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ABSTRACT 

 

 

Optimisation is concerned with finding solutions to problems under certain constraints. One 

of the optimisation approaches is metaheuristic. Metaheuristic algorithms are inspired by 

nature and utilise intelligent mechanisms. In this study, one of the metaheuristic algorithms 

known as the Bat Algorithm (BA) has been discussed. Previous research has shown that BA 

is able to provide a good exploration and exploitation in finding solutions. However, this 

standard BA has the tendency to be trapped in a local minimum when applied to high 

dimensional search spaces besides experiencing slow convergence rate and low accuracy. 

The standard BA may be improved by integrating it with additional techniques which can 

increase its robustness through faster convergence and eventually producing more accurate 

results. Thus, this study proposed an Improved Bat Algorithm (IBA) by introducing some 

modifications to the standard BA. The additional techniques included are inertia weight 

factor, modified new bat position and adaptive boundary size. The IBA is evaluated and 

tested through a sequence of experiments conducted with ten benchmark functions. For 

comparison, three established algorithms namely Harmony Search (HS), Particle Swarm 

Optimisation (PSO) and Genetic Algorithm (GA) are analysed through the same set of 

experiments and compared with the IBA. The results show that the IBA performs better than 

Harmony Search (HS), Particle Swarm Optimisation (PSO) and Genetic Algorithm (GA). 

Despite the high dimensionality of the boundary size, the IBA is still able to produce 

significant results with the small number of iterations and fast convergence compared to 

other algorithms. Besides that, IBA was found comparable with existing variants of BA such 

as the IBA developed from the previous researcher in the year 2013 and the Hybrid Self-

Adaptive Bat Algorithm (HSABA) developed in the year 2014. Finally, the developed IBA 

is found consistent with the exact method which is the simplex method when tested through 

fairness nurse scheduling problem. Therefore, this confirms the validity of the IBA as an 

alternative algorithm for solving optimisation problems. 
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PENAMBAHBAIKAN ALGORITMA KELAWAR BAGI PENUMPUAN YANG LEBIH 

CEPAT DALAM PENYELESAIAN MASALAH PENGOPTIMUMAN 

 

ABSTRAK 

 

Pengoptimuman adalah suatu usaha untuk menghasilkan penyelesaian terhadap masalah 

dalam kekangan tertentu. Salah satu pendekatan pengoptimuman adalah metaheuristik. 

Algoritma metaheuristik diilhamkan berdasarkan kepada alam semula jadi yang 

menggunakan mekanisme pencarian pintar. Dalam kajian ini, salah satu algoritma 

metaheuristik yang dikenali sebagai Bat Algorithm (BA) telah dibincangkan. Penyelidikan 

sebelumnya menunjukkan bahawa Bat Algorithm dapat memberikan penerokaan dan 

eksploitasi penyelesaian yang baik. Walau bagaimanapun, BA berpeluang untuk 

terperangkap di dalam penyelesaian yang sama ketika digunakan di ruang carian dimensi 

yang tinggi. Disamping itu, algoritma ini mengalami kadar penumpuan perlahan dan 

ketepatan yang rendah. BA standard dapat ditingkatkan dengan manyatukannya dengan 

teknik tambahan yang dapat meningkatkan kekuatannya dari segi penumpuan yang lebih 

cepat dan akhirnya menghasilkan keputusan yang lebih tepat. Oleh itu, kajian ini 

mencadangkan Improved Bat Algorithm (IBA) dengan memperkenalkan beberapa 

pengubahsuaian kepada BA standard. Pengubahsuaian tersebut termasuklah faktor berat 

inersia, penyesuaian kedudukan baharu dan pengubahsuaian saiz sempadan. IBA ini 

dibincangkan dan diuji melalui urutan ujikaji yang dijalankan dengan 10 fungsi penanda 

aras. Sebagai perbandingan, tiga teknik terdahulu iaitu Harmony Search (HS), Particle 

Swarm Optimisation (PSO) dan Genetic Algorithm (GA) akan diguna pakai melalui set 

ujikaji yang sama dan akan dibandingkan dengan IBA. Keputusan uijkaji menunjukkan 

bahawa IBA berprestasi jauh lebih baik daripada ketiga-tiga teknik tersebut. Walaupun saiz 

sempadan dimensi diperbesarkan, namun, IBA masih mampu menghasilkan keputusan yang 

signifikan dimana hanya perlu bilangan pengulangan yang rendah dan pantas. Selain itu, 

IBA didapati setanding dengan variasi BA yang sedia ada seperti Improve Bat Algorithm 

(IBA) yang telah dibangunkan oleh penyelidik terdahulu pada tahun 2013 dan Hybrid Self-

Adaptive Bat Algorithm (HSABA) yang telah dibangunkan pada 2014. Akhir sekali IBA 

yang dibangunkan didapati manghasilkan keputusan yang konsisten dengan kaedah tepat 

iaitu kaedah simplex apabila diuji dengan masalah penyelesaian penjadualan jururawat. 

