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1  |   INTRODUCTION

Resistance against known standard attacks has become one 
of the criteria for measuring the security of a block cipher. 
Cryptanalytic attacks such as linear and differential cryptan-
alysis [1,2] have been used widely to facilitate such security 
evaluations [3–7]. However, a cipher that can resist standard 
attacks may not necessarily be secure against side-channel 
attacks, which exploits the weaknesses in its physical imple-
mentation. Leaked information such as timing information [8], 
power consumption [9,10], and electromagnetic leaks [11] can 
be exploited for key recovery. Ciphers which can resist stan-
dard attacks [12] are not necessarily secure. They can be bro-
ken from the weaknesses of their implementation, Which have 
been shown in [17]. However, the feasibility of side-channel 

attacks varies depending on the implementation, even if the 
same cipher is adopted. Nevertheless, it is important to study 
the capabilities of available ciphers to protect communications 
across various devices. Unfortunately, not all ciphers are de-
signed to resist side-channel attacks. In practice, additional 
countermeasures against side-channel attacks are implemented, 
which are mostly inefficient and costly [24]. Resistance against 
side-channel attacks at the algorithmic level helps reduce im-
plementation costs by avoiding extra countermeasures, as can 
be seen in ciphers such as PICARO [25], ZORRO [26], and 
FIDES [27], where countermeasures against side-channel anal-
ysis are defined at the algorithmic level.

CRAFT [24] is a new tweakable block cipher introduced 
in 2019, which can resist differential fault analysis. CRAFT 
is also resistant to various known standard attacks [1,28–31]. 
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Moreover, the CRAFT algorithm is nearly involutory. The 
encryption algorithm of CRAFT can be turned into decryp-
tion with minimal area cost.

In this paper, we analyze the security of the CRAFT im-
plementation against side-channel cube attacks using the 
Hamming weight leakage model. The cube attack used in 
this study is key-dependent, that is, the superpoly equations 
used vary depending on the secret key. The selection of su-
perpoly equations depends on the value of their right-hand 
sides, which are known during the online phase. Moreover, 
the recovery of the second half of the secret key depends on 
the first half of the secret key.

The superpoly equations obtained during the preprocessing 
phase are sufficient for recovering all secret key bits within a 
practical time with a success probability of 0.9990. According 
to Liskov and colleagues in Ref. [31], the additional tweak on 
a tweakable block cipher should not be considered as another 
uncertainty to the adversary. Furthermore, the security of a 
block cipher should not be compromised even if the adversary 
has control of the tweak. However, our result shows that the se-
cret key of CRAFT can be recovered using side-channel cube 
attacks when an adversary has control of its tweak.

Our Contribution. We analyze the security of CRAFT 
against side-channel cube attacks with the Hamming leakage 
assumption. Although the algorithm of CRAFT is claimed 
by the designers to be resistant to differential fault analysis, 
which is a type of side-channel attack, our work shows that 
CRAFT is not secure against cube attacks within the side-
channel attack model. To the best of our knowledge, our 
attack on CRAFT is the first attack on CRAFT within a side-
channel attack model. We point out that most of the key space 
(that is, 99.90%) can be recovered within a practical time, but 
the remaining 0.1% can only be recovered with a complexity 
faster than brute force.

Organization of the Paper. In Section  2, we describe 
the notation used in this study. In Section 3, we briefly re-
view the design of the CRAFT block cipher. Section 4 pres-
ents an outline of a side-channel cube attack. Sections  5 
and 6 show the application of side-channel cube attacks 
on CRAFT and describe the result of our work. Section 7 
concludes the paper.

2  |   NOTATION

We distinguish between the addition of �2 and the addition of ℤ
, and we use ⊕ as the addition of �2 and + as the addition of ℤ
, respectively. For summation, we denote ∑ as the summation 
of ℤ, whereas ⊕ is the summation of �2. Table 1 shows the no-
tation used in this study, unless otherwise stated. Note that all 
indexing in this paper is based on zero-based numbering (that 
is, ℛ0 is the first round). Bit positions in a vector are labeled 
in Big Endian with zero-based numbering, that is, the most 

significant bit of a vector is labeled with index 0. Throughout 
this paper, capital letters are used to represent vectors, unless 
otherwise stated. For representing terms in a polynomial, bold 
letters are used. Let B denote a vector and b be a polynomial 
term. Next, we denote Bi as the i-th bit of B and b i as the i-th 
bit of b, respectively, unless otherwise stated.

3  |   BRIEF DESCRIPTION OF THE 
CRAFT BLOCK CIPHER

In this section, we briefly describe the structure of CRAFT. 
For details on the design rationale, performance, and security 
evaluation of CRAFT, please refer to [24].

CRAFT operates with a 64-bit block size, a 128-bit secret 
key, and a 64-bit tweak. During the encryption, a plaintext is 
divided into 16 nibbles, which are grouped as a matrix similar 
to the Advanced Encryption Standard (AES) [32]. Figure 1 
shows the AES-like representation for the internal state of 
CRAFT, where each number 0 ≤ i ≤ 15 in each square box 
represents Er

i
 for any 0 ≤ r ≤ 32.

T A B L E  1   Notation

ki The i-th bit of the secret key

ti The i-th bit of the tweak

ℛi The round function at round i

Vi The plaintext nibble (v4i, v4i + 1, v4i + 2, v4i + 3)

Ti The tweak nibble (t4i, t4i + 1, t4i + 2, t4i + 3)

Er
i

The state nibble ( er
4i

, er
4i + 1

, er
4i + 2

, er
4i + 3

) before ℛr

K The secret key

V The plaintext, also known as E0

C The ciphertext, also known as E32

T The tweak

Er The internal state after r rounds

K0 The first half of K consists of (k0, k1, …, k63)

K1 The second half of K consists of (k64, k65, …, k127)

n Key size

D Degree of superpoly

I The set of cube indices

CI The |I|-dimensional Boolean cube of 2|I| vectors

�(p,i,j) The set of integers {i, i + p, i + 2p, …, q} for any 
0 < j − q ≤ p

HW(X) Hamming weight of any vector X

F I G U R E  1   State of CRAFT
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The i-th round function ℛi of CRAFT consists of multi-
ple operations such as MC, ARCi, ATKi, PN, and SB, and is 
defined as follows.

for i ∈ 0, 1, 2,…, 30 with the exception on the last round R31, 
which does not have PN and SB. Round R31 is defined as follows.

