

Faculty of Manufacturing Engineering

Madihah binti Haji Maharof

Doctor of Philosophy

2021

A STATE OBSERVER-BASED TRACKING CONTROLLER FOR SUPPRESSION OF INPUT DISTURBANCE IN MACHINE TOOLS APPLICATION

MADIHAH BINTI HAJI MAHAROF

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2021

DECLARATION

I declare that this thesis entitled "A State Observer-Based Tracking Controller for Suppression of Input Disturbance in Machine Tools Application" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature Madihah binti Haji Maharof Name 1 July 2021 Date EKNIKAL MALAYSIA MELAKA UNIVERSITI Т

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy in Manufacturing Engineering.

Signature Profesor Dr. Zamberi Bin Jamaludin Supervisor Name: PROFESOR DR. ZAMBERI BIN JAMALUDIN Dekan 1 July 2021 Fakulti Kejuruteraan Pembuatan Date Universiti Teknikal Malaysia Melaka EKNIKAL MALAYSIA MELAKA UNIVERSITI Т

DEDICATION

To my beloved mother and mother-in-law,

my husband and my family,

This humble work is dedicated for all of you who taught me to be patience in completing my work, who never fail to give continous support, du'as and encouragement during difficult time of this journey.

ABSTRACT

In milling process, disturbance forces such as cutting force and friction force act directly on the servo drive system producing unwarranted effect that deteriorates the accuracy of the positioning table. This effect has to be compensated in order to preserve geometrical accuracy and quality of the final product. This thesis focuses on suppression of disturbance force characterise by harmonic frequencies dictating by the spindle speed of the milling table using state observer-based controller for precise tracking performances of the motion drive system. This thesis proposes improvement to control performance of classical cascade P/PI controller via add-on modules to the control structure consisting of state observers named inverse model-based disturbance observer (IMBDO) and disturbance force observer (DFO). The cascade P/PI controller was designed using traditional loop shaping frequency domain method. IMBDO estimates the input disturbance and any unmodeled system dynamics while DFO performs direct estimation of the cutting force using information of harmonic frequencies corresponding to the sinusoidal based input disturbance force. Numerical analysis was performed using MATLAB/Simulink software and experimental analysis was performed on the x-axis of an XY milling positioning table ball screw driven system. This thesis compares the performance of cascade P/PI with add-on IMBDO plus DFO with other control configurations; (i) a cascade P/PI stand-alone, (ii) cascade P/PI with IMBDO, and (iii) cascade P/PI with DFO. The control performances of these configurations were analysed using maximum tracking errors (MTE), root mean square (RMSE) of the tracking errors, and magnitudes of the Fast Fourier Transform (FFT) of the tracking errors. Results obtained showed that cascade P/PI with add-on IMBDO plus DFO module produced superior performance against other control configurations. Maximum tracking error results showed that cascade P/PI with IMBDO plus DFO produced the best tracking performances for all harmonic frequencies considered yielding percentage errors reduction of 97.52%, 98.70% and 99.13% for input disturbance of one harmonic, two harmonics, and three harmonics respectively. In term of RMSE values, the experimental results showed that cascade P/PI with IMBDO plus DFO produced the most percentage error reduction with values recorded at 98.80%, 97.75% and 97.97% for the respective input harmonics. In term of FFT results, cascade P/PI with IMBDO plus DFO produced the most reduction in peak amplitudes with values corresponding to 99.78% for the first harmonic, 99.67% and 99.53% for the second harmonics and 99.86%, 99.81% and 99.91% for the third harmonics. The closed loop and sensitivity transfer function of this control configuration confirmed the superiority of cascade P/PI with IMBDO plus DFO in yielding the smallest tracking error thus yielding the most efficient positioning control system.

