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ABSTRACT 

In milling process, disturbance forces such as cutting force and friction force act directly on 
the servo drive system producing unwarranted effect that deteriorates the accuracy of the 
positioning table. This effect has to be compensated in order to preserve geometrical 
accuracy and quality of the final product. This thesis focuses on suppression of disturbance 
force characterise by harmonic frequencies dictating by the spindle speed of the milling table 
using state observer-based controller for precise tracking performances of the motion drive 
system. This thesis proposes improvement to control performance of classical cascade P/PI 
controller via add-on modules to the control structure consisting of state observers named 
inverse model-based disturbance observer (IMBDO) and disturbance force observer (DFO). 
The cascade P/PI controller was designed using traditional loop shaping frequency domain 
method. IMBDO estimates the input disturbance and any unmodeled system dynamics while 
DFO performs direct estimation of the cutting force using information of harmonic 
frequencies corresponding to the sinusoidal based input disturbance force. Numerical 
analysis was performed using MATLAB/Simulink software and experimental analysis was 
performed on the x-axis of an XY milling positioning table ball screw driven system. This 
thesis compares the performance of cascade P/PI with add-on IMBDO plus DFO with other 
control configurations; (i) a cascade P/PI stand-alone, (ii) cascade P/PI with IMBDO, and 
(iii) cascade P/PI with DFO. The control performances of these configurations were analysed 
using maximum tracking errors (MTE), root mean square (RMSE) of the tracking errors, 
and magnitudes of the Fast Fourier Transform (FFT) of the tracking errors. Results obtained 
showed that cascade P/PI with add-on IMBDO plus DFO module produced superior 
performance against other control configurations. Maximum tracking error results showed 
that cascade P/PI with IMBDO plus DFO produced the best tracking performances for all 
harmonic frequencies considered yielding percentage errors reduction of 97.52%, 98.70% 
and 99.13% for input disturbance of one harmonic, two harmonics, and three harmonics 
respectively. In term of RMSE values, the experimental results showed that cascade P/PI 
with IMBDO plus DFO produced the most percentage error reduction with values recorded 
at 98.80%, 97.75% and 97.97% for the respective input harmonics. In term of FFT results, 
cascade P/PI with IMBDO plus DFO produced the most reduction in peak amplitudes with 
values corresponding to 99.78% for the first harmonic, 99.67% and 99.53% for the second 
harmonics and 99.86%, 99.81 % and 99.91 % for the third harmonics. The closed loop and 
sensitivity transfer function of this control configuration confirmed the superiority of 
cascade P/PI with IMBDO plus DFO in yielding the smallest tracking error thus yielding the 
most efficient positioning control system. 



PENGA WAL PENJEJAKAN BERASASKAN PEMERHATI KEADAAN UNTUK 
PENINDASAN GANGGUAN INPUT DALAM APL/KASI PERKAKAS MESIN 

ABSTRAK 

Dalam proses pengisaran, daya gangguan seperti daya pemotongan dan daya geseran yang 
bertindak secara langsung terhadap permukaan kerja menghasilkan impak luaran kepada 
sistem pemacu meja kedudukan. Kesan ini mesti dikurangkan untuk memelihara ketepatan 
geometri dan kualiti produk. Tesis ini memberi tumpuan kepada penekanan daya gangguan, 
diklasifikasikan oleh frekuensi harmonik yang ditentukan oleh kelajuan gelendong meja 
pengisaran menggunakan pengawal berdasarkan anggaran untuk pengesanan prestasi yang 
tepat dalam sistem pemacu gerakan. Tesis ini mencadangkan penambahbaikkan bagi 
mengawal prestasi kawalan dengan menggunakan penganggar yang dinamakan pemerhati 
gangguan berdasarkan model terbalik (/MEDO) dan daya gangguan pemerhati (DFO) 
sebagai modul tambahan kepada pengawal konvensional lata PIP/. Pengawal konvensional 
lata PIP/ telah direka menggunakan kaedah domain frekuensi membentuk gelung 
tradisional. !MEDO menganggarkan gangguan input dan dinamik sistem yang tidak 
dimodifikasi manakala, DFO melakukan anggaran terus dari daya pemotongan 
menggunakan maklumat dari frekuensi harmonik yang sesuai dengan daya gangguan 
berasaskan masukkan sinusoidal. Analisis berangka dilaksanakan dengan menggunakan 
perisian MATLAEISimulink dan analisis eksperimen dilaksanakan pada paksi-x sistem 
pemacu skru bola pemutar XY. Tesis ini membandingkan prestasi pengawal lata PIP/ 
berserta tambahan !MEDO tambah DFO dengan konfigurasi pengawal yang lain iaitu; (i) 
pengawal lata PIP!, (ii) pengawal lata PIP/ dengan /MEDO, dan (iii) pengawal lata PIP! 
dengan DFO. Prestasi kawalan konfigurasi ini dianalisis menggunakan ralat trajektori 
maksimum (MTE), ralat purata punca kuasa dua (RMSE) dan magnitud tranformasifourier 
pantas (FFTJ. Hasil yang diperoleh menunjukkan pengawal lata PIP/ berserta tambahan 
/MEDO tambah DFO menghasilkan prestasi unggul berbanding konfigurasi pengawal lain. 
Keputusan MTE menunjukkan pengawal lata PIP/ dengan /MEDO tambah DFO 
menghasilkan prestasi penjejakan terbaik, memandangkan gangguan input satu, dua, dan 
tiga harmonik masing-masing menghasilkan penurunan peratusan ralat sebanyak 97.52%, 
98. 70% dan 99.13%. Dari segi nilai RMSE, hasil eksperimen menunjukkan pengawal lata 
PIP! dengan /MEDO tambah DFO menghasilkan pengurangan ralat peratusan terbanyak 
masing-masing dengan nilai direkodkan pada 98.80%, 97. 75% dan 97.97% input harmonik. 
Dari segi keputusan FFT menunjukkan pengawal lata PIP/ dengan !MEDO tambah DFO 
menghasilkan penurunan amplitud puncak dengan nilai 99. 78% untuk harmonik pertama, 
99.67% dan 99.53% untuk harmonik kedua dan 99.86%, 99.81% dan 99.91% untuk 
harmonik ketiga. Fungsi gelung tertutup dan sensitiviti kawalan bagi konfigurasi pengawal 
ini mengesahkan keunggulan pengawal lata PIP/ dengan /MEDO tambah DFO dalam 
menghasilkan ralat penjejakan terkecil dan secara tidak langsung menghasilkan sistem 
kawalan kedudukan yang paling efisien. 
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