Figures 2 and 3 show the full encryption of CRAFT and 
its i-th round function, respectively.

MC is a MixColumn function, which multiplies the state 
matrix Ei for any 0 ≤ i ≤ 32 with an involutory matrix ℳ such 
that Ei+1 = MC(Ei ) =ℳ ⋅ E, where.

Further, ARCi is the addition of the i-th round constant RCi 
(refer to Table  2), with the state Ei+1 = Ei ⊕ RCi, whereas 
ATKi is the addition of the i-th round tweakey TKi with Ei 
such that Ei+1 = Ei ⊕ TKi. Although there are 32 rounds in 
CRAFT, the same set of round keys are used periodically 
every four rounds. The round key for each round is generated 
as follows.

where Q is a permutation of tweak with all i ∈ S(4,0,32). Figure 4 
shows permutation Q on tweak T, where each index i in each 
square box represents Ti.

PN is the permutation layer that permutes the bit positions 
in state Er for any 0 ≤ r < 32 such that Er+1

i
= P

(
Er

i

)
 for all 

0 ≤ r < 15. Figure 5 shows the permutation of CRAFT.

ℛi = SB◦PN◦ATKi◦ARCi◦MC

ℛ31 = ATK31◦ARC31◦MC.

ℳ =

⎡
⎢⎢⎢⎢⎣

1 0 1 1

0 1 0 1

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

.

TKi = K0 ⊕ T ,

TKi+1 = K1 ⊕ T ,

TKi+2 = K0 ⊕ Q (T ) ,

TKi+3 = K1 ⊕ Q (T ) .

F I G U R E  2   Encryption in CRAFT

F I G U R E  3   The i-th round function ℛi of CRAFT

T A B L E  2   Round constants in hexadecimal for each round

Round Round constant Round Round constant

0 0 × 11 16 0 × 82

1 0 × 84 17 0 × 45

2 0 × 42 18 0 × 26

3 0 × 25 19 0 × 97

4 0 × 96 20 0 × c3

5 0 × c7 21 0 × 61

6 0 × 63 22 0 × b4

7 0 × b1 23 0 × 52

8 0 × 54 24 0 × a5

9 0 × a2 25 0 × d6

10 0 × d5 26 0 × e7

11 0 × a6 27 0 × e7

12 0 × f7 28 0 × 71

13 0 × 73 29 0 × 34

14 0 × 31 30 0 × 12

15 0 × 14 31 0 × 85

F I G U R E  4   Permutation Q in key scheduling of the CRAFT block 
cipher

F I G U R E  5   Permutation of the CRAFT block cipher

T A B L E  3   Nibble substitution

Er
i

0 1 2 3 4 5 6 7 8 9 A B C D E F

S ( Er
i
) C A D 3 E B F 7 8 9 1 5 0 2 4 6
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SB is the nibble substitution, which acts as the non-linear 
layer of the state such that Er+1

i
= S

(
Er

i

)
, which is shown in 

Table 3.
Every component in the round function is involutory. The 

decryption of CRAFT can be performed as follows.

for i = {30, 29, …, 0} with the exception on the first round R31, 
where

The decryption procedure for CRAFT can also be shown 
as follows.

for i = {31, 30, 32, …, 1} with the exception on the last round 
ℛ0, for which

The above decryption is similar to its encryption coun-
terpart with round keys and round constants be placed in the 
reverse order while each i-th round key is generated from 
MC(TKi).

4  |   OVERVIEW OF SIDE-
CHANNEL CUBE ATTACK

The cube attack proposed by Dinur and Shamir at 
EUROCRYPT 2009 [33] is an algebraic attack that recovers 
key variables from low-degree equations. The idea of a cube 
attack is that any master polynomial describing a cipher can 
be factorized by a monomial tI, as in (1).

where

and where I represents a subset of cube indices in which all 
plaintext bits with such indices are active and take all possible 
combinations of values. As pointed out in [33], when summing 
f(K,V) over all variables in tI,

where CI is defined as an |I|-dimensional Boolean cube of 2|I| 
vectors. The resultant equation will be a low-degree equation 
with respect to key variables and is easier to solve than the 

master polynomial of a higher degree. Such a low-degree equa-
tion is called the superpoly of tI in f(K,V) (denoted by p(K,V)). 
Having sufficient low-degree superpoly equations that are solv-
able from different tIs enables us to recover the value of the 
key bits during the online phase using, for example, Gaussian 
elimination.

The problem of analyzing a block cipher with cube attacks 
is that the degree of the polynomial describing the cipher in-
creases exponentially with the number of rounds. Thus, a 
cube attack becomes ineffective if one considers the attack 
within the standard attack model. Nevertheless, considering 
a cube attack within the side-channel attack model, the at-
tack becomes more effective, as the adversary only requires 
analysis of the leaked state bits after a few rounds. Dinur and 
Shamir [34] introduced the concept of a side-channel cube 
attack in which the adversary is assumed to have access to 
only one bit of information about the internal state instead of 
the ciphertext bits. For detailed information on side-channel 
cube attacks and their applications, refer to [35–41].

Side-channel attacks using Hamming weight leakage have 
been investigated in various studies [18,42,43]. Dinur and 
Shamir [34] proposed reading the second Hamming weight bit 
from the least significant bit (LSB), which can also be found 
in several other works, such as in [35,37,44]. In other related 
work, Zhao and others [40] proposed a practical method to 
measure the Hamming weight leakage from a cipher imple-
mentation on an 8-bit microcontroller. This method can ac-
curately measure the value of Hamming weight leakage with 
probability 1 if we collect the power traces six or more times 
for the same plaintext.

