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Data-driven fault detection and diagnosis for centralised chilled

water air conditioning system

Abstract. The air conditioning system is complex and consumes the most energy in the building. Due to its complexity, it is difficult to identify faults
in the system immediately. In this project, fault detection and diagnosis system using decision tree classifier model was developed to detect and
diagnose faults in a chilled water air conditioning system. The developed model successfully classified normal condition and five common faults for
more than 99% accuracy and precision. A graphical user interface of the system was also developed to ease the users.
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Introduction

The demand for heating, ventilation and air conditioning
(HVAC) systems have increased dramatically in recent
years. In non-residential buildings, HVAC systems utilise up
to 50% of the total electricity consumption [1][2]. Therefore,
their efficiencies have a significant impact on the total
energy performance of these buildings [3]. The centralised
chilled water air conditioning system includes components
such as a chiller, cooling tower and air handling unit (AHU).
Furthermore, all components are interconnected, and faults
in each component may affect the performance of other
components. Therefore, when the system operates in faulty
conditions, it increases the energy usage of the building. It
also may create thermal comfort problems among
occupants and reduce the component's lifetime [4].

Early detection of faults and diagnosis of their root
cause enables the correction of the fault before additional
damage to the system [5]. Thus, fault detection and
diagnostics (FDD) techniques are often used to monitor
building systems and have gained interest among
researchers. There are three methods of FDD; model-
based methods, rule-based methods and data-driven
methods. Model-based methods, as proposed in Li et al. [6],
Trothe et al. [7] and Alexandersen et al. [8], uses physical
knowledge to describe the system to achieve analytical
redundancy in order to detect and diagnose the cause of
faults. Likewise, Beghi et al. [9] proposed the model-based
approach to detect and diagnose common faults in chiller
systems. However, the drawbacks of the model-based
method are that it can be very complex and faults modelling
availability is limited [10].

In contrast, rule-based methods use expert knowledge
to describe the behaviour of the system. For instance,
Lauro et al. [11] proposed a fuzzy approach for FDD in the
AHU system. However, this technique may have conflicting
rules issues, especially for a complex system that requires
more rules [5]. Therefore, some researchers such as
Eboule and Hasan [12], Sulaiman et al. [13], Mattera et al.
[14], and Deshmukh et al. [15] combined both model-based
and rule-based methods to improve the outputs.

Recently more researchers have gone into data-driven
methods, where it is a more straightforward approach. It

only requires historical data of the system. Li et al. [16], Fan
et al. [17], and Luo et al. [18] have successfully
implemented data-driven FDD for chiller systems.
Meanwhile, Yun et al. [19], Piscitelli et al. [20], Yan et al.
[21] and Li et al. [22] proposed this method in the AHU
system. As no research combines all faults in the entire
system, Sulaiman et al. [23] have proposed data-driven
FDD to identify faults in the centralised air conditioning
system. The system is inclusive of the chiller, AHU and
cooling tower systems. They successfully applied three
machine learning classifiers; multilayer perceptron (MLP),
support vector machine (SVM), and deep learning. All
classifiers can identify all six common faults in the
centralised system.

Decision-tree methods are one of the data-driven FDD
methods available. It has been used in several FDD areas,
such as in photovoltaic systems [24], transmission lines [25]
and industrial machinery [25][26]. Furthermore, it is a top-
down method where relevant attribute classes are
developed before classifying the data [28]. In other words,
the decision tree approach is a realistic, reasonable, and
effective approach [29]. For instance, Balasubramaniam
[30] and Li et al. [31] successfully implemented this method
in detecting faults in AHU and variable refrigerant flow
(VRF). However, this technique is not widely used in air
conditioning systems as other machine learning methods.

Therefore this paper aims to develop a fault detection
and diagnosis (FDD) system using the decision tree
classifier model. Datasets from lab-scale centralised chilled
water system were used to train and test the developed
system. The Decision Tree model is then compared with
Support Vector Machine (SVM) and K-Nearest-Neighbors
(KNN). A user-friendly graphical user interface (GUI) for the
system is also developed to ease the users.

This paper is written in four sections. It starts with some
basic background in Section 1. Whereas Section 2 explains
the details of the project methodology of this paper. It is
inclusive of the development of decision tree FDD and GUI
of the system using MATLAB. Then, the results are
presented and discussed in Section 3. Lastly, a conclusion
is drawn in Section 4 to deduce the outcomes of this
project.