PENGAWAL PENJEJAKAN BERASASKAN PEMERHATI KEADAAN UNTUK PENINDASAN GANGGUAN INPUT DALAM APLIKASI PERKAKAS MESIN

ABSTRAK

Dalam proses pengisaran, daya gangguan seperti daya pemotongan dan daya geseran yang bertindak secara langsung terhadap permukaan kerja menghasilkan impak luaran kepada sistem pemacu meja kedudukan. Kesan ini mesti dikurangkan untuk memelihara ketepatan geometri dan kualiti produk. Tesis ini memberi tumpuan kepada penekanan daya gangguan, diklasifikasikan oleh frekuensi harmonik yang ditentukan oleh kelajuan gelendong meja pengisaran menggunakan pengawal berdasarkan anggaran untuk pengesanan prestasi yang tepat dalam sistem pemacu gerakan. Tesis ini mencadangkan penambahbaikkan bagi mengawal prestasi kawalan dengan menggunakan penganggar yang dinamakan pemerhati gangguan berdasarkan model terbalik (IMBDO) dan daya gangguan pemerhati (DFO) sebagai modul tambahan kepada pengawal konvensional lata P/PI. Pengawal konvensional lata P/PI telah direka menggunakan kaedah domain frekuensi membentuk gelung tradisional. IMBDO menganggarkan gangguan input dan dinamik sistem yang tidak dimodifikasi manakala, DFO melakukan anggaran terus dari daya pemotongan menggunakan maklumat dari frekuensi harmonik yang sesuai dengan daya gangguan berasaskan masukkan sinusoidal. Analisis berangka dilaksanakan dengan menggunakan perisian MATLAB/Simulink dan analisis eksperimen dilaksanakan pada paksi-x sistem pemacu skru bola pemutar XY. Tesis ini membandingkan prestasi pengawal lata P/PI berserta tambahan IMBDO tambah DFO dengan konfigurasi pengawal yang lain iaitu; (i) pengawal lata P/PI, (ii) pengawal lata P/PI dengan IMBDO, dan (iii) pengawal lata P/PI dengan DFO. Prestasi kawalan konfigurasi ini dianalisis menggunakan ralat trajektori maksimum (MTE), ralat purata punca kuasa dua (RMSE) dan magnitud tranformasi fourier pantas (FFT). Hasil yang diperoleh menunjukkan pengawal lata P/PI berserta tambahan IMBDO tambah DFO menghasilkan prestasi unggul berbanding konfigurasi pengawal lain. Keputusan MTE menunjukkan pengawal lata P/PI dengan IMBDO tambah DFO menghasilkan prestasi penjejakan terbaik, memandangkan gangguan input satu, dua, dan tiga harmonik masing-masing menghasilkan penurunan peratusan ralat sebanyak 97.52%, 98.70% dan 99.13%. Dari segi nilai RMSE, hasil eksperimen menunjukkan pengawal lata P/PI dengan IMBDO tambah DFO menghasilkan pengurangan ralat peratusan terbanyak masing-masing dengan nilai direkodkan pada 98.80%, 97.75% dan 97.97% input harmonik. Dari segi keputusan FFT menunjukkan pengawal lata P/PI dengan IMBDO tambah DFO menghasilkan penurunan amplitud puncak dengan nilai 99.78% untuk harmonik pertama, 99.67% dan 99.53% untuk harmonik kedua dan 99.86%, 99.81% dan 99.91% untuk harmonik ketiga. Fungsi gelung tertutup dan sensitiviti kawalan bagi konfigurasi pengawal ini mengesahkan keunggulan pengawal lata P/PI dengan IMBDO tambah DFO dalam menghasilkan ralat penjejakan terkecil dan secara tidak langsung menghasilkan sistem kawalan kedudukan yang paling efisien.

ACKNOWLEDGEMENTS

In the Name of Allah, the Most Gracious, the Most Merciful

First and foremost, I would like to thank and praise Allah the Almighty, my Creator, my Sustainer, for everything I received since the beginning of my life. I would like to express my sincere gratitude to my respected supervisor, Professor Dr. Zamberi bin Jamaludin for the continuous support of my study and research, for his patience, motivation, enthusiasm, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I would also like to thank my co-supervisor, Associate Professor Ir. Dr. Mohamad bin Minhat for his time, encouragement and effort for sharing knowledge with me.