5  |   APPLICATION OF SIDE-
CHANNEL CUBE ATTACKS ON 
CRAFT

In this section, we describe the cube attack on CRAFT within 
side-channel scenarios. As described in Section 3, we realize 
that all round keys for even rounds in CRAFT are derived 
from K0, whereas all round keys for odd rounds are derived 
from K1. Therefore, we apply a side-channel cube attack on 
CRAFT considering the Hamming weight leakage assump-
tion about the internal states for specific odd and even rounds 
of CRAFT. It is well known that measuring the leakage of in-
ternal states for specific rounds is possible in realistic scenar-
ios. This can be achieved by controlling the clock frequency 
of the device, as shown in [45]. More precisely, we consider 
the leakage of the internal states after ℛ0 and ℛ1 represent-
ing the odd and even rounds, respectively. Considering these 
earlier rounds, we are able to obtain low-degree polynomials 
describing the cipher. Figure 6 shows the Hamming weight 
leakage in the first two rounds of CRAFT. The framework of 
our approach is shown in Figure 7.

ℛi = MC ⋅ ARCi ⋅ ATKi ⋅ PN ⋅ SB,

ℛ31 = MC ⋅ ARC31 ⋅ ATK31.

ℛi = SB ⋅ PN ⋅ MC,
(
ATKi

)
⋅ ARCi ⋅ MC,

ℛ0 = MC ATK0 ⋅ ARC0 ⋅ MC.

(1)f (K, V) = tI (p (K, V))⊕ q (K, V) ,

(2)tI = iI ∈
∏

vi

(3)tICI ∈ ⊕
(
tI (p (K, V))⊕ q (K, V)

)
= p (K, V) ,
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We divide our attack into preprocessing and online 
phases. During the preprocessing phase, we find superpoly 
equations of degree 1 and 3 from the second bits of HW(E1) 
and HW(E2) (from the LSB) using various cubes of sizes 2 
and 3. However, we are unable to find superpoly equations 
of degree 2. After finding sufficient superpoly equations, we 
filter out those equations that are not solvable. Next, we move 
to the online phase to find the value of the right-hand side 
of each equation by summing the master polynomial over 
the same set of cube indices that were obtained during the 
preprocessing phase. To recover the value of tweakey TK0, 
we solve the system of equations using Gaussian elimination. 
Knowledge about TK0 enables us to control the intermediate 
state E1 “implicitly” to further recover TK1. More precisely, 
we determine the cube indices chosen from the tweak bits of 
T that yield superpoly equations of degree 1 and 3. In this 

case, we assume the second bit from the LSB of HW(E2) is a 
master polynomial over the bits in E1 and T. For each possi-
ble value of the cube variables in T and the value of TK0, we 
decrypt E1 to obtain the corresponding plaintexts that will be 
used in the online phase. The selection of the cube indices 
from the public variables (that is, the tweak) is described for-
mally in Observations 1–4.

Dinur and Shamir [33] used the Blum–Luby–Rubinfield 
(BLR) test to find linear superpoly equations. The BLR test 
can be further generalized to find non-linear superpoly equa-
tions, with the number of required function evaluations grow-
ing exponentially with the degree of the equation. As a result, 
to capture superpoly equations of degree d ≤ 3, we choose 
four vectors W, X, Y, Z ∈ �

n
2
 independently and uniformly at 

random, representing samples of the n-bit key. This general-
ized BLR test is given by the relation 

p (W⊕X⊕Y⊕Z, V)=p (0, V)⊕p (W, V)⊕p (X, V)

⊕p (Y, V)⊕p (Z, V)⊕p (W⊕X, V)⊕p (W⊕Y, V)

⊕p (W⊕Z, V)⊕p (X⊕Y, V)⊕p (X⊕Z, V)

⊕p (Y⊕Z, V)⊕p (W⊕X⊕Y, V)

⊕p (W⊕X⊕Z, V)⊕p (W⊕Y⊕Z, V)

⊕p (X⊕Y⊕Z, V)

To determine whether a particular selected cube tI results in 
a superpoly equation of degree d ≤ 3, we choose a total of 100 
pairs of vectors W, X, Y, Z ∈ �

n
2
. If all of these vectors satisfy 

the generalized relation, with high probability, the superpoly 
equation is of degree d  ≤  3. Because this relation will also 
capture constant superpoly equations (constant 0 and constant 
1), we need to distinguish and eliminate them from our exper-
iment. The constant 0 superpoly equation occurs when given 
any values to vectors W, X, Y, and Z, the superpoly equation is 
always equal to 0. However, the constant 1 superpoly equation 
occurs when given any values to vectors W, X, Y, and Z, the 
superpoly equation is always equal to 1. Next, to recover the 
superpoly equation of degree d, we find all terms of degree 1 
until degree d and a constant term within a superpoly equation. 
For a detailed description of how to find the terms in the super-
poly equation, we refer to Lemma 2 in [35].

After conducting the above experiment, we were able to 
find a substantial number of superpoly equations of degrees 
1 and 3. However, the number of equations required to find 
the value of the key bits varies depending on the value of the 
right-hand side (similarly, the value of the key bits). Thus, it 
is impossible for us to list all the sets of equations required 
for all keys. Nevertheless, the set of equations required can 
be generalized in Observations 1, 2, 3, and 4. These general-
izations are true for finding both sets of key bits, K0 and K1, 
which only differ in the indices of the key bits and the internal 
state used (that is, either E0 or E1) in selecting the cubes. In 
Observation 1, we generalize the linear superpoly equations 
found at the second bit from the LSB of HW(E1).

F I G U R E  6   Hamming weight leakage taken at the first two rounds

F I G U R E  7   Framework of the key-dependent side-channel cube 
attack on CRAFT
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Observation 1. Summing a master polynomial over 
tα+1tα+3 while setting other public variables to 0 yields a su-
perpoly equation k𝛼 ⊕ k𝛼+2 for any � ∈ S(4,0,64) (to find K0) or 
� ∈ S(4,64,128) (to find K1).

On the other hand, in Observation 2, we generalize cubic 
superpoly equations found at the same bit position of HW(E1).

Observation 2. Summing the master polynomial over 
tβtβ+1tα+1 while setting other public variables to 0 yields a 
superpoly equation k𝛽+2 ⊕ k𝛽+2k𝛼k𝛼+2 for any � ∈ S(4,0,64) (to 
find K0) or � ∈ S(4,64,128) (to find K1) with � ≠ �.

From Observations 1 and 2, by choosing any α such that 
k𝛼 ⊕ k𝛼+2 = 1, we can recover ki for all i ∈ S(2,0,128). Further 
observations are shown in Observations 3 and 4, which can 
be exploited to recover ki for all i ∈ S(2,1,128).

