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Data-driven fault detection and diagnosis for centralised chilled 
water air conditioning system 

 
 

Abstract. The air conditioning system is complex and consumes the most energy in the building. Due to its complexity, it is difficult to identify faults 
in the system immediately. In this project, fault detection and diagnosis system using decision tree classifier model was developed to detect and 
diagnose faults in a chilled water air conditioning system. The developed model successfully classified normal condition and five common faults for 
more than 99% accuracy and precision. A graphical user interface of the system was also developed to ease the users.  
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Introduction 

The demand for heating, ventilation and air conditioning 
(HVAC) systems have increased dramatically in recent 
years. In non-residential buildings, HVAC systems utilise up 
to 50% of the total electricity consumption [1][2]. Therefore, 
their efficiencies have a significant impact on the total 
energy performance of these buildings [3]. The centralised 
chilled water air conditioning system includes components 
such as a chiller, cooling tower and air handling unit (AHU). 
Furthermore, all components are interconnected, and faults 
in each component may affect the performance of other 
components. Therefore, when the system operates in faulty 
conditions, it increases the energy usage of the building. It 
also may create thermal comfort problems among 
occupants and reduce the component's lifetime [4]. 

Early detection of faults and diagnosis of their root 
cause enables the correction of the fault before additional 
damage to the system [5]. Thus, fault detection and 
diagnostics (FDD) techniques are often used to monitor 
building systems and have gained interest among 
researchers. There are three methods of FDD; model-
based methods, rule-based methods and data-driven 
methods. Model-based methods, as proposed in Li et al. [6], 
Trothe et al. [7] and Alexandersen et al. [8], uses physical 
knowledge to describe the system to achieve analytical 
redundancy in order to detect and diagnose the cause of 
faults. Likewise, Beghi et al. [9] proposed the model-based 
approach to detect and diagnose common faults in chiller 
systems. However, the drawbacks of the model-based 
method are that it can be very complex and faults modelling 
availability is limited [10].  

In contrast, rule-based methods use expert knowledge 
to describe the behaviour of the system. For instance, 
Lauro et al. [11] proposed a fuzzy approach for FDD in the 
AHU system. However, this technique may have conflicting 
rules issues, especially for a complex system that requires 
more rules [5]. Therefore, some researchers such as 
Eboule and Hasan [12], Sulaiman et al. [13], Mattera et al. 
[14], and Deshmukh et al. [15] combined both model-based 
and rule-based methods to improve the outputs. 

Recently more researchers have gone into data-driven 
methods, where it is a more straightforward approach. It 

only requires historical data of the system. Li et al. [16], Fan 
et al. [17], and Luo et al. [18] have successfully 
implemented data-driven FDD for chiller systems. 
Meanwhile, Yun et al. [19], Piscitelli et al. [20], Yan et al. 
[21] and Li et al. [22] proposed this method in the AHU 
system. As no research combines all faults in the entire 
system, Sulaiman et al. [23] have proposed data-driven 
FDD to identify faults in the centralised air conditioning 
system. The system is inclusive of the chiller, AHU and 
cooling tower systems. They successfully applied three 
machine learning classifiers; multilayer perceptron (MLP), 
support vector machine (SVM), and deep learning. All 
classifiers can identify all six common faults in the 
centralised system.  

Decision-tree methods are one of the data-driven FDD 
methods available. It has been used in several FDD areas, 
such as in photovoltaic systems [24], transmission lines [25] 
and industrial machinery [25][26]. Furthermore, it is a top-
down method where relevant attribute classes are 
developed before classifying the data [28]. In other words, 
the decision tree approach is a realistic, reasonable, and 
effective approach [29]. For instance, Balasubramaniam 
[30] and Li et al. [31] successfully implemented this method 
in detecting faults in AHU and variable refrigerant flow 
(VRF). However, this technique is not widely used in air 
conditioning systems as other machine learning methods. 

Therefore this paper aims to develop a fault detection 
and diagnosis (FDD) system using the decision tree 
classifier model. Datasets from lab-scale centralised chilled 
water system were used to train and test the developed 
system. The Decision Tree model is then compared with 
Support Vector Machine (SVM) and K-Nearest-Neighbors 
(KNN). A user-friendly graphical user interface (GUI) for the 
system is also developed to ease the users.  

This paper is written in four sections. It starts with some 
basic background in Section 1. Whereas Section 2 explains 
the details of the project methodology of this paper. It is 
inclusive of the development of decision tree FDD and GUI 
of the system using MATLAB. Then, the results are 
presented and discussed in Section 3. Lastly, a conclusion 
is drawn in Section 4 to deduce the outcomes of this 
project. 



