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ABSTRACT 

 

 

 

 

High-speed turning is one of the most important methods in advanced manufacturing 

technology due to its speed which is three times the conventional speed value. The material 

that generally used in high speed turning is titanium alloy. The superior attractive 

properties of titanium alloy (Ti-6Al-4V) such as good mechanical and chemical properties, 

excellent corrosion resistance and high strength-to-weight ratio make it favorable in wide 

range of applications such as automotive, aerospace, medical and chemical industries. 

However, machining of this titanium alloy are known to cause the damaged of the surface 

due to their poor machinability as well as high cutting temperature using conventional 

cutting fluids as coolant. In this study, cryogenic carbon dioxide CO2 cooling has been used 

during turning Ti-6Al-4V ELI (extra-low interstitial). The objective of this research is to 

analyse the effect of cutting parameters towards surface integrity such as surface 

roughness, surface hardness, and microstructure of the material. This research focuses on 

developing a mathematical model for surface roughness of machined surface. Then, the 

generated mathematical model was used to optimize the cutting parameters in producing 

the best surface roughness value. The Sandvik uncoated carbide insert, CNGG 120408- 

SGF-H13A was selected as a cutting tool in high speed turning of titanium alloy Ti-6Al- 

4V ELI with the hardness of 32 HRC by using 3-axis Computer Numerical Control (CNC) 

lathe Haas ST-20 lathe machine. The Response Surface Methodology (RSM) design of 

experiment using Box- Behnken was used to accommodate the turning experiment factors 

and levels towards surface roughness. Turning parameters studied were cutting speed (120, 

170, 220 m/min), feed rate (0.1, 0.15, 0.2 mm/rev) and depth of cut (0.4, 0.5, 0.6 mm). 

There are 17 runs of machining parameters generated by Design Expert software using 

RSM Box-Behnken. The surface roughness values were measured for each 20 mm on the 

workpiece until flank wear (Vb) reaches the tool life criterion followed by JIS B4011-1971 

standard. Based on the conducted investigation, it was found that the lowest surface 

roughness value 0.49 μm was achieved at the run 6; 220 m/min of cutting speed, 0.1 

mm/rev of feed rate and 0.5 mm of depth of cut. The Analysis of Variance (ANOVA) 

shows that feed rate was the dominant factor that affects machining performance. The 

optimum parameter was achieved at 220 mm/min of cutting speed, 0.1 mm/rev of feed rate 

and 0.4 mm of depth of cut. The residual errors for surface roughness value of optimum 

parameters fell within 1.8% and 3.8% which are less than 10%. The microstructures of the 

surface and sub-surface have been changed in terms of volume fraction of β phase, 
compared to the as-received material. The surface hardness occurs due to hardening work 

caused by the low temperature at the cutting zone that comes from cryogenic cooling. 
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KESAN PENYEJUKAN KRIOGENIK KARBON DIOKSIDA PADA INTEGRITI 

PERMUKAAN ALOI TITANIUM DALAM PELARIKAN 

 

 

ABSTRAK 

 

 

Pelarikan berkelajuan tinggi adalah salah satu kaedah yang paling penting dalam 

teknologi pembuatan canggih kerana kelajuannya yang tiga kali nilai kelajuan 

konvensional. Bahan yang biasanya digunakan dalam pelarikan kelajuan tinggi ialah aloi 

titanium. Sifat-sifat yang sangat menarik pada aloi titanium (Ti-6Al-4V) seperti sifat 

mekanikal dan kimia  yang baik, rintangan hakisan yang sangat baik serta nisbah kekuatan 

kepada berat yang tinggi dapat menggalakkan penggunaannya dalam pelbagai kegunaan 

seperti automotif, aeroangkasa, perubatan dan industri kimia. Walau bagaimanapun, 

pemesinan aloi titanium ini diketahui boleh menyebabkan kerosakan permukaan kerana 

oleh  kebolehkerjaan yang kurang baik serta suhu pemotongan yang tinggi menggunakan 

cecair pemotongan konvensional sebagai penyejuk. Dalam kajian ini, penyejukan CO2 

karbon dioksida kriogenik telah digunakan semasa melarik Ti-6Al-4V ELI (extra-low 

interstitial). Objektif kajian ini adalah untuk menganalisis kesan parameter pemotongan ke 

atas integriti permukaan termasuk kekasaran permukaan, kekerasan permukaan, dan 

struktur mikro bahan. Kajian ini menumpukan kepada membangunkan model matematik 

untuk kekasaran permukaan permesinan. Kemudian, model matematik yang dihasilkan 

digunakan untuk mengoptimumkan parameter pemotongan dalam menghasilkan nilai 

kekasaran permukaan yang terbaik. Karbida tanpa salut Sandvik, CNGG 120408-SGF- 

H13A dipilih sebagai alat pemotong dalam pemesinan larik berkelajuan tinggi aloi 

titanium Ti-6Al-4V ELI dengan kekerasan sebanyak 32 HRC dengan menggunakan mesin 

larik CNC 3 paksi Haas ST-20. Rekabentuk Ujian Permukaan (RSM) menggunakan Box-

Behnken digunakan untuk menampung faktor percubaan dan tahap percubaan terhadap 

kekasaran permukaan. Parameter proses larik yang digunakan ialah kelajuan pemotongan 