Observation 3. Summing the master polynomial over t� t�+1t� 
while setting other public variables to 0 yields a superpoly equation 
k𝛾+2 ⊕ k𝛾+2k𝜑+2 ⊕ k𝛾+2k𝜑+3 ⊕ k𝛾+2k𝜑+1k𝜑+2 ⊕ k𝛾+2k𝜑+2k𝜑+3 
for any � ,� ∈ S(4,0,64) (to find K0) or � ,� ∈ S(4,64,128) (to find 
K1) with � ≠ �.

Observation  4. Summing the master polynomial over ​t�t�+2t�+1 
while setting other public variables to 0 yields a superpoly equation 
is 1 ⊕ k𝜑+1 ⊕ k𝜑+3 ⊕ k𝛼k𝛼+2 ⊕ k𝜑+1k𝛼k𝛼+2 ⊕ k𝜑+3k𝛼k𝛼+2 with 
� ≠ �.

By choosing α and γ such that k𝛼 ⊕ k𝛼+2 = 1 and k�+2 = 1, we 
can solve the superpoly equations obtained from Observations 
3 and 4 to recover ki for all i ∈ S(2,1,128). Recovering ki for all 
i ∈ S(2,0,128) ∪ S(2,1,128), we can fully recover secret key K.

Considering the Hamming weight leakage after ℛ1,  
and applying the similar cube indices as used in E0 to E1, 
we have been able to find a system of equations similar to 
those after ℛ0, only differing in the indexes of key vari-
ables. Tables A1 and A2 in Appendix  A list superpoly 
equations resulting from the summation of the Hamming 
weights for E0 and E1.

The complexity for recovering the right-hand side of all 
linear superpoly equations from Observation 1 is 22·16 = 26 
(as there are |S(4,0,64)| = 16 different values of α). On the other 
hand, we require 16 non-linear superpoly equations of degree 
3 for recovering all ki with any i ∈ S(2,0,64) in Observation 2. 
Note that two different values of α are used here such that 
�1, �2 ∈ S(4,0,64). More precisely, 15 superpoly equations 
are chosen such that α = α1 (as there are |S(4,0,64)| − 1=15 
different values of β, excluding the instance where β = α1), 
whereas only one superpoly is chosen, where α = α2. Thus, 
this requires a 23·16 = 27 number of encryptions. Considering 
Observation 3, |S(4,0,64)| = 16 different values of φ and two 
different values of γ with �1, �2, ∈ S(4,0,64) are used. Of these 

16 equations, 15 superpoly equations are chosen such that 
γ = γ1 (as there are |S(4,0,64)| − 1 = 15 different values of φ, 
excluding the instances where φ  =  γ1), whereas only one 
superpoly is chosen where γ  =  γ2. As a result, this yields 
23.16 = 27 encryptions. Finally, following the same rule, the 
superpoly equation in Observation 4 requires |S(4,0,64)| = 16 
different values of φ and two different values of φ such that 
�1, �2, ∈ S(4,0,64). Similarly, 15 superpoly equations are cho-
sen where α = α1 (as there are |S(4,0,64)| − 1 = 15 different 
values of φ, excluding the instances where φ = α1), whereas 
one superpoly equation is chosen where α  =  α2. This also 
results in 23.16 = 27 encryptions.

Summing the above number of encryptions reveals that 
finding K0 requires 26 + 27 + 27 + 27 = 28.81 computations. 
Recovering K1, which also uses the same number of chosen 
plaintexts as in K0, requires additional computations for partial 
decryption of the predetermined values of E1. This results in 
recovering K1, requiring 28.81 + 28.81/32 = 28.85 computations. 
Considering that we have been able to find the whole secret key 
K, the total number of computations required to find the cor-
rect 128-bit key of CRAFT is reduced to 28.81 + 28.85 = 29.83. 
Applying our side-channel cube attack based on the Hamming 
weight leakage assumption using the method of [40] requires 
on average 29.83·6 = 212.41 computations.

6  |   SECRET KEYS THAT 
CANNOT BE RECOVERED WITHIN 
PRACTICAL TIME

For the secret key to be recovered in a practical time, all bits 
of K0 must be recovered with probability 1, as this enables 
us to control the intermediate state after the first round. If K0 
cannot be recovered completely from the leakages, the whole 
secret key must be recovered using brute force. Because K1 is 
not known, the time complexity for recovering the secret key 
would be larger than 264 as all key bits in K1 and some key bits 
in K0 would be recovered by brute force. Note that it is impos-
sible to recover K1 directly from HW(E2) over bits in V, T, and 
K as the degree of the master polynomial is quite high because 
of the exponential increase in degree after each round.

There are stronger keys that cannot be recovered using 
side-channel cube attacks in practical time. Propositions 6 
and 6 show the characteristics of such keys.

Proposition 1. Secret keys with 
∑15

i= 0

�
k4i ⊕ k4i+2

�
≤ 1 

or 
∑31

i= 16

�
k4i ⊕ k4i+2

�
≤ 1 can prevent full recovery by side-

channel cube attacks.

Proof. According to Observation 2, to recover kβ+2, the value of 
k𝛼 ⊕ k𝛼+2 must be equal to 1. Thus, guessing kβ+2 for any � ∈ S(4,0,128) 
in practical time is only possible when ∑15

i= 0

�
k4i ⊕ k4i+2

�
≥ 1 

and ∑31

i= 16

�
k4i ⊕ k4i+2

�
≥ 1. However, recovering kβ+2 for 
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all � ∈ S(4,0,128) requires 
∑15

i= 0

�
k4i ⊕ k4i+2

�
≥ 2 and ∑31

i= 16

�
k4i ⊕ k4i+2

�
≥ 2. This is because kβ+2 cannot be recovered 

practically when β = α. Thus, another α such that k𝛼 ⊕ k𝛼+2 = 1 
and � ≠ � is needed. Therefore, it is only possible to recover K0 or 
K1 completely in practical time when 

∑15

i= 0

�
k4i ⊕ k4i+2

�
≥ 2 and ∑31

i= 16

�
k4i ⊕ k4i+2

�
≥ 2. Even if this property is known to the ad-

versary, the adversary still needs to recover ki for all i ∈ S(2,0,128) in 
a time complexity of 232 (because the right-hand side of k𝛼 ⊕ k𝛼+2 
is known, guessing the values of kα and kα+2 only requires 2 encryp-
tions). For each possible value of ki for all i ∈ S(2,1,128), 2

64 encryp-
tions are required to guess all ki for all i ∈ S(2,1,128). The total time 
complexity for recovering is 232·264 = 296, which is impractical. □

Preposition 2. Secret keys with 
∑15

i= 0
k4i+2 ≤ 1 or ∑31

i= 16
k4i+2 ≤ 1 can prevent full recovery by side-channel 

cube attacks.