I would also like to take this opportunity to thank to the Centre for Graduate Studies (PPS), Faculty of Manufacturing Engineering (FKP) and Universiti Teknikal Malaysia Melaka (UTeM) for the facilities provided. Special thanks to Fundamental Research Grant Scheme and MyPhD scholarship by Ministry of Higher Education Malaysia for financial support throughout this research. These financial supports are greatly appreciated and indebted.

I would like to extend my deepest gratitude to my fellow labmates from Control System in Machine Tools (CosMaT) research group, Ir. Dr. Lokman bin Abdullah, Dr. Nur Aidawaty binti Rafan, Dr. Chiew Tsung Heng, Mrs. Nur Amira binti Anang, Mr. Muhammad Azri bin Othman, Mr. Jailani bin Jamaludin, Miss Hidayah binti Seman, Mr. Agus Sudianto, and Iqbal Afiq bin Saidin for always gives comment, opinion and ideas towards my research and also for their valuable helps in MATLAB. I would like to thank Dr. Maziati Akmal binti Mohd Hatta, Miss. W. Noor Fatihah binti W. Mohamad, Mrs. Suraya binti Laily, Mrs. Nurhernida binti Abdullah Sani, Dr. Norazlina binti Yatim, and Mr. Mohd Remy bin Ab Karim for always supporting and keeping me motivated throughout this research.

A special thanks also to my mother, my mother-in-law and my family for their prayers, loves, cares and support. I am greatly indebted to them and may Allah repay all their good deeds and sacrifices. Finally and most importantly, a special thanks to a very special person, my husband, Muhamad Faiz Farhan bin Mohamad Shah for his continued and unfailing love, support and understanding during my study.

TABLE OF CONTENTS

PAGE

DEC	CLAR	ATION	
APP	ROV	AL	
DEI	DICAT	ΓΙΟΝ	
ABS	TRA	CT	i
ABS	TRA	Κ	ii
ACH	KNOV	VLEDGEMENTS	iii
TAE	BLE C	DF CONTENTS	iv
LIS	ГOF	TABLES	viii
LIS	FOF	FIGURES	xiii
LIS	FOF	APPENDICES	xxiii
LIS	ГOF	SYMBOLS	xxiv
LIST	FOF	ABBREVIATIONS	xxvii
LIST	FOF	PUBLICATIONS	xxix
CHA	APTE	R	
1.	INT	TRODUCTION	1
	1.1	Background	1
	1.2	Problem statement	3
	1.3	Research objectives	5
	1.4	Research scopes and limitations	5
	1.5	Significant of study	6
	1.6	Overview of thesis EKNIKAL MALAYSIA MELAKA	7
	1.7	Summary	8
2.	LIT	ERATURE REVIEW	9
	2.1	Introduction	9
	2.2	Mechanical transmission of drive systems	10
		2.2.1 Rack and pinion	11
		2.2.2 Piezoelectric drive system	11
		2.2.3 Direct drive system	12
		2.2.4 Ball screw drive system	14
	2.3	Performance measure for machine tools	15
		2.3.1 Performance measure in time domain	17
		2.3.2 Performance measure in frequency domain	18
	2.4	Disturbance forces in machine tools application	19
		2.4.1 Mechanical resonance of the plant	19
		2.4.2 Mass variation	20