(120, 170, 220 m/min), kadar suapan (0.1, 0.15, 0.2 mm/pusingan) dan kedalaman 

pemotongan (0.4, 0.5, 0.6 mm). Terdapat 17 ujikaji parameter pemesinan yang dihasilkan 

oleh perisian Design Expert menggunakan RSM Box-Behnken. Berdasarkan kajian yang 

dijalankan, didapati bahawa nilai kekasaran permukaan terendah yang dicapai pada 

larian 6; 220 m / min kelajuan pemotongan, 0.1 mm/pusingan kadar suapan dan 0.5 mm 

kedalaman pemotongan iaitu 0.49 μm. Analisis Varians (ANOVA) menunjukkan bahawa 
kadar suapan adalah faktor dominan yang mempengaruhi prestasi pemesinan. Parameter 

optimum dicapai pada kelajuan pemotongan 220 mm/min, 0.1 mm/pusingan kadar suapan 

dan kedalaman 0.4 mm. Kesalahan sisa bagi nilai kekasaran permukaan parameter 

optimum jatuh dalam 1.8% dan 3.8% dimana kurang daripada 10%. Struktur mikro 

permukaan dan sub-permukaan telah berubah dari segi pecahan isipadu fasa β bertambah, 
berbanding dengan bahan yang diterima. Kekerasan permukaan berlaku disebabkan kerja 

keras yang disebabkan oleh suhu rendah di zon pemotongan yang dihasilkan daripada 

penyejukan kriogenik. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Research background 

Over the last decade, the interest for titanium alloys, especially in the industry of 

aerospace has essentially extended due to their great strength to weight ratio, decreasing 

the formation of corrosion and capability in maintaining the strength at high temperatures 

(Arrazola et al., 2009; Sun et al., 2010; Pawar and Pawade, 2012; Pratap et al., 2015). They 

are also been used in shipbuilding industries, energy and power fields, and biomedical 

engineering due to their attractive properties (Hao et al., 2016; Karkalos et al., 2016). On 

the other hand, titanium and its alloys are difficult to change their shape as they represent a 

more challenge to machining processes because of high stresses and temperatures 

produced during machining (Ezugwu et al., 2005; Elshwain et al., 2013; Sulaiman et al., 

2017). There are many types of titanium alloys. One of them is the Ti-6Al-4V extra low 

interstitials (ELI) alloy that has a greater purity grade than the Ti-6Al-4V alloy. This alloy 

compromises in high strength and its depth hardening ability which contains low oxygen, 

carbon and iron (Ibrahim et al., 2009; Sulaiman et al., 2014; Razak et al., 2017). 

Some cutting processes, for example, turning and milling are utilize to machine this 

kind of titanium alloy. The machining process that generate a cylindrical shape or a 

complicated surface profile by removing the materials from the workpiece using a single-

edge cutting tool is known as the turning process (Grzina et al., 2015). With a specific end 

goal to increase the productivity, whereas at the same time improving product quality and 

decreasing manufacturing costs, high speed machining is used in the machining operation. 
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High speed machining (HSM) is one of modern technologies and can be known as a metal 

removing process generally used in industry for manufacturing numerous machine parts 

(Da Silva et al., 2013; Krishnaraj et al., 2014; Rahaman et al., 2015). An excellent surface 

finish of the product can be achieved by using this machining process. It is also well 

appreciated because of its high removal rates, reduction in production dead-times and low 

cutting forces while at the same time it decreases costs and the machining time compared 

with conventional cutting (Velasquez et al., 2010; Sulaiman et al., 2014; Wang et al., 

2016). The high speed machining of titanium alloys produces a high cutting temperature in 

the cutting zone, which diminishes tool life quickly. Besides, the machining also produces 

a bad surface finish of the product which is caused by the rapid tool failure and chipping at 

the cutting edge. It causes higher surface roughness values as well as higher microhardness 

values and severe microstructure alterations (Haron and Jawaid, 2005; Che Haron et al., 

2011). 

Titanium alloys are generally used for a component that requires the greatest 

reliability, and therefore the surface integrity must be maintained. However, the surfaces of 

titanium alloys are easily damaged during machining operations because of their poor 

machinability (Sun et al., 2015; Gupta and Laubscher, 2016). The damage usually occurs 

in the form of microcracks, phase transformations, plastic deformations, and residual stress 

effects. As far as the surface metallurgy of the machined component is concerned, the heat 

generated during cutting is the main source of damage (Che Haron et al., 2011; Ulutan and 

Ozel, 2011; Shokrani et al., 2016). The surface finish of the product is an important thing 

in manufacturing engineering. It is a typical thing that can impact the performance of 

mechanical parts and the production costs (Suhail et al., 2010; Costabile et al., 2017). 

In order to improve the surface quality of the product in high speed machining of 

titanium alloys, the effectiveness of the cooling/lubrication provided must be considered 
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