Proof. According to Observation 3, when kγ+2 =0, the 
superpoly equation would have a value of 0, which is not ex-
ploitable for key recovery. Thus, guessing kφ+1 and kφ+3 from 
Observation 3 requires 

∑15

i= 0
k4i+2 ≥ 1 and 

∑31

i= 16
k4i+2 ≥ 1. 

However, it is not possible to recover kφ+1 and kφ+3 when 
γ = φ. To recover such key bits, another value of γ such that 
kγ+2 =1, where � ≠ � is needed. Hence, it is only possible 
to recover kφ+1 and kφ+3 practically if 

∑15

i= 0
k4i+2 ≥ 2 and ∑31

i= 16
k4i+2 ≥ 2. To recover such a secret key, an adversary 

must recover the remaining 96 secret key bits. The total com-
plexity of recovering secret keys with this property requires 
a time complexity of 296, which is impractical. □

Considering the effectiveness of the key-dependent side-
channel cube attack on CRAFT, we compute the number of 
secret keys fulfilling the properties mentioned in Propositions 
1 and 2. As a result, for any s ∈ {0, 1}, there are 

(
16

1

)
= 16 com-

binations of KS in which ∑16s+ 15

i= 16s

�
k4i ⊕ k4i+2

�
= 1, while there are 

only 
(

16

0

)
= 1 combination such that 

∑16s+ 15

i= 16s

�
k4i ⊕ k4i+2

�
= 0 

and the rest 216 −

(
16

0

)
−

(
16

1

)
≈ 216 combinations in which 

∑16s+ 15

i= 16s

�
k4i ⊕ k4i+2

�
≥ 2. Similarly, there are 

(
16

1

)
= 16 combinations of 

KS, where ∑16s+ 15

i= 16s
k4i+2 = 1, 

(
16

0

)
= 1 combination of ∑16s+ 15

i= 16s
k4i+2 = 0 and 

216 −

(
16

0

)
−

(
16

1

)
≈ 216 combinations of ∑16s+ 15

i= 16s
k4i+2 ≥ 2. Table  B1 in 

Appendix B shows all characteristics of the secret keys that 
cannot be recovered within practical time and their respective 
number of combinations. Having all combinations of K for 
every condition shown in Table B1, the number of such secret 
keys is 2118.09. Because the selection of the secret key should 
be random, the probability that these keys are used is 0.001.

7  |   CONCLUSIONS

In this paper, we studied the security of the CRAFT block cipher 
against side-channel cube attacks considering the Hamming 
weight leakage assumption. In the preprocessing phase, we 

extract superpoly equations from various combinations of cube 
variables. The degree of the superpoly equations is determined 
using the BLR test with four independent random vectors. 
During the online phase, we find the right-hand side of the equa-
tions extracted during the preprocessing phase and solve the sys-
tem of equations using Gaussian elimination. First, we determine 
the right-hand side of the equations from the Hamming weight 
leakage after the first round, which can be used to recover the 
first half of the secret key, K0. Then, with the recovered K0, we 
can recover the second half of the secret key from the Hamming 
weight leakage after the second round by tweaking the internal 
state E1. Thus, on average, the secret key can be recovered in 
212.41 computations using 29.83 data. We also show the proper-
ties of stronger keys that can prevent side-channel cube attacks 
within practical time, as demonstrated in Propositions 6 and 6, 
and which make up only 0.1% of the key space. From our initial 
observation, it seems that these stronger keys could be recovered 
within practical time if we could recover more useful superpoly 
equations that are not bounded by the characteristics as in the 
aforementioned propositions. One could consider the leakage 
after E2 and add the predetermined values of variables in K0 and 
K1, performing further analysis to extract the key considering 
the plaintext variables as cubes. We believe that this may sim-
plify the master polynomials, which could make recovering the 
remaining secret keys within the 0.1% of the key space more 
practical. However, our result does not imply the actual secu-
rity weakness of CRAFT within the real-world implementation 
environment, as our attack was only conducted within an ab-
stract model based on the Hamming weight leakage assumption. 
Further investigation should be conducted to determine the ac-
tual security implications for CRAFT within the real-world at-
tack scenario. We leave extending the attack and exploiting such 
superpoly equations as an interesting work for future research.
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APPENDIX A

CUBES AND SUPERPOLYS

T A B L E  A 1   List of cubes and the corresponding superpolys 
considering the second Hamming weight bit from the LSB after ℛ0