		2.4.3	Friction force	21
		2.4.4	Cutting force	23
	2.5	Cuttin	g force measurement techniques	26
		2.5.1	Capacitive displacement sensor	26
		2.5.2	Current-sensor-based	27
		2.5.3	Active electromagnetic bearings	28
		2.5.4	Dynamometer	29
	2.6	Contro	oller design compensation techniques	31
		2.6.1	Classical control technique	31
			2.6.1.1 PID controller	32
			2.6.1.2 Cascade controller	36
		2.6.2	Advanced control techniques	39
			2.6.2.1 Nonlinear PID (N-PID) and nonlinear cascade	40
			feed forward (NCasFF)	
			2.6.2.2 Sliding mode control (SMC)	42
			2.6.2.3 H-infinity	44
			2.6.6.4 Gain scheduling	45
		2.6.3	State estimation control techniques	47
		N.	2.6.3.1 Disturbance observer	48
		H	2.6.3.2 Kalman filter	49
	2.7	Reseat	rch gap	51
3.	ME	THODO	DLOGY	58
	3.1	Introd	uction	58
	3.2	Desigi	n guidelines of a IMBDO plus DFO control structure	61
	3.3	Experi	imental setup	63
	3.4	System	n identification and system modelling SIA MELAKA	65
	3.5	Identif	fication of the motor constant	71
	3.6	Cuttin	g force measurement and characterization	72
		3.6.1	Experimental setup of cutting force measurement	73
		3.6.2	Characterization of the measured cutting force	76
		3.6.3	Characterization and analysis of cutting forces	79
		3.6.4	Analysis of the measured cutting forces	79
	3.7	Summ	ary	81
4.	DES	SIGN O	F CONTROLLERS AND STATE OBSERVER	83
	4.1	Introd	uction	83
	4.2	Design	n and analysis of cascade P/PI controller	84
		4.2.1	Design and analyses of velocity control loop	86
		4.2.2	Design and analyses of position control loop	90
		4.2.3	Controller design validation	95
	4.3	Design	n of inverse model-based disturbance observer	97
			v	

		4.3.1 Design and stability analysis of <i>Q</i> -filter	98
		4.3.2 Loops characteristic with inverse model-based	102
		disturbance observer	
		4.3.3 Inverse model-based disturbance observer design	112
		validation	
	4.4	Design structure of disturbance force observer	113
		4.4.1 Analyses of disturbance force observer	117
	4.5	Design structure of a state observer inverse model-based	122
		disturbance observer (IMBDO) with disturbance force observer	
		(DFO)	
		4.5.1 Analysis loop of IMBDO plus DFO controller	124
	4.6	Summary	128
5.	RES	SULTS AND DISCUSSION	130
	5.1	Introduction	130
	5.2	Numerical performance analyses	131
		5.2.1 Control performances of cascade P/PI	131
		5.2.1.1 Maximum tracking error	133
		5.2.1.2 RMSE of tracking errors	135
		5.2.1.3 FFT of tracking error	137
		5.2.2 Control performances of cascade P/PI with inverse model-	139
		based disturbance observer	
		5.2.2.1 Maximum tracking error	141
		5.2.2.2 RMSE of tracking errors	142
		5.2.2.3 FFT of tracking error	144
		5.2.3 Control performances of cascade P/PI with disturbance	146
		UNIV force observer KNIKAL MALAYSIA MELAKA	
		5.2.3.1 Maximum tracking error	148
		5.2.3.2 RMSE of tracking errors	149
		5.2.3.3 FFT of tracking error	150
		5.2.4 Control performances for cascade P/PI with both inverse	153
		model-based disturbance observer and disturbance force	
		observer	
		5.2.4.1 Maximum tracking error	157
		5.2.4.2 RMSE of tracking errors	159
		5.2.4.3 FFT of tracking error	160
	5.3	Experimental performance analyses	162
		5.3.1 Control performances of cascade P/PI	162
		5.3.1.1 Maximum tracking error	163
		5.3.1.2 RMSE of tracking errors	165
		5.3.1.3 FFT of tracking error	166