Methodology

This section explains the overall flow of this project from
lab-scaled setup, data classification, data pre-processing,
training, and testing the machine learning model and lastly,
developing the GUI for the FDD system

Experiment Setup

A lab-scaled centralised chilled water system as in [13],
[23], [32] was used in this project is shown in Fig.1. It is a
centralised chilled water system with 2 test rooms. Fourteen
sensors consisting of temperature, air flow rate, water flow
rate, and current sensors were installed in the prototype.
The locations were depicted as in Fig.1. The sensors
generated fourteen parameters data for the FDD and were
logged every second using two data acquisition cards.
Approximately 21000 total data samples were collected
from the lab-scaled system for each condition. The
conditions simulated are discussed in the following
subsection.

Data Classification

The data was classified into six conditions, as shown in
Table 1. Type 1 was the normal condition of the system,
which is fault-free data. Types 2 to 6 were faults data which
are commonly occurred throughout the entire system. They
are a combination of soft and abrupt faults. An abrupt fault
is a sudden change in system behaviour pattern due to total
component breakdown, such as compressor malfunction.
Thus, it is easy to detect due to the impact on the system.
However, it is costly to repair. In contrast, soft faults such as
damper stuck and air ducting leakage do not change the
system behaviour immediately but develop through time.
The fault is usually small and almost unnoticeable at the
beginning. However, the fault is noticeable in the long run
and has a significant impact on the system.

Table 1. List of conditions

Type Conditions

Normal condition

Cooling tower fan faulty

Compressor malfunction

Damper stuck

Supplied chilled water clogging

(G| BD|W|IN|=

Air ducting leakage

Features extraction

The input data from sensors were segmented for mean
and standard deviation values for every 5 seconds interval.
As a result, the sampling data has been reduced to 4200 for
each dataset, whereas the parameters have increased to
28. This process generated a total of 604,800 data for all

condition types with 25,200 instances and 28 parameters.
The data were split into 70% for training and 30% for testing
the model.

Simulation Setup

The models of the decision tree, SVM and KNN, were
developed using MATLAB software. As for the decision tree
model, the maximum split of the tree was set to 20 splits,
and the tree induction was based on classification and
regression tree (CART). Meanwhile, the SVM kernel
function was the linear kernel. Lastly, the number of
neighbours in the KNN model was 10, and the distance
metric was Euclidean. The setting is summarised in Table
2.

Table 2. Simulation setting

Models Settings

Decision tree Maximum split: 20
Tree induction: CART

SVM Kernel function: linear
KNN Neighbour no: 10

Distance metric: Euclidean
GUI Setup

Two GUIs for decision tree FDD was developed using
the MATLAB App Designer tool. Users can choose either of
these two GUIs to detect and diagnose the conditions listed
in Table 1. It also allowed users to extract the input features
before diagnosing the fault. The first GUI allowed users to
import an entire raw dataset to detect and diagnose the
fault. The dataset can be in either ".xIsx" or ".cvs" format.
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Fig.2. The layout of the first GUI
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The layout of the GUI is shown in Fig.2. Meanwhile, the
second GUI allowed users to insert five randomly sample
data from the same condition type. The sequence of
parameters format was shown on top of the interface. The
layout of the second GUI is shown in Fig.3. Both GUIs were
developed for the decision tree model.
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Fig.3. The layout of the second GUI

Results and Analysis

This section explains the classification results for the
decision tree, SVM and KNN model. The results are
presented in the confusion matrixes, where the models'
accuracy and precision can be identified. It summarises
how successful the classification model predicts all classes,
indicating the correlation between actual results and
predicted results. It also can identify the mistake patterns.
Thus more training data or new parameters can be added
to improve the models' classification.

A fundamental concept about the confusion matrix is
shown in Table 3. True positive is the number the model
correctly predicts the positive class. Similarly, true negative
is the number the model correctly predicts the negative
class. Meanwhile, false positive is when the model
incorrectly predicts the positive class, and false negative is
when the model incorrectly predicts the negative class.

Table 3. Confusion matrix

Classes Predicted
Yes No
Yes True positive False negative
Actual - -
No False positive True negative

Decision Tree Model

Table 4 and Table 5 show the confusion matrixes for the
training and testing dataset of the decision tree model. Both
tables show that Type 4, 5, and 6 have achieved 100%
accuracy. While Type 1, 2 and 3 have some incorrectly
classified data. Likewise, Fig.4 shows the overall
performance of the decision tree model. The model can
identify all condition types accurately and precisely for more
than 99% for both training and testing datasets.

