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ABSTRACT 

 

 

Dwindling energy resources and strong demand for better power sources have sparked 
research interest in micro power generation. The invention of state-of-the-art electronic 
devices requires characteristics of which conventional batteries lack. Meso and micro 
combustors can be considered as the most important component in micro power generation. 
However, stabilizing a flame inside a meso combustor poses a great challenge to researchers. 
This difficulty is mainly related to the substantial heat losses due to large surface area to 
volume ratio. This research focuses mainly on the determining factors that affect the flame 
stabilization in meso-scale tube cylindrical tube combustors with stainless steel wire mesh. 
Apart from that, the combustion characteristics are also analyzed to establish the correlation 
between these factors that have significant effect on combustion. A three-dimensional (3-D) 
simulation model of combustor with stainless steel wire mesh was developed to numerically 
investigate the vital factors that contribute to flame stabilization by using ANSYS-Fluent 
software. The effective role of wire mesh in distributing heat from the burned to the unburned 
gas region was also demonstrated by using the developed 3-D simulation model. For the 
baseline model, the inner diameter of base three-dimensional (3-D) model is set at 3.5 mm 
while the outer wall thickness is 0.7 mm. Meanwhile, the stainless-steel wire mesh is 
modeled and placed between the unburned and burned gas region. The total length of the 
model is set to 40.2 mm. Propane (C3H8)-air mixture with equivalence ratio of 1.0 is used as 
the fuel source. The investigative factors that have been examined are the combustor 
geometry configuration such as the inner diameter and outer wall thickness, the wire mesh 
function and type of fuels. The results show that as the outer wall thickness increases from 
0.3 mm to 1.5 mm, the blowout limits increase from 0.4 m/s to 0.5 m/s. As the wall thickness 
is above 1.5 mm, the blowout limit remains unchanged. On the other hand, there is 
insignificant increases of the blowout limit, which is from 0.47 m/s to 0.49 m/s with the use 
of thicker wire mesh from 0.4 mm to 0.8 mm. Apart from that, the use of combustor tube 
material with high wall thermal conductivity (k) significantly increases the blowout limit. 
Nevertheless, higher values of k beyond 100 W/mK is no longer effective for flame 
stabilization. The utilization of double wire mesh increases the blowout limits of from 0.47 
m/s to 0.51 m/s. It is also shown that the stainless-steel wire mesh has a dual role function. 
At low flow velocity, the wire mesh tends to act as a flame inhibitor where heat is being 
transferred to the ambient. However, at higher flow velocities, the wire mesh acts as a flame 
enhancer where it circulates the heat into the unburned region. All these findings are 
important for future improvement of the proposed meso-scale combustor with wire mesh.  
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PENYIASATAN FAKTOR-FAKTOR YANG MEMPENGARUHI KESTABILAN 
NYALAAN API DI DALAM PEMBAKAR BERSKALA MESO  

 

ABSTRAK 

 