		5.3.2	Control performances of cascade P/PI with inverse model-	168
			based disturbance observer	
			5.3.2.1 Maximum tracking error	169
			5.3.2.2 RMSE of tracking errors	171
			5.3.2.3 FFT of tracking error	172
		5.3.3	Control performances of cascade P/PI with disturbance	174
			force observer	
			5.3.3.1 Maximum tracking error	176
			5.3.3.2 RMSE of tracking errors	178
			5.3.3.3 FFT of tracking error	179
		5.3.4	Control performances for cascade P/PI with both inverse	182
			model-based disturbance observer and disturbance force	
			observer	
			5.3.4.1 Maximum tracking error	184
			5.3.4.2 RMSE of tracking errors	186
			5.3.4.3 FFT of tracking error	188
	5.4	Discu	ssion on control performances	190
		5.4.1	Analysis of maximum tracking errors	190
		5.4.2	Analysis of RMSE tracking errors	194
		5.4.3	Analysis of FFT of tracking errors	197
		5.4.4	Analysis of closed loop characteristics and sensitivity	201
		S.	function	
	5.5	Summ	ary of results	205
		del		
6.	CO	NCLUS	IONS AND FUTURE RECOMMENDATIONS	211
	6.1	Overv	iew is the second se	211
	6.2	Signif	icant findingsEKNIKAL MALAYSIA MELAKA	212
	6.3	Future	erecommendation	215
REI	FERE	NCES		217
API	PEND	ICES		239

RI APPENDICES

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Effects of each controller parameter k_p , k_i and k_d on a closed loop system	33
2.2	Summary of literature reviews on classical control techniques	53
2.3	Summary of literature reviews on advanced control techniques	54
2.4	Summary of literature reviews on state estimation control-based techniques	55
3.1	Parameters of system model	68
3.2	List of equipment with specifications	73
3.3	Recommended cutting parameters for milling operation	77
3.4	Cutting parameters of the experimental design	77
3.5	Amplitude cutting force at different spindle speed	81
4.1	Gain values of k_p and k_i for PI controller in velocity loop	87
4.2	Gain margin and phase margin of the velocity open loop	87
4.3	Gain margin and phase margin of the position open loop	91
4.4	Bandwidths of velocity and position control loops	95
4.5	Characteristics of Q-filter	102
4.6	Gain margin and phase margin of velocity open loop transfer function	104
4.7	Gain margin and phase margin of the position open loop	109
4.8	Bandwidth of the position loops	110

5.1	Research configurations	131
5.2	Summary of input reference signal and input disturbance signal characteristics	132
5.3	Summary of MTE values for disturbance-free and disturbance- induced of one, two, and three harmonic frequency contents	134
5.4	Summary of RMSE values for disturbance-free and disturbance- induced of one, two, and three harmonic frequency contents	136
5.5	FFT of tracking error magnitudes for disturbance-free and disturbance-induced of one, two, and three harmonic frequency contents	138
5.6	Summary of input reference signal and input disturbance signal characteristics	139
5.7	Summary of MTE values for sinusoidal input disturbance of one, two and three frequency harmonics using cascade P/PI controller and a cascade P/PI embedded with IMBDO	142
5.8	Summary of RMSE values for one, two and three harmonic frequency contents for cascade P/PI controller and a cascade P/PI embedded with IMBDO	144
5.9	Summary of FFT peak magnitude values of tracking error for cases with and without disturbance observer	145
5.10	Summary of input reference signal and input disturbance signal characteristics	146
5.11	Summary of MTE values for sinusoidal input disturbance of one, two and three frequency harmonics using cascade P/PI controller and a cascade P/PI embedded with DFO	149
5.12	Summary of RMSE values for one, two and three harmonic frequency contents for cascade P/PI controller and a cascade P/PI embedded with DFO	150

5.13	Summary of FFT peak magnitude values of tracking error for cases with and without disturbance observer	152
5.14	Summary of input reference signal and input disturbance signal characteristics	156
5.15	Summary of MTE values for sinusoidal input disturbance of one, two and three frequency harmonics using cascade P/PI controller and a cascade P/PI embedded with IMBDO plus DFO	158
5.16	Summary of RMSE values for one, two and three harmonic frequency contents for cascade P/PI controller and a cascade P/PI embedded with IMBDO plus DFO	160
5.17	Summary of FFT peak magnitude values of tracking error for cases with and without disturbance observer	161
5.18	Summary of input reference signal and input disturbance signal characteristics	162
5.19	Summary of MTE values for disturbance-free and disturbance- induced of one, two, and three harmonic frequency contents	164
5.20	Summary of RMSE values for disturbance-free and disturbance- induced of one, two, and three harmonic frequency contents	166
5.21	Summary of FFT peak magnitude values of tracking error for cases with and without input disturbance signal	167
5.22	Summary of input reference signal and input disturbance signals characteristics	168
5.23	Summary of MTE values for input disturbance of one, two and three harmonics for a cascade P/PI controller and a cascade P/PI with IMBDO	170
5.24	Summary of RMSE values input sinusoidal signal of one, two and three harmonics for a cascade P/PI controller and cascade P/PI embedded with IMBDO	172