Cube Superpoly

t0t1t60 k2 ⊕ k2k62 ⊕ k2k63 ⊕ k2k61k62 ⊕ k2k62k63

t0t4t5 k6 ⊕ k2k6 ⊕ k3k6 ⊕ k1k2k6 ⊕ k2k3k6

t4t5t8 k6 ⊕ k6k10 ⊕ k6k11 ⊕ k6k9k10 ⊕ k6k10k11

t4t5t12 k6 ⊕ k6k14 ⊕ k6k15 ⊕ k6k13k14 ⊕ k6k14k15

t4t5t16 k6 ⊕ k6k18 ⊕ k6k19 ⊕ k6k17k18 ⊕ k6k18k19

t4t5t20 k6 ⊕ k6k22 ⊕ k6k23 ⊕ k6k21k22 ⊕ k6k22k23

t0t2t5 1 ⊕ k1 ⊕ k3 ⊕ k4k6 ⊕ k1k4k6 ⊕ k3k4k6

t0t2t9 1 ⊕ k1 ⊕ k3 ⊕ k8k10 ⊕ k1k8k10 ⊕ k3k8k10

t0t2t13 1 ⊕ k1 ⊕ k3 ⊕ k12k14 ⊕ k1k12k14 ⊕ k3k12k14

t0t2t17 1 ⊕ k1 ⊕ k3 ⊕ k16k18 ⊕ k1k16k18 ⊕ k3k16k18

t0t2t21 1 ⊕ k1 ⊕ k3 ⊕ k20k22 ⊕ k1k20k22 ⊕ k3k20k22

t0t2t25 1 ⊕ k1 ⊕ k3 ⊕ k24k26 ⊕ k1k24k26 ⊕ k3k24k26

t0t2t29 1 ⊕ k1 ⊕ k3 ⊕ k28k30 ⊕ k1k28k30 ⊕ k3k28k30

t0t2t33 1 ⊕ k1 ⊕ k3 ⊕ k32k34 ⊕ k1k32k34 ⊕ k3k32k34

t0t2t37 1 ⊕ k1 ⊕ k3 ⊕ k36k38 ⊕ k1k36k38 ⊕ k3k36k38

t0t2t41 1 ⊕ k1 ⊕ k3 ⊕ k40k42 ⊕ k1k40k42 ⊕ k3k40k42

t0t2t45 1 ⊕ k1 ⊕ k3 ⊕ k44k46 ⊕ k1k44k46 ⊕ k3k44k46

t0t2t49 1 ⊕ k1 ⊕ k3 ⊕ k48k50 ⊕ k1k48k50 ⊕ k3k48k50

t0t2t53 1 ⊕ k1 ⊕ k3 ⊕ k52k54 ⊕ k1k52k54 ⊕ k3k52k54

t0t2t57 1 ⊕ k1 ⊕ k3 ⊕ k56k58 ⊕ k1k56k58 ⊕ k3k56k58

t0t2t61 1 ⊕ k1 ⊕ k3 ⊕ k60k62 ⊕ k1k60k62 ⊕ k3k60k62

t1t4t6 1 ⊕ k5 ⊕ k7 ⊕ k0k2 ⊕ k0k2k5 ⊕ k0k2k7

t4t6t9 1 ⊕ k5 ⊕ k7 ⊕ k8k10 ⊕ k5k8k10 ⊕ k7k8k10

t4t6t13 1 ⊕ k5 ⊕ k7 ⊕ k12k14 ⊕ k5k12k14 ⊕ k7k12k14

t4t6t17 1 ⊕ k5 ⊕ k7 ⊕ k16k18 ⊕ k5k16k18 ⊕ k7k16k18

t4t6t21 1 ⊕ k5 ⊕ k7 ⊕ k20k22 ⊕ k5k20k22 ⊕ k7k20k22

t1t3 k0 ⊕ k2

t5t7 k4 ⊕ k6

t9t11 k8 ⊕ k10

t13t15 k12 ⊕ k14

t17t19 k16 ⊕ k18

t21t23 k20 ⊕ k22

t25t27 k24 ⊕ k26

t29t31 k28 ⊕ k30

t33t35 k32 ⊕ k34

t37t39 k36 ⊕ k38

t41t43 k40 ⊕ k42

t45t47 k44 ⊕ k46

t49t51 k48 ⊕ k50

t53t55 k52 ⊕ k54

(Continues)

Cube Superpoly

t57t59 k56 ⊕ k58

t61t63 k60 ⊕ k62

t0t1t5 k2 ⊕ k2k4k6

t0t1t9 k2 ⊕ k2k8k10

t0t1t13 k2 ⊕ k2k12k14

t0t1t17 k2 ⊕ k2k16k18

t0t1t21 k2 ⊕ k2k20k22

t0t1t25 k2 ⊕ k2k24k26

t0t1t29 k2 ⊕ k2k28k30

t0t1t33 k2 ⊕ k2k32k34

t0t1t37 k2 ⊕ k2k36k38

t0t1t41 k2 ⊕ k2k40k42

t0t1t45 k2 ⊕ k2k44k46

t0t1t49 k2 ⊕ k2k48k50

t0t1t53 k2 ⊕ k2k52k54

t0t1t57 k2 ⊕ k2k56k58

t0t1t61 k2 ⊕ k2k60k62

t1t4t5 k6 ⊕ k0k2k6

t4t5t9 k6 ⊕ k6k8k10

t4t5t13 k6 ⊕ k6k12k14

t4t5t17 k6 ⊕ k6k16k18

t0t1t4 k2 ⊕ k2k6 ⊕ k2k7 ⊕ k2k5k6 ⊕ k2k6k7

t0t1t8 k2 ⊕ k2k10 ⊕ k2k11 ⊕ k2k9k10 ⊕ k2k10k11

t0t1t12 k2 ⊕ k2k14 ⊕ k2k15 ⊕ k2k13k14 ⊕ k2k14k15

t0t1t16 k2 ⊕ k2k18 ⊕ k2k19 ⊕ k2k17k18 ⊕ k2k18k19

t0t1t20 k2 ⊕ k2k22 ⊕ k2k23 ⊕ k2k21k22 ⊕ k2k22k23

t0t1t24 k2 ⊕ k2k26 ⊕ k2k27 ⊕ k2k25k26 ⊕ k2k26k27

t0t1t28 k2 ⊕ k2k30 ⊕ k2k31 ⊕ k2k29k30 ⊕ k2k30k31

t0t1t32 k2 ⊕ k2k34 ⊕ k2k35 ⊕ k2k33k34 ⊕ k2k34k35

t0t1t36 k2 ⊕ k2k38 ⊕ k2k39 ⊕ k2k37k38 ⊕ k2k38k39

t0t1t40 k2 ⊕ k2k42 ⊕ k2k43 ⊕ k2k41k42 ⊕ k2k42k43

t0t1t44 k2 ⊕ k2k46 ⊕ k2k47 ⊕ k2k45k46 ⊕ k2k46k47

t0t1t48 k2 ⊕ k2k50 ⊕ k2k51 ⊕ k2k49k50 ⊕ k2k50k51

t0t1t52 k2 ⊕ k2k54 ⊕ k2k55 ⊕ k2k53k54 ⊕ k2k54k55

t0t1t56 k2 ⊕ k2k58 ⊕ k2k59 ⊕ k2k57k58 ⊕ k2k58k59

T A B L E  A 1   (Continued)
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T A B L E  A 2   List of cubes and the corresponding superpolys 
considering the second Hamming weight bit from the LSB after ℛ1