Oleh itu, IBA telah diperakui sebagai algoritma alternatif untuk menyelesaikan masalah 

pengoptimuman.  
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CHAPTER 1 

 

INTRODUCTION 

1.1 Introduction 

Optimisation has become increasingly important and well known in most the human 

activities, for example, finance, industries, sport, pharmacy, and so forth. The raise 

optimisation problem from human activities can be interpreted into complex nonlinear 

constraints (Yang, 2011) and known as optimisation model. Development of optimisation 

model give the opportunity to solve optimisation problem in term of minimum the cost and 

material use. Hence, increase the performance and lifetime services. 

This design criterion is practically important (Deb 1995; Yang 2010) but at the same 

time poses difficulties in finding the correct and practical efficient algorithms. However, it 

is possible to come out with a solution. The truth is extensive experience and knowledge 

about solving the problem of interest is required to choose the appropriate algorithm. Even 

so, the algorithm does not guarantee finding the optimal or sub-optimal solution. Thus, the 

aim of finding the right solution that is not necessarily the optimal one in relation to the 

specific problem has led to various approximation development algorithms like the 

metaheuristic algorithm. Many severe issues have been solved by powerful methods like 

metaheuristic algorithms including evolutionary and swarm intelligence algorithms 

(Gandomi and Alavi 2011), and particularly real-world engineering problems (Gandomi et 

al. 2011; Alavi and Gandomi 2011). 
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Most heuristic and metaheuristic algorithms were inspired by natural living things in 

ecosystems, including biological and/or physical system behaviour. The current established 

approach is particle swarm optimisation, which is inspired by nature, based on the swarm 

behaviour of birds and fish (Kennedy and Eberhart 1995). There are now upcoming popular 

algorithms emerging, including bat algorithm and harmony search (Wang and Guo, 2013). 

Discrete cuckoo algorithm was inspired by bird breeding behaviour. This approach has been 

proved to be effective in solving continuous optimisation problems (Ouaarab et al., 2014), 

while the fireflies algorithm was formulated based on the flashing pattern and behaviour of 

fireflies (Yang, 2012). However, although these algorithms have advantages, they also have 

disadvantages. As an example is simulating annealing, which finds the optimal solution only 

if slow cooling is processed and the simulation is run for long enough. However, this 

weakness can be overcome by adjusting parameters to obtain the convergence rate for the 

optimisation process. The question is, what are the possibilities that this algorithm can 

combine with others method to form significant advantages and how an algorithm is needed 

to be developed that potentially produce a better solution? 

Predefining optimal input parameters can develop a better algorithm optimisation 

according to a known outcome and known model. The model can represent a problem that 

needs to be solved, and input parameters represent a solution to obtain the output as a result. 

Basically, the quality of a solution is determined based on the evaluation of input parameters. 

Definitely, the quality of the objective function is described in the form of a mathematical 

function in which its value can be either minimised or maximised. As an example, the 

optimisation problem raised in health human resource planning (HHRP) needs to optimise 

the minimum and maximum gaps (as an objective function) between provider supply  stN  

and requirement  rtN . Defined as Gap = Supply-Requirement =  st rtN N . 
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Negative Gap Means Shortage of Nurses, Positive Gap Means Surplus of Nurses. 

This situation is also known as a fitness function in the evolutionary computation 

community. The objective function in HHRP, both minimum and maximum, was assumed 

as a fitness function in this research. This fitness function can be optimised using the current 

famous bat algorithm (BA) approach. The BA is one of the fresh metaheuristic algorithms, 

and was introduced in the year 2010 by Yang (2010). The BA algorithm is inspired by the 

echolocation behaviour of bats. Echolocation is a type of sonar that guides bats’ flying and 

hunting behaviour. Even in complete darkness bats can distinguish different types of insects. 

Thus, the advantages of the BA algorithm inspire the researcher to continue this study. The 

advantages are, at the initial stage, the BA algorithm can swap from exploration to 

exploitation to provide very fast convergence. Additionally, simple wide range of 

optimisation problem that formulated into function is flexible to be implemented into BA to 

generate the best solution. 

