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ABSTRACT 

 

 

Due to their excellent hardness, high abrasion resistance and chemical stability, alumina 
based cutting tools are suitable for the high speed machining, which contributed to the high 
productivity. The properties of high hot hardness play significantly roles to perform in dry 
machining which further reduce operational cost. However, at some extent, alumina are 
prone to catastrophic failure, sudden breakage and thermal shocks due to brittle structure. 
Therefore, alteration of alumina composition with addition of Zirconia and Chromia is 
proposed to improve fracture toughness and wear resistance. In this research, the effect 
Zirconia and Chromia addition on the dimension accuracy, mechanical properties, 
tribology and wear performance were investigated. The study started with the mixture of 
Alumina-Zirconia with up to 25 wt% Zirconia content. These compositions were blended 
using ball mill, compacted using hydraulic and Cold Isostatic Press (CIP) and sintered at 
constant parameters. The mechanical properties of sintered Alumina-Zirconia were 
evaluated based on the dimension accuracy, density and hardness. The composition with 
maximum hardness was selected to be further composed with Chromia in range of 0.2-0.8 
wt%. The result show that composition of Alumina–zirconia with ration 80-20 wt% 
presented maximum hardness of 70.07 HRC. With the addition of 0.6 wt% Chromia, the 
hardness was increased to 71.03 HRC. Further, composition that demonstrated highest 
hardness, which is Alumina-Zirconia-Chromia with the ratio of 80-20-0.6 wt% have been 
selected for machining tests. Machining trials with AISI 1045 carbon steel shows that 
Alumina-Zirconia-Chromia demonstrated maximum 360s tool life, which is 33.33% better 
that Alumina-Zirconia cutting tool. Wear mechanisme for both cutting tools dominated by 
the chipping, abrasive, built-up edge and built-up layer. Analysis shows that the addition of 
Chromia expanded Alumina particles and changed the overal grains distribution into 
bimodal structure. This provided Zirconia particles that infliltrated between Alumina 
particles interlocked overal structure, which facilitated into higher deformation resistance 
into overall structure. As potential application, cutting tool of Alumina-Zirconia-Chromia 
developed in this study suitable in machining low carbon steel up to 200 m/min cutting 
speed. 
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KESAN ZIRKONIA DAN KROMIA TERHADAP SIFAT-SIFAT MEKANIKAL DAN 
TRIBOLOGI UNTUK PERKAKAS PEMOTONG ALUMINA 

 

ABSTRAK 
 

 
Disebabkan sifat-sifatnya yang keras, rintangan abrasif tinggi dan stabil dalam kimia, 
perkakas pemotong berasaskan alumina sesuai digunakan dalam pemesinan berhalaju 
tinggi, yang mana memberi impak kepada produktiviti tinggi. Sifat-sifat seperti kekerasan 
panas tinggi memberi kesan signifikan dalam pemesinan kering, yang mana merendahkan 
lagi kos operasi. Walau bagiamanapun, pada keadaan tertentu, alumina cenderung untuk 
gagal secara katastropik, patah mengejut dan kejutan terma disebabkan strukturnya yang 
rapuh. Oleh yang demikian, perubahan komposisi alumina dengan pernambahan Zirkonia 
dan Kromia dicadangkan untuk menambahbaik keliatan patah dan rintangan haus. Dalam 
kajian ini, kesan penambahan Zirkonia dan Kromia ke atas ketepatan dimensi, sifat-sifat 
mekanikal, tribologi dan prestrasi haus telah diselidik. Kajian bermula dengan 
pencampuran serbuk Alumina-Zirkonia sehingga 25 wt% kandungan Zirkonia. Komposisi 
ini dikisar menggunakan mesin Pengisar Bebola, dimampatkan menggunakan Mesin 
Penekan Hidraulik dan Mesin Penekan Isostatik Sejuk (CIP) dan disinter pada parameter 
yang malar. Sifat-sifat mekanikal untuk Alumina-Zirkonia yang disinter dinilai berasaskan 
ketepatan dimensi, ketumpatan dan kekerasan. Komposisi yang memiliki kekerasan 
maksimum dipilih untuk dicampur dengan Kromia pada kadar 0.2-0.8 wt%. Keputusan 
menunjukkan sampel Alumina-Zirkonia dengan nisbah 80-20 wt% menghasilkan 
kekerasan maksimum 70.07 HRC. Dengan penambahan 0.6 wt% Kromia, kekerasan 
meningkat kepada 71.03 HRC. Seterusnya, komposisi yang menunjukkan kekerasan 
tertinggi, iaitu Alumina-Zirkonia-Kromia dengan nisbah 80-20-0.6 wt% telahpun dipilih 
untuk ujian pemesinan. Percubaan pemesinan dengan AISI 1045 keluli karbon prestasi 
pemesinan bersama keluli karbon AISI 1045 menujukkan Alumina-Zirkonia-Kromia 
menghasilkan 360s maksimum hayat perkakas, yang mana 33.33% lebih baik daripada 
perkakas pemotong Alumina-Zirkonia. Mekanisma haus pada kedua-dua perkakas 
pemotong didominasi oleh penyerpihan,  haus abrasif, serpihan dengan pinggir terbina 
dan serpihan dengan lapisan terbina. Analisis mendapati penambahan Kromia 
mengembangkan partikel Alumina dan menjadikan keseluruhan taburan ira menjadi 
stuktur dwi-modal. Ini membolehkan partikel Zirkonia yang menyelinap di celah-celah 
partikel Alumina bertindak mengunci ira yang membawa kepada peningkatan rintangan 
deformasi kepada keseluruhan struktur. Potensi aplikasi perkakas pemotong Alumina-
Zirkonia-Kromia yang dibangunkan dalam kajian ini sesuai dalam pemesinan keluli 
rendah sehingga 200 m/min halaju pemesinan. 
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 CHAPTER 1  

