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ABSTRACT Fine-grained visual classification (FGVC) is challenging task due to discriminative feature
representations. The attention-based methods show great potential for FGVC, which neglect that the deeply
digging inter-layer feature relations have an impact on refining feature learning. Similarly, the associating
cross-layer features methods achieve significant feature enhancement, which lost the long-distance depen-
dencies between elements. However, most of the previous researches neglect that these two methods are
mutually correlated to reinforce feature learning, which are independent of each other in related models.
Thus, we adopt the respective advantages of the two methods to promote fine-gained feature representations.
In this paper, we propose a novel CLNET network, which effectively applies attention mechanism and
cross-layer features to obtain feature representations. Specifically, CL-NET consists of 1) adopting self-
attention to capture long-rang dependencies for each element, 2) associating cross-layer features to reinforce
feature learning,and 3) to cover more feature regions,we integrate attention-based operations between output
and input. Experiments verify that CLNET yields new state-of-the-art performance on three widely used fine-
grained benchmarks, including CUB-200-2011, Stanford Cars and FGVC-Aircraft. The url of our code is

https://github.com/dlearing/CLNET.git.

INDEX TERMS Associating cross-layer features, attention-based operations, self-attention, CLNET.

I. INTRODUCTION

It is one giant leap of image classification with computer
vision [37]-[39]. FGVC distinguishes objects of subcate-
gories, e.g.,aircraft models [1], flower species [2], etc. It is
gaint value to force on the subtle and discriminative fea-
tures due to similarity in object appearances [3]-[6], [36].
However, it is a challenging task because of the difficulty
of obtaining hidden features. Currently, weakly supervised
learning approaches with image-level labels are the typ-
ical ways to achieve FGVC, i.e, region proposal meth-
ods, attention-based methods and transformer methods.Each
method has pros and cons.

Currently, region proposal methods [7]-[11], [19], [33]-
[35] rely on the local region proposing to identify the dis-
criminative regions. Fu et al. [20] proposed RA-CNN, which
can gradually seek out discriminative regions and merge
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multiple classification results to achieve image classification.
Zheng et al. [21] proposed MA-CNN, which obtains rich
image features by the feature representation of multiple local
feature regions. Liu ef al. [9] proposed filtration and distilla-
tion learning (FDL), which describes object-based features
learning and region-based features learning as “teacher”
and “student”, respectively. FDL [9] provides better super-
vision for region-based features learning. However, these
methods rely on complex algorithms to select discriminative
parts,which makes the network difficult to train.

On the other hand, attention-based methods are gaint leap
for FGVC,which utilizes attention operations to get better
classification results. One strategy is the model with fixed
network structure, e.g., StackedLSTM [8], TASN [12], which
hinders the availability in practical use. Another strategy is to
use attention mechanism to design generic block [13], [14],
which can be integrate CNN conveniently. However, those
generic blocks can only improve deep layers feature extrac-
tion,but perform poorly in shallow layers. On the contrary, the
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FIGURE 1. A comparison of CLNET50 and VIT on CUB-200-2011 [29].

shallow layers contain rich spatial features. Thus, different
layers features are complementary. Unfortunately, existing
methods neglect that the interaction of cross-layer features
or only simply concatenate features [15].

Recently, transformer was used in FGVC [17], [22], [23],
which relies on raw multiply self-attention weights to learn
the discriminative features and performs very well. These
show that the long-range dependencies among elements are
great value for FGVC. However, we find that methods are still
in learning region proposing. Specially, methods demand to
initialize the size of the image patch with sliding window,
which may split the discriminative regions to harm local
region proposing. Moreover, methods only utilize K tokens
with the maximum value and give up other tokens, which
causes the loss of complementary parts.

To address above challenges, we propose a novel FGVC
model CLNET to reinforce the discriminative features extrac-
tion. We observe that self-attenton method and cross-layer
method can mutually reinforce fine-grained feature learning.
As a result of this, the CLNET consists of self-attention mod-
ule, high-level features module and associating cross-layer
features module. First, the self-attention module is non-local
block [26], which can obtain long-distance dependencies for
each element. Second, the high-level feature module is DBT
block [13], which can effectively learn deep semantic rep-
resentations. Finally, associating cross-layer features module
is R3Net [27], which integrates different layers features to
achieve feature representation saliency enhancement.