5.25	Summary of FFT peak magnitude values of tracking error for cases with and without disturbance observer	174
5.26	Summary of input reference signal and input disturbance signal characteristics	175
5.27	Summary of MTE values for input disturbance of one, two and three harmonics for a cascade P/PI and a cascade P/PI with DFO	178
5.28	Summary of RMSE values input sinusoidal signal of one, two and three harmonics for a cascade P/PI controller and cascade P/PI embedded with DFO	179
5.29	Summary of FFT peak magnitude values of tracking error for cases with and without disturbance observer	182
5.30	Summary of input reference signal and input disturbance signal characteristics	183
5.31	Summary of MTE values for input disturbance of one, two and three harmonics for a cascade P/PI and a cascade P/PI with IMBDO plus DFO	186
5.32	Summary of RMSE values input sinusoidal signal of one, two and three harmonics for a cascade P/PI controller and cascade P/PI embedded with IMBDO plus DFO	187
5.33	Summary of FFT peak magnitude values of tracking error for cases with and without disturbance observer	189
5.34	Comparison between numerical and experimental values of maximum tracking error for four different control configurations at different harmonic frequency contents	191
5.35	Comparison between numerical and experimental values of percentage error reduction relating to maximum tracking error for four different control configurations at different harmonic frequency contents	192

- 5.36 Comparison in numerical and experimental values of RMSE of 195 four different control configurations and harmonic frequency contents
- 5.37 Comparison in numerical and experimental values of percentage 195 error reduction in RMSE for four different control configurations and harmonic frequency contents
- 5.38 Comparison between numerical and experimental values of FFT 200 tracking error for four different control configurations and harmonic frequency contents
- 5.39 Comparison between numerical and experimental values of 200 percentage error reduction of FFT magnitudes for four different control configurations and harmonic frequency contents
- 5.40 Summary of control performance measures of single input 210 harmonic for different control configurations
- 5.41 Summary of control performances measures of double input 210 harmonics for different control configurations
- 5.42 Summary of control performances measures of triple input 210 harmonics for different control configurations

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Rack and pinion drive system	11
2.2	General structure of a piezoelectric drive system	12
2.3	(a) Direct drive system and (b) Structure of iron-core linear drive system	13
2.4	Ball screw drive system	15
2.5	Point-to-point motion control	16
2.6	Continuous motion control	16
2.7	Transient response specifications of a second order system	18
2.8	FRF measurement for different machine conditions (bolted and unbolted)	20
2.9	Different combinations of linear motor modules	21
2.10	Quadrant glitches in circular test MALAYSIA MELAKA	22
2.11	Cutting parameter direction in the cutting zone	23
2.12	Original cutting force data from milling operation	25
2.13	A spindle integrated with displacement sensor system	27
2.14	Schematic illustrations of current-sensor-based cutting force sensing technique	28
2.15	Structure of active electromagnetic bearings	29
2.16	Kistler force measurement dynamometer	30
2.17	General structure of control system with a PID controller	32