 

INTRODUCTION 

 

1.1 Research background 

Technology in ceramic processing has advanced to a level where ceramic is 

developed to enhance its properties so that it can perform very well. There are many 

applications that can be facilitated with the advancement of ceramic processing including 

insulators and structure in construction industries, thermal barriers and magnetic materials 

in electronic industries, high strength component in defence and manufacturing industries. 

The unique properties of advanced ceramic are high abrasive, high hardness, high 

toughness, low or non-thermal conductivity and chemical stability providing advantages to 

be applied for these applications (Abbas et al., 2015). 

Some of the commonly used ceramic tool materials are polycrystalline diamond 

(PCD), cubic boron nitrite (CBN) cemented carbide, silicon nitride and alumina. Each 

cutting tool have different characteristics, capability, suitable workpiece materials, cutting 

conditions and cost. These ceramic cutting tools have been widely used due because of the 

combination of the high facture toughness, high hot hardness, oxidation resistance, 

chemical stability and good chipping resistance (Harrison and Lee, 2016). Some of the 

cutting tools such as diamond and CBN are suitable to machine high strength materials 

such as titanium and nickel alloys. Whereas some others such as carbide, silicon nitride 

and alumina mostly used to machine common materials in industry such as tool steel, 

carbon steel and aluminium.  
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In ceramic processing, the ceramic cutting tools are normally fabricated using the 

powder metallurgy process. This process involves which require many techniques such as 

ball milling, uniaxial pressing, cold isostatic pressing and sintering. During the process, the 

base material which is ceramic is mixed and milled with reinforced material with specific 

composition to produce refractory body for the tribological application. The behaviour and 

microstructure of ceramics are significantly affected by many factors such as ceramic 

processing, initial powder state, particle size and sintering process (Abu Bakar et al., 

2018). A fine and uniform grain size of the powder during the ceramic cutting tool 

processing should produce denser ceramic products especially when the ceramic powders 

are engaged with other secondary material such as chromia and zirconia. Hence, this will 

provide additional advantages not only to achieve high hardness but also to resist wear 

from the heat and refractory condition during machining.  

Alumina-based materials are amongst the popular choices of material to be used in 

machining operation due to its high abrasion resistance, high hardness and its excellent 

chemical inertness against the machining environment and workpiece (Lee et al., 2016). 

Years ago, due to the superior properties, alumina was only used as engineering materials 

to produce ball mills, seal rings, thread guides and grinders (Senthil et al., 2003). 

Nowadays, alumina has been applied in wide application that requires abrasive, wear and 

tribological performance varied through automotive, aerospace, oil and gas and medical 

industries. Several components that established require alumina as main material are piston 

rings, brake pad, bearing, artificial bones, etc.  

One of the major advantages of alumina based cutting tool over carbide is the 

capability to be operated at dry condition. Machining with carbide is difficult in dry 

condition which coolant is compulsory to reduce the heat generated at the cutting zone. At 

some extent, machining with carbide increase the cost of production due to the requirement 




