4.14	(a), (b), and (c) result of ultrasonic drilling with 1.0 mm depth of cut,	130
	Z1	
4.15	(a) and (b) result of ultrasonic drilling by using 5000 rpm spindle	131
	speed	
4.16	(a) and (b) result of ultrasonic drilling	132
4.17	(a) and (b) result of ultrasonic drilling by using 0.1 mm/min feed rate	133
4.18	(a) and (b) result of ultrasonic drilling by using 0.3 mm/min feed rate	134
4.19	(a) and (b) result of ultrasonic drilling by using 0.5 mm/min feed rate	135
4.20	(a) and (b) the result of the 5500 rpm spindle speed	137
4.21	(a) and (b) the result of the 5500 rpm of spindle speed, 0.5 mm/min of	138
	feed rate and 1.0 mm depth of cut, Z1	
4.22	(a) and (b) the result of the 6000 rpm of spindle speed, 0.5 mm/min of	139
	feed rate and 0.8 mm depth of cut, Z1	
4.23	(a) and (b) the result of the 6000 rpm of spindle speed, 0.5 mm/min of	140
	feed rate and 1.0 mm depth of cut, Z1	
4.24	(a) and (b) the result of the 6500 rpm of spindle speed, 0.5 mm/min of	141
	feed rate and 0.8 mm depth of cut, Z1	
4.25	(a), (b) and (c) result of ultrasonic drilling by using 6500 rpm of	142
	spindle speed	
4.26	Burn mark proved of melted silica adhere on the drill bit surface	144
4.27	Result of 7000 rpm (a) Microscopic image and (b) Thrust force	145

4.28	Result of 6600 rpm (a) Microscopic image and (b) Thrust force	146
4.29	Timeline of runs from the Fourth phase to the Sixth phase in screening	149
	stage	
4.30	Result of burr area accuracy for each spindle speed against depth of	151
	cut	
4.31	Result of the minimum setting (6450 rpm and 0.49 mm/min)	155
4.32	Result of the maximum setting (6550 rpm and 0.51 mm/min)	156
4.33	Result of the minimum setting in this table (6475 rpm and 0.49	158
	mm/min)	
4.34	Result of the maximum setting in this table (6525 rpm and 0.51	158
	mm/min)	
4.35	Result of the minimum setting (6485 rpm and 0.49 mm/min)	160
4.36	Result of the maximum setting (6515 rpm and 0.51 mm/min) (a) hole	160
	entry and (b) hole exit	
4.37	Result of the minimum setting (6495 rpm and 0.49 mm/min)	163
4.38	Result of the maximum setting (6519 rpm and 0.51 mm/min)	163
4.39	Result of the minimum setting (6504 rpm and 0.49 mm/min) (a) hole	166
	entry and (b) hole exit	
4.40	Result of the maximum setting (6514 rpm and 0.51 mm/min) (a) hole	166
	entry and (b) hole exit	
4.41	Illustration summary for runs in the First phase of the optimization	169
	stage	
4.42	Burr area against spindle speed graph	175
4.43	Bar graph of burr area against spindle speed graph	180

4.44	Thrust force against spindle speed graph	181
4.45	Perturbation plot for burr entry area accuracy	185
4.46	Response surface plots (3D) showing the effects of Factor A and	186
	Factor B on burr entry area accuracy	
4.47	Perturbation plot for burr exit area accuracy	188
4.48	Response surface plots (3D) showing the effects of Factor A and	189
	Factor B on burr exit area accuracy	
4.49	Perturbation plot for machining thrust force	192
4.50	Response surface plots (3D) showing the effects of Factor A and	193
	Factor B on thrust force average	
4.51	Comparison between predicted and actual value for burr entry area accuracy	197
4.52	Comparison between predicted and actual value for burr exit area accuracy	198
4.53	Comparison between predicted and actual value for machining thrust	198
	force UNIVERSITI TEKNIKAL MALAYSIA MELAKA	
4.54	Conventional drilling result (a) hole entry and (b) hole exit	199
	(Mizobuchi et al., 2016)	
4.55	Thrust force graph of validation model	200

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Chemically Strengthened Glass (CSG) plate type corning [®] Gorilla [®]	234
	Glass 3 with native damage resistance tm (Patent: E_050613)	
В	Dual edge removal electroplated diamond tool (Patent: CGL-	236
	18799)	
С	Dual cylindrical removal electroplated diamond tool (Patent: CGL- 17693)	237
D	Drain type of jig	238
Ε	Array type of jig	239
F	اونيوم سيني تيڪنيڪل git ype of jig	240
G	Microscopic image result of the Third phase of optimization	241

LIST OF ABBREVIATIONS

AP	- Adeq Precision
ANOVA	- Analysis of Variance
CCD	Central Composite Design
CNC	- Computer Numerical Control
CSG	- Chemically Strengthened Glass
DOE	- Design of Experiment
ECM	- Electrochemical Machining
EDM	Electrical Discharge Machining
FCCD	- Face-centered Central Composite Design
GFRP	وينوم سيتي تي=Glass Fibre Reinforced Plastics
HFRP	- Hybrid Carbon/ Glass Fibre Reinforced Polymer
ISE	- Indentation Size Effect
MUSD	- Micro Ultrasonic Drilling
RUAD	- Rotary Ultrasonic Assisted Micro Drilling
RSM	- Response Surface Methodology
RUM	- Rotary Ultrasonic Machining
USM	- Ultrasonic Machining
USMM	- Ultrasonic Micro Machining
VAD	- Vibration-Assisted Drilling