2.18	Block diagram of a basic PID controller with external disturbance and feedback control system	34
2.19	Structure of cascade P/PI controller	37
2.20	Block diagram of N-PID controller in feedback system	40
2.21	Chattering phenomenon	43
2.22	The general control configuration to synthesize controller using H- infinity	44
2.23	Block diagram of gain scheduling controller	46
2.24	General block diagram of state estimation techniques	47
2.25	Summary of literature review	57
3.1	Overall flow chart of the research methodology	60
3.2	Flowchart of design guidelines of combine IMBDO plus DFO	62
3.3	(a) XY positioning milling table ball screw driven system by Googol Tech Series (b) Schematic diagram of the XY positioning milling table	63
3.4	Configuration of overall experimental setup	65
3.5	Open-loop Simulink diagram of FRF measurement for XY	66
	positioning milling table ball screw driven system	
3.6	Measured open loop FRF of x-axis positioning system	67
3.7	Measured FRF and fitted second order model with time delay	68
3.8	Time delay from Bode plot for second order transfer function	69
3.9	A schematic of mass-spring-damper system	70
3.10	Block diagram of the open loop system for motor constant identification and force estimation	71
3.11	Schematic diagram for cutting force characterization	74
3.12	Mounting points of the Kistler Dynamometer	75

3.13	Aluminium block during milling operation	76
3.14	An overview of cutting force during milling process	76
3.15	Cutting path planning for cutting force measurement	78
3.16	An example of measured cutting force signal at 1500 rpm spindle speed	78
3.17	An example of insertion of measured cutting forces into the control system	79
3.18	FFT of cutting forces at (a) 1500 rpm, (b) 2500 rpm and (c) 3000 rpm spindle speed rotation	80
4.1	General scheme of a cascade P/PI control structure	85
4.2	Block diagram of velocity control loop	86
4.3	Bode diagram of velocity open loop transfer function with gain margin of 9.37 dB at 194 Hz and phase margin of 56.4° at 96.4 Hz	88
4.4	Nyquist plot of the velocity open loop transfer function	88
4.5	Bode diagram of velocity closed-loop transfer function	89
4.6	Sensitivity function of the velocity loop	89
4.7	Bode diagram of position open loop transfer function with a gain margin of 9.1 dB at 123 Hz and a phase margin of 67.1° at 31.4 Hz	92
4.8	Nyquist plot of position control loop	92
4.9	Bode diagram of position closed-loop transfer function	93
4.10	Sensitivity function of position control loop	93
4.11	Peak value of magnitude plot for sensitivity function of the position	94
4.12	Loop peak value of magnitude plot for position closed-loop transfer function	95

4.13	(a) Position error transfer function and, (b) simulated tracking error of the <i>x</i> -axis for sinusoidal reference signal of an amplitude of 10 mm and frequency 0.5 Hz	96
4.14	Block diagram of a system with an inverse model-based disturbance observer and Q -filter	97
4.15	Equivalent block diagram of a system with an inverse model-based disturbance observer and Q -filter	98
4.16	Magnitude plot and bandwidth limitation of the Q -filter	101
4.17	Schematic diagram of the cascade P/PI position control with an inverse model-based disturbance observer	102
4.18	Cascade P/PI position control with equivalent block diagram of the inverse model-based disturbance observer	103
4.19	Bode diagram of velocity open loop transfer function for system with and without disturbance observer	104
4.20	Velocity closed loop transfer functions for <i>x</i> -axis for system with and without a disturbance observer	105
4.21	Effect of the disturbance observer on the velocity loop sensitivity transfer functions for x-axis MALAYSIA MELAKA	106
4.22	Nyquist plots of the velocity loops with and without the disturbance observer	106
4.23	Position open loop transfer function for the system with and without a disturbance observer	108
4.24	Position closed-loop transfer functions of for system with and without a disturbance observer	109
4.25	Comparison in sensitivity function of the position loop	110
4.26	Effect of the disturbance observer on the sensitivity function of; (a) velocity and (b) position open loop	111