Methodology 
This section explains the overall flow of this project from 

lab-scaled setup, data classification, data pre-processing, 
training, and testing the machine learning model and lastly, 
developing the GUI for the FDD system 
 
Experiment Setup 

A lab-scaled centralised chilled water system as in [13], 
[23], [32] was used in this project is shown in Fig.1. It is a 
centralised chilled water system with 2 test rooms. Fourteen 
sensors consisting of temperature, air flow rate, water flow 
rate, and current sensors were installed in the prototype. 
The locations were depicted as in Fig.1. The sensors 
generated fourteen parameters data for the FDD and were 
logged every second using two data acquisition cards. 
Approximately 21000 total data samples were collected 
from the lab-scaled system for each condition. The 
conditions simulated are discussed in the following 
subsection. 
 
Data Classification 

The data was classified into six conditions, as shown in 
Table 1. Type 1 was the normal condition of the system, 
which is fault-free data. Types 2 to 6 were faults data which 
are commonly occurred throughout the entire system. They 
are a combination of soft and abrupt faults. An abrupt fault 
is a sudden change in system behaviour pattern due to total 
component breakdown, such as compressor malfunction. 
Thus, it is easy to detect due to the impact on the system. 
However, it is costly to repair. In contrast, soft faults such as 
damper stuck and air ducting leakage do not change the 
system behaviour immediately but develop through time. 
The fault is usually small and almost unnoticeable at the 
beginning. However, the fault is noticeable in the long run 
and has a significant impact on the system.  
 
Table 1. List of conditions 
Type Conditions 
1 Normal condition 
2 Cooling tower fan faulty 
3 Compressor malfunction 
4 Damper stuck 
5 Supplied chilled water clogging 
6 Air ducting leakage 

 
Features extraction 

The input data from sensors were segmented for mean 
and standard deviation values for every 5 seconds interval. 
As a result, the sampling data has been reduced to 4200 for 
each dataset, whereas the parameters have increased to 
28. This process generated a total of 604,800 data for all 

condition types with 25,200 instances and 28 parameters. 
The data were split into 70% for training and 30% for testing 
the model. 

 
Simulation Setup 

The models of the decision tree, SVM and KNN, were 
developed using MATLAB software. As for the decision tree 
model, the maximum split of the tree was set to 20 splits, 
and the tree induction was based on classification and 
regression tree (CART). Meanwhile, the SVM kernel 
function was the linear kernel. Lastly, the number of 
neighbours in the KNN model was 10, and the distance 
metric was Euclidean. The setting is summarised in Table 
2. 
 
Table 2. Simulation setting 
Models Settings 
Decision tree Maximum split: 20 

Tree induction: CART 
SVM Kernel function: linear 
KNN Neighbour no: 10 

Distance metric: Euclidean 
 
GUI Setup 

Two GUIs for decision tree FDD was developed using 
the MATLAB App Designer tool. Users can choose either of 
these two GUIs to detect and diagnose the conditions listed 
in Table 1. It also allowed users to extract the input features 
before diagnosing the fault. The first GUI allowed users to 
import an entire raw dataset to detect and diagnose the 
fault. The dataset can be in either ".xlsx" or ".cvs" format. 

 

 
Fig.2. The layout of the first GUI 

 

 
Fig.1. The schematic diagram of the system with sensors  



The layout of the GUI is shown in Fig.2. Meanwhile, the 
second GUI allowed users to insert five randomly sample 
data from the same condition type. The sequence of 
parameters format was shown on top of the interface. The 
layout of the second GUI is shown in Fig.3. Both GUIs were 
developed for the decision tree model. 
 

 
Fig.3. The layout of the second GUI 
 
Results and Analysis 

This section explains the classification results for the 
decision tree, SVM and KNN model. The results are 
presented in the confusion matrixes, where the models' 
accuracy and precision can be identified. It summarises 
how successful the classification model predicts all classes, 
indicating the correlation between actual results and 
predicted results. It also can identify the mistake patterns. 
Thus more training data or new parameters can be added 
to improve the models' classification. 

A fundamental concept about the confusion matrix is 
shown in Table 3. True positive is the number the model 
correctly predicts the positive class. Similarly, true negative 
is the number the model correctly predicts the negative 
class. Meanwhile, false positive is when the model 
incorrectly predicts the positive class, and false negative is 
when the model incorrectly predicts the negative class.  

 
Table 3. Confusion matrix 

Classes Predicted 
Yes No 

Actual Yes True positive False negative 
No False positive True negative 

 
Decision Tree Model 

Table 4 and Table 5 show the confusion matrixes for the 
training and testing dataset of the decision tree model. Both 
tables show that Type 4, 5, and 6 have achieved 100% 
accuracy. While Type 1, 2 and 3 have some incorrectly 
classified data. Likewise, Fig.4 shows the overall 
performance of the decision tree model. The model can 
identify all condition types accurately and precisely for more 
than 99% for both training and testing datasets. 
 