Permintaan yang tinggi terhadap sumber tenaga yang lebih baik telah menyebabkan aktiviti 
penyelidikan dalam bidang penghasilan kuasa mikro bertambah secara mendadak. Ini 
ditambah pula dengan penciptaan alat-alat elektronik canggih yang memerlukan 
penggunaan sumber tenaga yang banyak. Alat-alat ini juga memerlukan tempoh masa untuk 
dicas yang lebih pendek serta punca kuasa yang lebih ringan daripada bateri konvensional. 
Justeru itu, pembakar mikro dilihat sebagai salah satu komponen yang paling penting dalam 
sistem penghasilan kuasa mikro. Walau bagaimanapun, untuk menstabilkan api di dalam 
pembakar mikro ini merupakan satu perkara yang sulit dan mencabar. Sebab utama 
kesukaran untuk menstabilkan api di dalam pembakar mikro adalah kadar kehilangan haba 
keluar ke persekitaran yang tinggi. Kadar pemindahan haba yang tinggi ini disebabkan oleh 
nisbah luas kepada isipadu yang besar. Penyelidikan yang dibentangkan dalam tesis ini 
adalah berfokus kepada menentukan faktor-faktor signifikan yang boleh mempengaruhi 
kestabilan nyalaan api di dalam pembakar mikro serta menganalisis kelakuan ciri-ciri 
pembakaran dan hubung kait di antara dapatan kajian. Sebuah model simulasi tiga dimensi 
(3-D) telah dibangunkan untuk tujuan itu menggunakan perisian ANSYS-Fluent. Selain 
daripada itu, fungsi jejaring besi di dalam pembakar juga telah ditunjukkan dengan simulasi 
menggunakan model berangka yang dibangunkan. Diameter dalaman untuk model tiga 
dimensi (3-D) pada asalnya ditetapkan pada 3.5 mm sementara diameter luaran adalah 0.7 
mm manakala jejaring besi diletakkan di antara bahagian terbakar dan tidak terbakar. 
Jumlah panjang keseluruhan model adalah 40.2 mm. Campuran gas propane (C3H8) dan 
udara dengan nisbah setara bernilai 1.0 digunakan sebagai sumber bahan api. Faktor-
faktor yang disiasat adalah konfigurasi geometri pembakar seperti diameter dalaman dan 
ketebalan dinding luaran, bilangan jejaring besi dan jenis bahan bakar. Hasil dapatan 
menunjukkan bahawa semakin tebal dinding luaran pembakar iaitu pertambahan daripada 
0.3 mm kepada 1.5 mm, dapatan menunjukkan had api terpadam telah menaik daripada 0.4 
m/s kepada 0.5 m/s. Walaubagaimanapun, dengan penambahan ketebalan dinding kepada 
1.5 mm, didapati had api terpadam tidak berubah. Selain itu, had api terpadam hanya 
bertambah sedikit daripada 0.47 m/s kepada 0.49 m/s jika ketebalan jejaring besi meningkat 
daripada 0.4 mm kepada 0.8 mm. Hasil dapatan juga menunjukkan bahawa penggunaan 
bahan tiub pembakar yang mempunyai kadar keberaliran haba yang tinggi (k) dengan 
ketaranya dapat meningkatkan had api terpadam. Peningkatan nilai k melebihi 100 W/mK 
tidak lagi efektif terhadap had ini. Selain itu, penggunaan bilangan jejaring besi daripada 
satu kepada dua dapat meningkatkan had api terpadam daripada 0.47 m/s kepada 0.51 m/s. 
Jejaring besi yang diletakkan di dalam pembakar juga ditunjukkan mempunyai dua fungsi 
mengikut kadar halaju campuran. Pada halaju rendah, jejaring besi bertindak sebagai 
perencat api manakala pada kadar halaju tinggi, jejaring besi bertindak sebagai peningkat 
kestabilan api. Hasil dapatan ini amat penting dalam bidang penyelidikan penghasilan 
kuasa mikro memandangkan dapatan tersebut dapat digunakan untuk menambahbaik 
keboleharapan sistem tersebut.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Research background 

The strong demand for better alternatives to the current lithium ion batteries have 

resulted in increase of the research interest in micro power generation system (Veeraragavan 

and Cadou, 2011). As such, micro power generation systems can be considered as the 

potential alternative to conventional batteries due to advantages that it has. One of the 

advantages of micro power generation system is the high-energy storage per unit mass and 

power generation per unit volume (Norton, Wetzel et al., 2004). The energy density of 

hydrocarbon fuels has energy density of approximately 100 times more than the lithium-ion 

batteries. Theoretically, with only 10% of efficiency, the total useful energy harvested is still 

by far outnumbering the lithium-ion batteries. In addition, the use of the hydrocarbons fuels 

as the combustion source substantially reduces the operational cost and improves the voltage 

stability (Li, Chou et al., 2009). 