Cube Superpoly

t1t3 k64 ⊕ k66

t5t7 k68 ⊕ k70

t9t11 k72 ⊕ k74

t13t15 k76 ⊕ k78

t17t19 k80 ⊕ k82

t21t23 k84 ⊕ k86

t25t27 k88 ⊕ k90

t29t31 k92 ⊕ k94

t33t35 k96 ⊕ k98

t37t39 k100 ⊕ k102

t41t43 k104 ⊕ k106

t45t47 k108 ⊕ k110

t49t51 k112 ⊕ k114

t53t55 k116 ⊕ k118

t57t59 k120 ⊕ k122

t61t63 k124 ⊕ k126

t0t1t5 k66 ⊕ k66k68k70

t0t1t9 k66 ⊕ k66k72k74

t0t1t13 k66 ⊕ k66k76k78

t0t1t17 k66 ⊕ k66k80k82

t0t1t21 k66 ⊕ k66k84k86

t0t1t25 k66 ⊕ k66k88k90

t0t1t29 k66 ⊕ k66k92k94

t0t1t33 k66 ⊕ k66k96k98

t0t1t37 k66 ⊕ k66k100k102

t0t1t41 k66 ⊕ k66k104k106

t0t1t45 k66 ⊕ k66k108k110

t0t1t49 k66 ⊕ k66k112k114

t0t1t53 k66 ⊕ k66k116k118

t0t1t57 k66 ⊕ k66k120k122

t1t4t5 k70 ⊕ k64k66k70

t4t5t9 k70 ⊕ k70k72k74

t4t5t13 k70 ⊕ k70k76k78

t4t5t17 k70 ⊕ k70k80k82

t0t1t4 k66 ⊕ k66k70 ⊕ k66k71 ⊕ k66k69k70 ⊕ k66k70k71

t0t1t8 k66 ⊕ k66k74 ⊕ k66k75 ⊕ k66k73k74 ⊕ k66k74k75

t0t1t12 k66 ⊕ k66k78 ⊕ k66k79 ⊕ k66k77k78 ⊕ k66k78k79

t0t1t16 k66 ⊕ k66k82 ⊕ k66k83 ⊕ k66k81k82 ⊕ k2k82k83

t0t1t20 k66 ⊕ k66k86 ⊕ k66k87 ⊕ k66k85k86 ⊕ k66k86k87

t0t1t24 k66 ⊕ k66k90 ⊕ k66k91 ⊕ k66k89k90 ⊕ k66k90k91

t0t1t28 k66 ⊕ k66k94 ⊕ k66k95 ⊕ k66k93k94 ⊕ k66k94k95

t0t1t32 k66 ⊕ k66k98 ⊕ k66k99 ⊕ k66k97k98 ⊕ k2k98k99

t0t1t36 k66 ⊕ k66k102 ⊕ k66k103 ⊕ k66k101k102 ⊕ k66k102k103

(Continues)