Table 4. The training dataset results  
Type 1 2 3 4 5 6 
1 2940 0 0 0 0 0 
2 3 2937 0 0 0 0 
3 0 2 2938 0 0 0 
4 0 0 0 2940 0 0 
5 0 0 0 0 2940 0 
6 0 0 0 0 0 2940 

 

Table 5. The testing dataset results 
Type 1 2 3 4 5 6 
1 1259 1 0 0 0 0 
2 1 1259 0 0 0 0 
3 0 1 1259 0 0 0 
4 0 0 0 1260 0 0 
5 0 0 0 0 1260 0 
6 0 0 0 0 0 1260 
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Fig. 4. Overall performance of Decision Tree model. 
 
SVM Model 

Fig.5 shows the overall performance of the SVM model. 
The model recognised all condition types with accuracy and 
precision of over 99% for both training and testing datasets. 
The accuracy and precision of the SVM model are slightly 
lower than the decision tree model. 
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Fig.5. SVM model performance 
 

Table 6 and Table 7 show the confusion matrixes for the 
training and testing datasets of the model. The results show 
that almost all types have slightly lower accuracy compared 
to the decision tree model. However, the misclassification 
rates were only about 0.06% to 2.5%. 

 
Table 6. The training dataset results 
Type 1 2 3 4 5 6 
1 2900 5 0 7 28 0 
2 47 2864 18 7 2 2 
3 1 8 2931 0 0 0 
4 0 0 0 2940 0 0 
5 3 0 0 0 2937 0 
6 0 2 0 0 0 2938 

 
 
 



Table 7. The testing dataset results. 
Type 1 2 3 4 5 6 
1 1245 3 0 3 9 0 
2 22 1226 9 3 0 0 
3 2 3 1255 0 0 0 
4 0 0 0 1260 0 0 
5 1 0 0 0 1259 0 
6 0 0 0 0 0 1260 

 
KNN Model 

Fig.6 shows the KNN classifier model performance. The 
classifier can distinguish the condition types with accuracy 
and precision for more than 97%. However, the results were 
slightly lower than the decision tree and SVM model. 
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Fig.6. Overall performance of KNN model 
 

Table 8 and Table 9 show the confusion matrixes of the 
training and testing datasets of the KNN model. From Table 
8, the lowest accuracy achieved was 96.8% for Type 1, 
similar to Type 1 in Table 9, where it has the lowest 
accuracy at 95.8%. 

 
Table 8. The training dataset results 
Type 1 2 3 4 5 6 
1 2845 7 1 70 9 8 
2 35 2863 13 18 4 7 
3 4 8 2924 0 3 1 
4 39 7 4 2889 0 1 
5 25 4 0 0 2892 19 
6 2 2 3 0 10 2923 

 
Table 9. The testing dataset results 
Type 1 2 3 4 5 6 
1 1207 3 0 40 4 6 
2 16 1221 8 10 2 3 
3 2 8 1248 2 0 0 
4 24 3 1 1230 2 0 
5 15 1 1 1 1233 9 
6 2 6 1 0 4 1247 

 
Fault detection and diagnosis system GUI 

Fig.7 shows the dataset of Type 2 was tested on the first 
developed GUI. The GUI successfully classified the input 
data as Type 2 with an accuracy of 99.90%. Only four 
instances data were misclassified into normal condition.  

Meanwhile, Fig.8 shows the GUI result of five sample 
data from Type 3, compressor malfunction, tested on the 
second GUI. The system was successfully classified the 
sample data as Type 3 data. Neither accuracy nor precision 
percentages were displayed in the second interface. 

 

 
Fig.7. The type 2 dataset was tested on the first GUI. 

 

 
Fig.8: Five sample data from Type 3 was tested on the second 
GUI. 
 
Discussion 

Fig.9 shows the overall performance for the decision tree, 
SVM and KNN model. The graph clearly shows that all 
three models successfully classified all types with more 
than 97% accuracy and precision. The decision tree model 
has the highest accuracy and precision among all  
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classifiers; decision tree, SVM and KNN. 
 
Conclusion 

The first part of this project discussed the performance 
of three machine learning models: decision tree, SVM and 
KNN for data-driven FDD in a centralised chilled water air 
conditioning system. All classifiers successfully classified 



six condition types of one normal condition and five faulty 
conditions. The faulty conditions were among the common 
faults in the centralised system. Although all classifier 
models achieved good performance, the decision tree 
model is the best among all. The accuracy and precision of 
the decision tree achieved over 99.9% for both training and 
testing datasets. The second part discussed the developed 
GUIs for the FDD system using the trained decision tree 
model. Both GUIs were able to process and classify the 
data into their types. 
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