- 4.27 Nyquist plots of the position loops with and without the disturbance 111 observer (a) Simulated tracking error and, (b) position error transfer functions 4.28113 for sinusoidal reference signal of amplitude 10 mm and frequency 0.5 Hz 4.29 Schematic diagram of cascade P/PI position controller with DFO 115 4.30 Schematic diagram of a force observer structure (single harmonic) 116 4.31 Sensitivity function for one harmonic, two harmonics and three 121
- harmonics
- 4.32 Bode diagram of closed loop transfer function of the system with 121 DFO designed for one harmonic, two harmonics and three harmonics frequencies
- 4.33 The effect of a disturbance observer on tracking errors for 122 disturbance input frequencies of one harmonic, two harmonics and three harmonics
- 4.34 Control structure of cascade P/PI with combined inverse modelbased disturbance observer plus disturbance force observer for single harmonic frequency
- 4.35 Bode plots of sensitivity function for single harmonic with add-on 126 module state-observer based controller
- 4.36 Bode plots of sensitivity function for double harmonic with add-on 126 module state-observer based controller
- 4.37 Bode plots of sensitivity function for triple harmonic with add-on 127 module state-observer based controller
- 4.38 Bode diagram of closed loop of the system DFO plus IMBDO with 127 one harmonic, two harmonics and three harmonics
- 4.39 The effect of state observer-based IMBDO plus DFO is activated 128
- 5.1 Schematic diagram for numerical analysis of cascade P/PI controller 132

- 5.2 Numerical values of MTE for cases without input disturbance and 133 with input disturbance of (a) one harmonic, (b) two harmonics, and
 (c) three harmonics
- 5.3 Numerical values of RMSE for cases without input disturbance and 136 with input disturbance of (a) one harmonic, (b) two harmonics, and (c) three harmonics
- 5.4 FFT spectral analysis of the position tracking errors without input 138 disturbance (in the middle) and with input disturbance (in the bottom) for (a) one, (b) two and (c) three harmonic contents
- 5.5 MATLAB/Simulink diagram of a cascade P/PI controller and a 140 disturbance observer with a sinusoidal based disturbance input signal
- 5.6 The effect of a disturbance observer on tracking errors for 140 disturbance input frequencies of (a) 0.2 Hz, (b) 0.2 Hz and 0.5 Hz, and (c) 0.2 Hz, 0.5 Hz and 0.8 Hz
- 5.7 Numerical values of MTE for input disturbance of (a) one harmonic, 141
 (b) two harmonics, and (c) three harmonics for cases with and without observers
- 5.8 Numerical values of RMSE for sinusoidal input disturbance of (a) 143 one harmonic, (b) two harmonics, and (c) three harmonics with and without disturbance observer
- 5.9 FFT results of position errors without the disturbance observer (in 145 the middle) and with the disturbance observer (in the bottom) for one, two and three harmonic contents
- 5.10 Schematic diagram of the control structure that includes the cascade 146
 P/PI position controller without observer feedback
- 5.11 Schematic diagram of a cascade P/PI controller with observer 147 feedback

5.12	Effect of disturbance observer on tracking errors for disturbance input frequencies of (a) 0.2 Hz, (b) 0.2 Hz and 0.5 Hz, and (c) 0.2 Hz, 0.5 Hz and 0.8 Hz with input reference signal of 0.5 mm amplitude and frequency of 1 Hz	147
5.13	Numerical values of MTE for input disturbance of (a) one harmonic, (b) two harmonics, and (c) three harmonics for cases with and without observers	148
5.14	Numerical values of RMSE for sinusoidal input disturbance of (a) one harmonic, (b) two harmonics, and (c) three harmonics with and without disturbance observer	150
5.15	FFT results indicating initial spikes	151
5.16	FFT results of position errors without the disturbance observer (in the middle) and with the disturbance observer (in the bottom) for one, two and three harmonic contents	152
5.17	Schematic diagrams of the control structure including cascade P/PI position controller with both IMBDO (purple line) and DFO (green line) without observer feedback	154
5.18	Schematic diagram of the control structure including cascade P/PI position controller with both IMBDO (purple line) and DFO (green line) with observer feedback	154
5.19	Effect of IMBDO plus DFO on tracking errors for input disturbance frequencies of (a) single harmonic (0.2 Hz), (b) double harmonics (0.2 Hz and 0.5 Hz), and (c) triple harmonics (0.2 Hz, 0.5 Hz and 0.8 Hz)	155
5.20	Spectral analysis of position error for disturbance observer with unmatched harmonics	156
5.21	Numerical values of MTE for input disturbance of (a) one harmonic, (b) two harmonics, and (c) three harmonics for cases with and without observers	158