As a matter of fact, the total number of publications on bat algorithms has rapidly 

grown. In 2015, Google Scholar recorded 1,130 searches for bat algorithm, including type 

the sentences in the quotation mark (“Bat Algorithm”). The same search showed about 1,960 

results in 2017, whereas, by the end of 2018, the result was further increased to a number 

greater than 2,590. Some of the areas with the highest rate of requests for the BA to be put 

into practice are flow shop scheduling problem (Marichelvam et al., 2013), practical 

engineering applications (Jayabarathi et al., 2018), image matching (Marichelvam et al., 

2013), Vehicle Routing Problem (Osaba et al., 2018), Optimal Power Dispatch (Reddy and 

Kumar, 2015) and Numerical Optimisation Problems (Tsai et al., 2012). 

The BA has shown its capability as an approach that can construct a better solution 

while improving exploration and exploitation. The increasing BA's popularity encourages 

the research study on this algorithm keep continuing. At the end of these studies, a few 
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approaches will be added to the standard BA and known as Improve Bat Algorithm (ABA). 

This approach typically depends on the efficiency in exploitation and global diverse 

exploration. Previous research has shown that the Bat Algorithm could provide good 

exploration and exploitation of a solution. However, it can get trapped in a local minimum 

in some multi-dimensional functions (Lin et al., 2010; Wang et al., 2013). Thus, the 

phenomenon of slow convergence rate and low accuracy still exists.  

It is important to avoid the exploration of the solution being trapped in local minima 

to obtain a high chance of a better solution and give faster convergence, to make it more 

effective and efficient. To improve the performance of the BA, researchers have come with 

various solutions. Yang (2011) presented a multi-objective bat algorithm (MOBA) for 

solving a few design benchmarks in engineering. Nakamura et al. (2012) introduced a binary 

bat algorithm (BBA) that developed a discrete version of the bat algorithm to solve 

classifications and feature selection problems. In addition, Yilmaz and Kucuksille (2013) 

introduced an improved bat algorithm (IBA) for achieving good performance in relation to 

the problem of interest. 

In these studies, with the advent of new Improved Bat Algorithms, a kind of inertia 

factor has been added, and the generated solution was within the boundary searching space. 

In addition, the boundary dimension size is updated according to the current best solution, 

at once giving a faster convergence and becoming a decisive factor in obtaining the most 

optimal solution. In closing this section, it is noted that, in order to improve the standard BA 

without impacting its strong robustness, an additional method is needed that can help the 

global convergence rate become faster.  

The remaining sections of the chapter are organised as follows. Section 1.2 discusses 

the challenges in the optimisation algorithm, while Section 1.3 presents the problem 

statement. In Section 1.4, the research objective is presented. Section 1.5 explains the 
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research scope, while Section 1.6 explains the significance of the study, Section 1.7 discusses 

the thesis layout and Section 1.8 summarises the whole chapter. 

 

1.2 Challenges in optimisation algorithms 

Today’s highly capitalized societies require “maximum benefit with minimum cost.” 

For achieving this goal, we usually depend on optimisation techniques. Many problems in 

various fields are formulated as optimisation problems and solved using various optimisation 

algorithms. Generally, optimisation problems, either single-objective or multi-objective, are 

difficult to solve. To solve real world optimisation problem is very complex. Even the 

optimisation algorithm can't solve the problem at a given time. The combination of the 

problem is extremely computationally expensive and unrealistic. Over the decades, the 

development and application of optimisation models have attracted growing attention among 

engineers. Traditional mathematical techniques, such as linear programming (LP), non-

linear programming (NLP), and dynamic programming (DP), have been frequently used for 

solving the optimisation problems. All three techniques can guarantee global optima in 

simple and ideal models.  

However, in real world problems, there are some drawbacks: in LP, considerable 

losses occur when a linear ideal model from a non-linear real world problem is developed; 

in DP, an increase in the number of variables would exponentially increase the number of 

evaluations of the recursive functions and tax the core-memory (the “curse of 

dimensionality”); in NLP, if the functions used in computation are not differentiable, the 

solving algorithm may not find the optimum. Careful attention is also required in selecting 

the initial values in order to guarantee convergence to the global optimum and not into local 

optima. In order to overcome the above deficiencies of mathematical techniques, heuristic 

optimisation techniques based on simulation have been introduced.  