To the best of our knowledge, the discriminative features of
the object will be lost in the propagation CNNs. To minimize
the loss of valuable information,we adopt a combination of
self-attention and cross-layer to achieve enhanced feature
representations. In order to exploit the dependencies between
all pixels, we use non-local block [26], [13] to reinforce deep
feature representations. To utilize the complementarity of
different convolution layer, we employ R*Net [27] to achieve
discriminative feature learning. Meanwhile, we are the first to
adopt the self-attention mechanism and cross-layer features
to achieve FGVC. Our CLNET outperforms existing vision
transformer VIT [16], TransFG [17] models on the bench-
mark datasets, as shown in FIGURE 1. Our contributions are
summarized as follows:

1) We propose a novel model CLNET which demonstrates
the effectiveness of associating self-attention mechanism
with cross-layer features.

2) Currently, CLNET still outperforms vision transformers
in FGVC tasks.
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Il. RELATED WORK

In this section, we review the existing FGVC works, which
are relevant to our research. To overcome the challenging
for FGVC, the research methods are composed of attention
models and feature fusion models.

A. ATTENTION METHODS

Feature learning is an important role for FGVC. Due to
the subtle differences among subcategories, we only uti-
lize CNN to extract deep semantic features, which hin-
ders further the representation learning. To address above
problems, Lin et al. [3] proposed bilinear pooling model,
which adopts two CNN to get the pairwise feature, and
then uses outer product to generate high dimensional vec-
tor. Hu er al. [18] proposed SENET, which caculates the
weight of each channel to enhance significant features for
realizing feature recalibration. Zheng et al. [12] adopted tri-
linear attention module to extract fine attention map and
designed an attention-based sampler to highlight the dis-
criminative regions. Woo et al. [14] proposed the Convolu-
tional Block Attention Module (CBAM) model, which is
general module that combines spatial attention and chan-
nel attention. Zheng et al. [13] proposed the deep bilinear
transformer (DBT), which learns fine-grained feature rep-
resentation by semantic grouping and intra-group interac-
tion,and CNN performs well with DBT blocks. Note that
Dosovitskiy et al. [16] proposed VIT, which is first to apply
transformer to image classification.Meanwhile, He et al. [17]
proposed the first transformer model of FGVC (i.e. TransFG),
which uses the raw attention weights to select the discrimina-
tive regions of the image. However, attention-based generic
blocks, e.g.,CBAM,DBT,etl. merely utilize deep semantic
information,and VIT-based models hava to face super large-
scale training dataset. Instead, our model with non-local [26]
operator achieves global attention,w hich is a flexible network
framework.

B. FEATURE FUSION METHODS

Due to the success of resnet [28], resnet-based models
are widely used in visual tasks. while one convolution
layer contains limited discriminative features for FGVC,
thus researchers try to utilize multi-layer features for fea-
ture extraction. These approaches rely on the interaction of
cross-layer features to increase attention to the region of
interest. In general, low-level contains rich spatial features
and the object location is accurate. On the contrary, high-
level is only rich in semantic features. Long et al. [24] used
feature representations of different convolutional layers to
achieve better image segmentation. Yu et al. [15] proposed
HBP, which refines the feature representation capabilities by
cross-layer bilinear pooling. Qi ef al. [25] proposed high
resolution remote sensing image road extraction algorithm
based on multi-feature fusion, which fuses spectral features
with spatial features to improve the recognition performance
of road meshes. However, inter-layer merely simply linear
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TABLE 1. An illustration of integrating non-Local and DBT into resnet50.