Table 4. The training dataset results

Table 5. The testing dataset results

Type |1 2 3 4 5 6
1 2940 |0 0 0 0 0
2 3 2937 |0 0 0 0
3 0 2 2938 |0 0 0
4 0 0 0 2940 |0 0
5 0 0 0 0 2940 |0
6 0 0 0 0 0 2940

Type |1 2 3 4 5 6
1 1259 1 0 0 0 0
2 1 1259 0 0 0 0
3 0 1 1259 0 0 0
4 0 0 0 1260 0 0
5 0 0 0 0 1260 0
6 0 0 0 0 0 1260
Overall Performance of Decision Tree Model
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Fig. 4. Overall performance of Decision Tree model.

SVM Model

Fig.5 shows the overall performance of the SVM model.
The model recognised all condition types with accuracy and
precision of over 99% for both training and testing datasets.
The accuracy and precision of the SVM model are slightly
lower than the decision tree model.
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Fig.5. SVM model performance

Table 6 and Table 7 show the confusion matrixes for the
training and testing datasets of the model. The results show
that almost all types have slightly lower accuracy compared
to the decision tree model. However, the misclassification
rates were only about 0.06% to 2.5%.

Table 6. The training dataset results

Type [1 2 3 4 5 6
1 2900 |5 0 7 28 0
2 47 2864 |18 7 2 2
3 1 8 2931 |0 0 0
4 0 0 0 2940 |0 0
5 3 0 0 0 2937 |0
6 0 2 0 0 0 2938




Table 7. The testing dataset results.

Type |1 2 3 4 5 6

1 1245 |3 0 3 9 0

2 22 1226 |9 3 0 0

3 2 3 1255 |0 0 0

4 0 0 0 1260 |0 0

5 1 0 0 0 1259 |0

6 0 0 0 0 0 1260
KNN Model

Fig.6 shows the KNN classifier model performance. The
classifier can distinguish the condition types with accuracy
and precision for more than 97%. However, the results were
slightly lower than the decision tree and SVM model.

Overall Performance of KNN Model
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Fig.6. Overall performance of KNN model

Table 8 and Table 9 show the confusion matrixes of the
training and testing datasets of the KNN model. From Table
8, the lowest accuracy achieved was 96.8% for Type 1,
similar to Type 1 in Table 9, where it has the lowest
accuracy at 95.8%.

Table 8. The training dataset results

Type |1 2 3 4 5 6

1 2845 7 1 70 9 8

2 35 2863 13 18 4 7

3 4 8 2924 0 3 1

4 39 7 4 2889 0 1

5 25 4 0 0 2892 19

6 2 2 3 0 10 2923

Table 9. The testing dataset results

Type |1 2 3 4 5 6

1 1207 3 0 40 4 6

2 16 1221 8 10 2 3

3 2 8 1248 2 0 0

4 24 3 1 1230 2 0

5 15 1 1 1 1233 9

6 2 6 1 0 4 1247

Fault detection and diagnosis system GUI

Fig.7 shows the dataset of Type 2 was tested on the first
developed GUI. The GUI successfully classified the input
data as Type 2 with an accuracy of 99.90%. Only four
instances data were misclassified into normal condition.

Meanwhile, Fig.8 shows the GUI result of five sample
data from Type 3, compressor malfunction, tested on the
second GUI. The system was successfully classified the
sample data as Type 3 data. Neither accuracy nor precision
percentages were displayed in the second interface.
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Fig.7. The type 2 dataset was tested on the first GUI.
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Discussion

Fig.9 shows the overall performance for the decision tree,
SVM and KNN model. The graph clearly shows that all
three models successfully classified all types with more
than 97% accuracy and precision. The decision tree model
has the highest accuracy and precision among all
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Fig.9. Overall performance for all three machine learning

classifiers; decision tree, SVM and KNN.

Conclusion

The first part of this project discussed the performance
of three machine learning models: decision tree, SVM and
KNN for data-driven FDD in a centralised chilled water air
conditioning system. All classifiers successfully classified



six condition types of one normal condition and five faulty
conditions. The faulty conditions were among the common
faults in the centralised system. Although all classifier
models achieved good performance, the decision tree
model is the best among all. The accuracy and precision of
the decision tree achieved over 99.9% for both training and
testing datasets. The second part discussed the developed
GUIs for the FDD system using the trained decision tree
model. Both GUIs were able to process and classify the
data into their types.
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