Cube Superpoly

t0t1t40 k66 ⊕ k66k106 ⊕ k66k107 ⊕ k66k105k106 ⊕ k66k106k107

t0t1t44 k66 ⊕ k66k110 ⊕ k66k111 ⊕ k66k109k110 ⊕ k66k110k111

t0t1t48 k66 ⊕ k66k114 ⊕ k66k115 ⊕ k66k113k114 ⊕ k66k114k115

t0t1t52 k66 ⊕ k66k118 ⊕ k66k119 ⊕ k66k117k118 ⊕ k66k118k119

t0t1t56 k66 ⊕ k66k122 ⊕ k66k123 ⊕ k66k121k122 ⊕ k66k122k123

t0t1t60 k66 ⊕ k66k126 ⊕ k66k127 ⊕ k66k125k126 ⊕ k66k126k127

t0t4t5 k70 ⊕ k66k70 ⊕ k67k70 ⊕ k65k66k70 ⊕ k66k67k70

t4t5t8 k70 ⊕ k70k74 ⊕ k70k75 ⊕ k70k73k74 ⊕ k70k74k75

t4t5t12 k70 ⊕ k70k78 ⊕ k70k79 ⊕ k70k77k78 ⊕ k70k78k79

t4t5t16 k70 ⊕ k70k82 ⊕ k70k83 ⊕ k70k81k82 ⊕ k6k82k83

t4t5t20 k70 ⊕ k70k86 ⊕ k70k87 ⊕ k70k85k86 ⊕ k70k86k87

t0t2t5 1 ⊕ k65 ⊕ k67 ⊕ k68k70 ⊕ k65k68k70 ⊕ k67k68k70

t0t2t9 1 ⊕ k65 ⊕ k67 ⊕ k72k74 ⊕ k65k72k74 ⊕ k67k72k74

t0t2t13 1 ⊕ k65 ⊕ k67 ⊕ k76k78 ⊕ k65k76k78 ⊕ k67k76k78

t0t2t17 1 ⊕ k65 ⊕ k67 ⊕ k80k82 ⊕ k65k80k82 ⊕ k67k80k82

t0t2t21 1 ⊕ k65 ⊕ k67 ⊕ k84k86 ⊕ k65k84k86 ⊕ k67k84k86

t0t2t25 1 ⊕ k65 ⊕ k67 ⊕ k88k90 ⊕ k65k88k90 ⊕ k67k88k90

t0t2t29 1 ⊕ k65 ⊕ k67 ⊕ k92k94 ⊕ k65k92k94 ⊕ k67k92k94

t0t2t33 1 ⊕ k65 ⊕ k67 ⊕ k96k98 ⊕ k65k96k98 ⊕ k67k96k98

t0t2t37 1 ⊕ k65 ⊕ k67 ⊕ k100k102 ⊕ k65k100k102 ⊕ 
k67k100k102

t0t2t41 1 ⊕ k65 ⊕ k67 ⊕ k104k106 ⊕ k65k104k106 ⊕ 
k67k104k106

t0t2t45 1 ⊕ k65 ⊕ k67 ⊕ k108k110 ⊕ k65k108k110 ⊕ 
k67k108k110

t0t2t49 1 ⊕ k65 ⊕ k67 ⊕ k112k114 ⊕ k65k112k114 ⊕ 
k67k112k114

t0t2t53 1 ⊕ k65 ⊕ k67 ⊕ k116k118 ⊕ k65k116k118 ⊕ 
k67k116k118

t0t2t57 1 ⊕ k65 ⊕ k67 ⊕ k120k122 ⊕ k65k120k122 ⊕ 
k67k120k122

t0t2t61 1 ⊕ k65 ⊕ k67 ⊕ k124k126 ⊕ k65k124k126 ⊕ 
k67k124k126

t1t4t6 1 ⊕ k69 ⊕ k71 ⊕ k64k66 ⊕ k64k66k69 ⊕ k64k66k71

t4t6t9 1 ⊕ k69 ⊕ k71 ⊕ k72k74 ⊕ k69k72k74 ⊕ k71k72k74

t4t6t13 1 ⊕ k69 ⊕ k71 ⊕ k76k78 ⊕ k69k76k78 ⊕ k71k76k78

t4t6t17 1 ⊕ k69 ⊕ k71 ⊕ k80k82 ⊕ k69k80k82 ⊕ k71k80k82

T A B L E  A 2   (Continued)
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APPENDIX B

CHARACTERISTICS OF STRONGER SECRET KEYS

T A B L E  B 1   Characteristics of stronger secret keys, with a =
∑15

i= 0

�
k4i ⊕ k4i+2

�
, b =

∑31

i= 16

�
k4i ⊕ k4i+2

�
, c =

∑15

i= 0

�
k4i+2

�
and d =

∑31

i= 16

�
k4i+2

�

a b c d Number of combinations

0 0 0 0 1·264 = 264

0 0 0 1 24·264 = 268

0 0 0 ≥2 216·264 = 280

0 0 1 0 24·264 = 268

0 0 1 1 24·24·264 = 272

0 0 1 ≥2 24·216·264 = 284

0 0 ≥2 0 216·264 = 280

0 0 ≥2 1 216·24·264 = 284

0 0 ≥2 ≥2 216·216·264 = 296

0 1 0 0 24·264 = 268

0 1 0 1 24·24·264 = 272

0 1 0 ≥2 24·216·264 = 284

0 1 1 0 24·24·264 = 272

0 1 1 1 24·24·24·264 = 276

0 1 1 ≥2 24·24·216·264 = 288

0 1 ≥2 0 24·216·264 = 284

0 1 ≥2 1 24·216·24·264 = 288

0 1 ≥2 ≥2 24·216·216·264 = 2100

0 ≥2 0 0 216·264 = 280

0 ≥2 0 1 216·24·264 = 284

0 ≥2 0 ≥2 216·216·264 = 296

0 ≥2 1 0 216·24·264 = 284

0 ≥2 1 1 216·24·24·264 = 288

0 ≥2 1 ≥2 216·24·216·264 = 2100

0 ≥2 ≥2 0 216·216·264 = 296

0 ≥2 ≥2 1 216·216·24·264 = 2100

0 ≥2 ≥2 ≥2 216·216·216·264 = 2112

1 0 0 0 24·264 = 268

1 0 0 1 24·24·264 = 272

1 0 0 ≥2 24·216·264 = 284

1 0 1 0 24·24·264 = 272

1 0 1 1 24·24·24·264 = 276

1 0 1 ≥2 24·24·216·264 = 288

1 0 ≥2 0 24·216·264 = 284

1 0 ≥2 1 24·216·24·264 = 288

1 0 ≥2 ≥2 24·216·216·264 = 2100

1 1 0 0 24·24·264 = 272

1 1 0 1 24·24·24·264 = 276

1 1 0 ≥2 24·24·216·264 = 288

1 1 1 0 24·24·24·264 = 276

1 1 1 1 24·24·24·24·264 = 280

(Continues)
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a b c d Number of combinations

1 1 1 ≥2 24·24·24·216·264 = 292

1 1 ≥2 0 24·24·216·264 = 288

1 1 ≥2 1 24·24·216·24·264 = 292

1 1 ≥2 ≥2 24·24·216·216·264 = 2104

1 ≥2 0 0 24·216·264 = 284

1 ≥2 0 1 24·216·24·264 = 288

1 ≥2 0 ≥2 24·216·216·264 = 2100

1 ≥2 1 0 24·216·24·264 = 288

1 ≥2 1 1 24·216·24·24·264 = 292

1 ≥2 1 ≥2 24·216·24·216·264 = 2104

1 ≥2 ≥2 0 24·216·216·264 = 2100

1 ≥2 ≥2 1 24·216·216·24·264 = 2104

1 ≥2 ≥2 ≥2 24·216·216·216·264 = 2116

≥2 0 0 0 216·264 = 280

≥2 0 0 1 216·24·264 = 284

≥2 0 0 ≥2 216·216·264 = 296

≥2 0 1 0 216·24·264 = 284

≥2 0 1 1 216·24·24·264 = 288

≥2 0 1 ≥2 216·24·216·264 = 2100

≥2 0 ≥2 0 216·216·264 = 296

≥2 0 ≥2 1 216·216·24·264 = 2100

≥2 0 ≥2 ≥2 216·216·216·264 = 2112

≥2 1 0 0 216·24·264 = 284

≥2 1 0 1 216·24·24·264 = 288

≥2 1 0 ≥2 216·24·216·264 = 2100

≥2 1 1 0 216·24·24·264 = 288

≥2 1 1 1 216·24·24·24·264 = 292

≥2 1 1 ≥2 216·24·24·216·264 = 2104

≥2 1 ≥2 0 216·24·216·264 = 2100

≥2 1 ≥2 1 216·24·216·24·264 = 2104

≥2 1 ≥2 ≥2 216·24·216·216·264 = 2116

≥2 ≥2 0 0 216·216·264 = 296

≥2 ≥2 0 1 216·216·24·2@64 = 2@100

≥2 ≥2 0 ≥2 216·216·216·264 = 2112

≥2 ≥2 1 0 216·216·24·264 = 2100

≥2 ≥2 1 1 216·216·24·24·264 = 2104

≥2 ≥2 1 ≥2 216·216·24·216·264 = 2116

≥2 ≥2 ≥2 0 216·216·216·264 = 2112

≥2 ≥2 ≥2 1 216·216·216·24·264 = 2116

T A B L E  B 1   (Continued)