Stage Output ResNet-50 DBTNET-50 CLNETS0
I 112X 112 7 % 7, 64, stride 2
3 x 3 max pool, stride 2
1x1,64 1x1,64 [1 X 1,64
I 56 56 l3><3,64 ]xs lsxs,e4 ]x3 3 x 3,64
1x 1,256 1% 1,256 1% 1,256
Non-localblock
ll X 1,128] 1x 1,128] [1x 1,128 1
3% 3,128 x 4 3x3,128| x 4 3x 3,128
1 2828 1x1,512 1x1,512 1% 1,512
Non-localblock
1x 1,256 DBT block [DBT block 1
v 14% 14 [3><3,256]><6 3><3,256]><6 3% 3,256
1x1,1024 1x1,1024 1x1,1024
Non-localblock
1x1,512 DBT block DBT block
v 7x7 [3><3,512]><3 3><3,512]><3 3><3,512]><3
1x1,2048 1x1,2048 1x1,2048

pooling calculations are unable to get sufficient feature rela-
tionship. Therefore, our model refine cross-layer feature for
saliency detection with RANET [27].

lll. METHOD

In this section, we introduce the proposed CLNET, which
contains three modules, i.e., long-range dependencies mod-
ule, deep semantic information extraction module, and asso-
ciating cross-layer feature module.

An overview of the proposed CLNET is show in FIG-
URE 2. Note that we show the framework of the bakbone
in Table 1. From FIGURE 2, it can be observed that we
integrate non-local blocks [26] and DBT blocks [13] in the
resnet [28] as backbone. Subsequently, the integrated feature
consists of 1) refine each layer feature, 2) integrate high-
level features(H) and integrate low-level features(L).Next,we
take H and L as R3Net [27] inputs to reinforce the salient
features. Meanwhile, R®Net uses H as the saliency feature,
which shows that applying supervision signals to H can obtain
better saliency features. Finally, the last saliency map (S,) is
used as input to the fully convolutional network (FCN [24])
to get the classification results via softmax.

A. LONG-RANGE DEPENDENCIES MODULE

If the global features can be effectively used in the FGVC, the
image classification performance can be further improved.
To address this problem, we utilize non-local block [26],
which captures the long-rang dependencies between any
two positions. Furthermore, experiments show that non-local
block [26] can be integrated into resnet [28] and perform well,
so it will be good to enhance feature learning. Specifically, the
non-local block is as follow:

Zi = Wzyi + X ()

where y; is a non-local operation, x; is an input feature, w; is
a convolution operation and the output channels are equal to
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Xi,Zj 1s aresidual connection. The detailed calculation process
is shown in FIGURE 3.

B. DEEP SEMANTIC INFORMATION EXTRACTION MODULE
Currently, attention mechanism plays important role for deep
feature representations. Typically, DBT [13] adopts seman-
tic grouping and intra-group bilinear interaction to promote
feature learning. To verify the performance of DBT, ablation
studies on integrated stages show that DBT block is insuffi-
cient to get low-level features, whereas it is effective for the
extraction of high-level features. Concurrently, dbtnet [13] is
a model built by integrating DBT on resnet. Thus, we merely
add non-local blocks on dbtnet [13] as backbone. Meanwhile,
the loss function of DBTnet is as follow:

B
Lpprner = Le+2 ) LY @
b

C. ASSOCIATING CROSS-LAYER FEATURE MODULE

1) OPTIMIZED INTEGRATED FEATURES

As far as we know, we are the first to apply R3Net [28] to
the FGVC. Specifically, R’Net only uses upsampling feature
maps and concatenation feature maps. To alleviate the issue,
we use attention mechanism, which can better restrain the
features with weak correlation and enhance the features with
strong correlation. To be specific, we utilize convolutional
block attention module [14] (CBAM) to achieve better fine-
grained feature representation, as shown below

o' =M1
0% = My,(0") ® O' 3)

where ® represents element-wise multiplication, I € Rc*h*w
is input feature map, Mc € Rc*1*1 is channel feature map,
Ms € RI*H*W is spatial feature map, O2 is final output.
In short, the calculation formulas of Mc and Ms are:

M.(I) = o ((MLP(AvgPool(I))) + MLP(MaxPool(I))) (4)
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Backbone integrated 3
features R Net
Stage I
(+Non-Local)
Saliency map(s,)
Stage I . nl Classification
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L Refinement Refinement