The ability of a given fuel to be combusted in meso and micro scale combustors is at 

first, assumed to be impossible (Miesse, Masel et al., 2004). However, the latest progress in 

micro power generation research has shown that combustion even within micro scale 

channel is now possible (Choi, Kwon et al., 2008). Despite this positive advancement, there 

are fundamental issues that need to be addressed and solved. There are many factors that 

influence micro scale combustion, which generally can be divided into physical and 

chemical processes. The examples of these factors are convection, radiation, gas-phase and 

surface reactions, molecular transport, thermal and mass diffusion (Ju and Maruta, 2011).  
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Flame stabilization in meso and micro scale combustors can be realized by 

recirculating the heat generated from the combustion of fuel mixture (Fan, Li et al., 2019). 

In macro scale combustors such as the internal combustion engine (ICE), part of the burned 

exhaust gas is recirculated and injected into the incoming reactants. As such the amount of 

oxides of nitrogen (NOx) can be significantly reduced (Turns, 2000). For any combustion 

process to take place, the residence time should be larger than the combustion time (Zhang, 

Wu et al., 2020). However, in micro scale combustors, the length scale is tremendously 

reduced. Consequently, the flow becomes laminar due to the decrease of Reynolds number. 

This laminar flow causes the diffusion time to increase, which lowers the residence time. In 

such condition, combustion might cease to exist. It is important to examine the factors 

affecting flame stabilization in meso and micro scale combustors in order to achieve high 

energy conversion. Examples of these factors are thermal heat loss, wall flame thermal and 

chemical coupling, fuel-air mixing, flow field structure and flame temperature (Wang, Yang 

et al., 2011; Zuo, E et al., 2018). 

As mentioned before in the previous paragraph, one of the thermal managements that 

can be made in meso and micro combustors is by recirculating the heat from combustion to 

significantly reduce the heat loss and to enhance the flame stabilization limits. The meso 

scale combustors with heat recirculation mechanism was first proposed by Weinberg 

(Weinberg, Rowe et al., 2002). The hot exhaust gas is used to pre-heat the reactant which 

consist of fuel air mixtures. As a result, the flame stabilization is enhanced. This mechanism 

of flame stabilization is also known as excess enthalpy principle (Zhang, Wu et al., 2020). 

Generally, there are two types of preheating methods (Pan, Zhang et al., 2017). The 

first type is defined as a direct method where the heat from the unburned gas region is 

mitigated to the burned gas region by means of heat conduction via the combustor wall. 

Generally, a single channel narrow channel combustor utilizes this kind of pre heating 
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method (Wan, Fan et al., 2016). The second type of pre-heating method is by reversing the 

hot exhaust gas to pre-heat the unburned reactants before being combusted in the combustion 

region. The hot heat from the exhaust gas can significantly increase the unburned reactants 

temperature. This method is named as indirect preheating and mainly utilized in counter-

current heat recirculation combustors (Zuo, E et al., 2017; Tang, Cai et al., 2018). The most 

popular micro combustor with this kind indirect preheating method is Swiss-roll (SR) 

combustor. However, Swiss roll combustor complexity in terms of geometry and design 

parameters has made them difficult to be analytically and experimentally investigated (Mane 

Deshmukh, Krishnamoorthy et al., 2018; Wang, Yuan et al., 2019).  

The utilization of stainless steel wire mesh as a flame holder in quartz tube 

combustors was proposed by Mikami et al. (Mikami, Maeda et al., 2013) and his co-worker 

(Yuliati, Seo et al., 2012; Munir, Hatakeda et al., 2013). It was reported that flame can be 

stabilized without external heating. More interestingly, liquid fuel can also be used as the 

primary fuel source, which can potentially solve the problem of portability. Nevertheless, 

the use of ceramic adhesive in their combustors induced hot spot which can potentially 

reduce the lifespan of the combustors.  Generally, it is vital for an efficient micro combustor 

to have features as follows (Lee, Cho et al., 2010); 

a) Wide flame stability limits 

b) Versatility in terms of combustion modes for different use of application 

c) Considerably good combustion efficiency 

d) Minimum hazardous gas emission 

e) Simple in geometry for easier coupling with energy conversion module 

This research study proposed to further investigate the factors affecting flame 

stabilization in meso scale combustor with stainless steel wire mesh. In this research, a 

numerical three-dimensional (3-D) model of micro combustor with wire mesh is being 