Stage IV Block == Block
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FIGURE 2. Overview of the proposed CLNET. Resnet is the backbone. The low-level features consist of stage I, stage Il and stage IlI,
and the high-level features consist of stage IV and stage V.L is low-level Integrated Features.H is high-level Integrated Features.
Non-blocks are integrated into stage II, stage 1l and stage 1V, and DBT blocks are integrated into stage IV and stage V. RESNET
integrated with non-blocks and DBT blocks is the backbone network.

f=0 *@
=[c/2,h*w]*[c/2,h*w
=[h*w, h*W]
:Conv f=c/
[C,h,W pron el [c/2,h,w] [C/z,h*W] softmax N
e Refined
e
X 0 :Conv f=c/2—P> e | Flatten _—>.— g
Permute [C/Z,h*W]
c:channel otz (/2,0 W] /2l [h*W'C/Z][h*W h*w [c/2,h*w]
wwidth g " —> e >l g —>0—> Y y=Ih*wh*wl*[h*w,c/2]
Conv:1*1 =[h*w,c/2]
[c/2,h,w] [c/2,h*w] [h*w,c/2] [h*w,c/2]

FIGURE 3. The computational process of non-local block.

where o denotes the sigmoid function,MLP is multi-layer
perceptron.

M(0Y) = o (F7*T([AvgPool(O")]; [MaxPool(O")])) (5)

where f 7*7 is a convolution operation with the filter size of
7*7.

2) SALIENT FEATURE NETWORK

Saliency detection aims to search salient region in the image,

i.e.,the region of interest Rol). In this paper, we use R>Net.
The optimized network structure is shown in FIGURE 4.

D. NETWORK ARCHITECTURE
We propose that non-local blocks and DBT blocks can be
integrated into resnet, as shown in Table 1.

IV. EXPERIMENTS
In this section, we evaluate and analyze the performance of
CLNET on three fine-grained benchmarks.
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TABLE 2. Detailed statistics of the three datasets used in this paper.

Dataset Total Class Train Test
CUB-200-2011[29] 11788 200 5994 5794
Stanford Cars[30] 16185 196 8144 8041
FGVC-Aircraft[1] 10200 102 6667 3533

A. EXPERIMENTS SETUP

1) DATASETS

To evaluate the effectiveness of CLNET, we conducted exper-
iments on tree widely used datasets, including CUB-200-
2011 [29], Stanford Cars [30] and FGVC-Aircraft [1]. The
detailed description of quantity,category numbers and the
standard training/testing splits can be found in Table 2.

2) IMPLEMENTATION

The pytorch was used as deep learning freamwork.Our
CLNET is trained on 3 GPU (i.e, GeForce RTX 2070
8GB). We adopt the common setting to pre-train CLNET on
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FIGURE 4. An illustration of optimized integrated features.

ImageNet [31]. To speed up the training process and reduce
the over-fitting issue,we utilize the well-trained R3Net [27]
on MSRAI10K. It can be observed that the loss function of
CLNET is as follows:

L = Lprner ©)

Concurrently, referring to methods of most FGVC mod-
els,we used SGD optimizer without momentum and weight
decay,and the batch size was set to 48. Note that for a fair
comparison, loss function(L) has the same parameters with
DBTNET [13].

B. PERFORMANCE COMPARISON
To verify the advantage of CLNET,we compared it with
other state-of-the-art (SOAT) networks on three bench-
mark datasets. From Table 3, it can be observed that
CLNET achieves SOAT competitive performance on CUB-
200-2011 [29], Stanford Cars [30] and FGVC-Aircraft [1].
Specifically, the 3th column of Table 3 shows the com-
parison results on CUB [29]. For resnet-101 based method,
we compare CLNET101 to the SOAT StackedL STM,and
achieve 2.7% improvements. Moreover, CLNET101 gets
1.4% performace gain compared to TransFG [17] and reaches
93.1% accuracy. HBP [15] uses hierarchical bilinear pooling
to extract discriminant features, which ignores low-level fea-
tures. FDL [9] utilizes the filtration learning with discrimina-
tion matching method to locate discriminative regions, which
ignores the associations between global features of the image.
StackedLSTM [8] uses LSTM for image classification, and
its fixed network structure hinders application in practice.
TransFG uses raw attention weights to select discriminant
regions of the image, whereas the initial image segmentation
ignores the association between pixels. However, our CLNET
maintains simplicity and robustness.

82380

Classification
Network

Cony

Dilated Conv

Then, we analyze the results of the cars [30] experiment,
which shows that CLNET is in absolute advantage. Mean-
while, we observe that the models that use CNN as the back-
bone perform better than transform in this dataset. Directly,
our model improves by 1.9% compared to TransFG [17] in
terms of accuracy metric even if the backbone network is
resnet-50. Our analysis is related to the fact that the image
noise in this dataset is less, and the discriminative features of
the image are easy to extract.

Similarly, the performance of CLNET in aircraft dataset
is also excellent. Due to the subtle differences between the
objects in this dataset, image classification is difficult. Cur-
rently, a few FGVC models use this dataset for experiments.
MACNN [21] obtains feature regions by generating mul-
tiple significant feature regions. FDL [9] conducts region
proposing via filtration learning. Experiments show that the
accuracy of CLNETS50 is improved by 1.69% compared with
FDL and reaches 95.06% accuracy.

Since the non-local blocks and cross-layer features fusion
are adopted,the efficiency of the CLNET should be analyzed.
We use memory size and the efficiency of images processing
as metrics to compute the complexity of the proposed method.

From Table 4, it can be seen that the performance of
CLNET are lower than that of renet50. We believe that this
is because of the relatively complex network structure of
CLNET. Concurrently, we can see that CLNET has com-
pletely surpassed the vision transformer which also proves
the superiority of CLNET.

C. ABLATION STUDIES

We conducted ablation studies on CLNETS50 to illustrate
the impact of different model structures on accuracy metric.
Ablation studies have the same effects on the three datasets,

so these experiments were done only on the CUB-200-
2011 [29] dataset.
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TABLE 3. Comparison results on CUB-200-2011, stanford cars, FGVC-aircraft.

Accuracy(%)
Method Backbone CUB-200-2011 Stanford Cars FGVC-Aircraft
RACNN[20] VGG19 85.2 925 -
MACNN[21] VGG19 86.5 928 89.9
TASN[12] VGG19 86.1 92.4 -
FDL[9] VGG19 86.84 91.52 -
MAMCJ32] Resnet-50 86.2 93.0 -
NTS-Net[10] Resnet-50 87.5 93.3 91.4
DBTNet[13] Resnet-50 87.5 94.1 91.2
TASN[12] Resnet-50 87.9 93.8 -
DBTNet[13] Resnet-101 88.1 94.5 91.6
FDL[9] DenseNet161 89.09 94.02 91.27
FDL [9] Resnet-50 - - 93.37
HBP[15] VGG-16 87.1 93.7 90.3
StackedLSTM[8] | GoogleNet 90.4 - -
ViT[16] ViT-B_16 90.3 93.7 -
TransFG[17] ViT-B_16 91.7 94.8
CLNET50 Resnet-50 92.4 96.7 95.06
CLNET101 Resnet-101 93.1 97.4 -

TABLE 4. Performance comparison results on CUB-200-2011.

TABLE 6. CLNET50 adds non-local block at different stages.

images/s model size Acc.(%)
Resnet50[28] 2301 23.92M 85.49
FDL [9] 1791 28.51M 88.35
HBP[15] 1826 17.5M 87.15
VIT[16] 799 86.6M 90.3
CINET 1672 46.3M 92.4

TABLE 5. DBTNET50 adds non-local block at different stages.

Stage Accuracy (%)
baseline 85.1
I 85.4
11 86.1
11 +I11 87.5
11 +II +1V 89.9
I+ +HVHV 90.1

1) NON-LOCAL BLOCKS
It is important to verify the effectiveness of non-local blocks
in CLNET.

First, in order to clarify the power of non-local blocks,
we add non-local block into DBTNETS50 [13] to demonstrate
the influence on deep feature learning.

In Table 5, baseline is resnet50 without non-local blocks.
We can observe that deeply integrating non-local block into
stage II and stage III brings 0.7% accuracy gains compared to
baseline. Meanwhile, integrating non-local block into stage V
can not significantly improve the performance. Thus, we inte-
grate non-local block into Stage II, Stage III and Stage IV in
DBTNet50 [13].

Secondly, to further verify the influence of non-local block
on the model classification results, we conduct more experi-
ments with non-local blocks adding to different stages.

In Table 6, we define the baseline as CLNET50 without
non-local blocks. We can observe the impact of adding non-
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Stage Accuracy (%)
baseline 89.6
1 89.7
11 90.3
11 +111 91.5
11 +IT +IV 92.4
11+ +IV+V 92.6

TABLE 7. Comparison of CBAM [14] in classification accuracy.

Block Accuracy (%)
no cbam 91.5
+cbam 92.4

local blocks at different stages on the classification results.
Specifically, if we add non-local blocks at every stage, the
accuracy can improve by 3.0%. Even if we only add non-local
blocks in Stage II, there is 0.7% improvement over baseline.
However, it can be observed that integrating non-local blocks
into stage I and stage V cannot significantly improve the
performance. Our analysis is that stage I has less seman-
tic information and stage V has fewer low-level features.
In addition, adding blocks to clnet50 will increase the amount
of computation.Thus we abandon the blocks in stage I and
stage V.

2) OPTIMIZED INTEGRATED FEATURES
In order to obtain more discriminative features, we use chan-
nel attention and spatial attention.Thus,our model integrates
CBAM [14] blocks. From Table 7, it can be observed that
integrating CBAM [14] blocks in the model can improve
by 0.9% accuracy gains,which means that CBAM blocks
improve feature represent ions.

As each module has different functions,the order of CBAM
blocks may affect the overall performance. From Table 8,
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FIGURE 5. Visualization experiments of attention map. The first row shows input images, the
second row shows attention map of DBTnet50, the third row shows the results of
DBTnet50 + Non_local blocks, and the fourth row shows the results of CLNET50.

TABLE 8. The impact of CBAM blocks location on classification metric.

Location Accuracy (%)
before integrated features 92.4
after integrated features 92.33

TABLE 9. The impact of associating cross-layer features.

Method Accuracy (%)
baseline 90.4
+R3Net 92.4

TABLE 10. Comparison of different integrated features as saliency map.

Method Accuracy (%)
Low-level Integrated Features(L) 91.7
High-level Integrated Features(H) 924

it can be observed that CBAM-first achieves a 0.07%
improvement, but the impact is not significant.

3) CROSS-LAYER FEATURE FUSION
In order to show the advantages of the associating cross-layer
features, R’ Net [27] is used to illustrate the performance gain.
In Table 9, the DBTnet50 [13] network integrates
non-blocks as baseline. From Table 9, it can be observed that
the associating cross-layer features through R3Net [27] can
improve by 2% gains. Thus different levels of features can be
mutual benefit and enhance the information of the region of
interest.
From Table 10, we know that H as saliency map brings
0.7% accuracy gains.It confirms that high-level features
retain more discriminative features.

D. VISUALIZATION EXPERIMENTS

We randomly select two images from each dataset. The

visualization result of CLNETS50 is shown in FIGURE 5.

To investigate the advantages of the CLNET50, we conduct

experiments by gradually integrating different modules.
Specifically, the 3th row shows that the model iden-

tifies multiple discriminative parts of the object. Instead,
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CLNETS0 is able to focus multiple attention regions and
reinforce the feature representation as shown in 4th row.

V. CONCLUSION
In this work, we propose a novel FGVC model CLNET
to enhance the learning of fine-grained features. Currently,
we are the first to propose using global features to refine
semantic features, and associate cross-layer features to rein-
force saliency features.Extensive experiments demonstrate
that CLNET is able to achieve state-of-the-art performance on
various FGVC tasks. In addition, visualization experiments
prove the interpretability and effectiveness of the model.
With the results achieved by CLNET, it shows the great
potential of adopting attention and cross-layer features in
FGVC tasks. Since the complex model structure of CLNET,
we will study on using methods such as knowledge distilla-
tion to compress model to further improve efficiency. In addi-
tion,we will explore utilizing cross-layer feature fusion in
vision transformers.
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