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 Data-driven fault detection and diagnosis system (FDD) has been proven as 
simple yet powerful enough to identify soft and abrupt faults in the air 
conditioning system, leading to energy saving. However, the challenge of data-
driven FDD is to obtain reliable operation data from the actual building. 
Therefore, a lab-scaled centralised chilled water air conditioning system was 
successfully developed in this paper. All necessary sensors were installed to 
generate reliable operation data for the data-driven FDD. Nevertheless, if a 
practical system is considered, the number of sensors required would be 
extensive as it depends on the number of rooms in the building. Hence, 
parameters impact in the dataset were also investigated to identify critical 
parameters for fault classifications. The analysis results had identified four 
critical parameters for data-driven FDD: the rooms' temperature, TTCx, supplied 
chilled water temperature, TCHWS, supplied chilled water flow rate, VCHWS, and 
supplied cooled water temperature, TCWS. Results showed that the data-driven 
FDD successfully diagnosed all six conditions correctly with the proposed 
parameters for more than 92.3% accuracy; only 0.6% - 3.4% differed from the 
original dataset's accuracy. Therefore, the proposed parameters can reduce the 
number of sensors used for practical buildings, thus reducing installation costs 
without compromising the FDD accuracy. 
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1. INTRODUCTION  

Faults in air conditioning systems, especially soft faults, are hard to detect. Even a regularly 
maintained building may suffer from soft faults without realising it [1]. Therefore, fault detection and diagnosis 
(FDD) plays an important role in building energy savings. Successful FDD can save up to 40% of air 
conditioning energy consumption [2]. One of the FDD methods is model-based FDD, which relies on 
mathematical modelling to represent the system. The detailed physical modelling derived using the first 
principle method is the most accurate way to describe the air conditioning system as proposed in [3]–[5]. 
However, since the system itself is a  complex and dynamic system, the development of mathematical modelling 
is complex and requires detailed information regarding the system and is challenging to derive [6]. In contrast, 
simplified mathematical modelling using a lumped parameter approach developed in [7], [8] are simpler to 
derive. However, the number of available fault models of air conditioning systems is still limited [9]. One of 
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the reasons was that most of the modellings are developed for a  specific system. Thus, some adjustment needs 
to be made to use in other types of air conditioning system. 

Recently, researchers are exploring more on data-driven FDD due to its simple yet reliable method. 
This method has gained much interest among researchers in many areas, such as in air conditioning systems 
[10]–[14], power generation systems [15]–[19] and motor drive systems [20], [21]. The method is simple to 
develop because it only requires historical data to train and validate its operational data. Thus, it is easy to 
develop, but it requires fault-free training data to classify other faults. Otherwise, the classifier model would 
recognise faults as the standard operating performance. 

Current FDD trends for air conditioning systems only focus on individual component, such as the 
chiller as in [10], [14], [22], and air handling unit (AHU) as in [23]–[27]. However, no FDD research considers 
faults across the entire air-conditioning system even though all components are interconnected [9]. Thus, faults 
in one component may affect other components' parameters. Therefore, by combining faults across the entire 
system, the ability of the FDD system to diagnose with correct faults can be analysed. To fill up this gap, Chen 
[28] has proposed data-driven FDD using the Bayesian network (BN) for the whole building fault, including 
faults across chiller, AHU, and operation schedule. However, this research does not cover faults across the 
cooling tower, which is also one of the air conditioning system components. One of the limitations of his 
research is that some faults may not be identified under certain weather, operation, or internal load conditions. 
Indeed, it is one of the biggest challenges for data-driven FDD in the actual building. 

There are many challenges to obtaining reliable fault-free and faults operation data in the actual 
building. Firstly, the initial building operation data might differ from those applied later in the building's 
lifetime. Furthermore, the external factors, such as environment and usage patterns, may vary the results as in 
[28]. It is also a challenge to simulate faults in actual buildings as it may disturb the thermal comfort of the 
occupants. Therefore, in our previous studies in [13], [29], we developed a lab-scaled chilled water air 
conditioning system. The data was used to develop three machine learning models as in [13]: deep learning, 
support vector machine (SVM) and multi-layer perceptron (MLP) for data-driven FDD of the entire system 
faults. It covers the entire system faults, which are faults across the chiller, AHU, and the cooling tower. Results 
showed that all models were successfully identified all faults for more than 95%. 

Deep learning, SVM and MLP are among the most widely used for classification proses. For instance, 
deep learning was successfully proposed as FDD in Tennessee Eastman (TE) process as presented in [30]. 
Results show deep learning model outshines the other five classifier models. Likewise, Yan [31] successfully 
proposed SVM as FDD in the chiller system. SVM also shows the highest accuracy compared to other methods 
in detecting breast cancer [32], [33]. Meanwhile, MLP successfully diagnosed bladder cancer and predicted 
faults in yacht hydrodynamics, as portrayed in [34] and [35]. 

Even though the FDD in [13] successfully diagnosed the faults, it requires many sensors to be 
implemented in actual buildings. Nevertheless, most air conditioning systems in non-residential buildings have 
a limited number of sensors, and most of them were installed for control purposes only [6]. Hence, it needs a 
substantial additional cost to add more sensors to the building. Furthermore, the accuracy of the data-driven 
method depends on the parameter data collected from the system. The more parameters in the dataset, the better 
FDD accuracy will be produced, and the bigger the system is, the more parameters will be required. Therefore, 
it is essential to identify the impact of those parameters on their ability to detect faults. The unimportant 
parameters can be eliminated to reduce the installation cost without compromising FDD accuracy. Thus, the 
proposed parameters can still avoid unnecessary energy wastage with smaller installation costs. 

In this paper, the impact of each parameter in FDD was investigated to identify the critical parameters. 
New dataset combinations were developed based on standard deviation and accuracy percentage values. Each 
combination was then evaluated using deep learning, SVM and MLP model developed in [13]. The 
performance of the proposed critical parameters was then compared with the performance of the original 
dataset in [13]. This paper was written in four sections, where some research backgrounds are presented in 
Section 1. Then, the research methodology is presented carefully in Section 2. It includes the development of 
the lab-scaled system, the fault simulation on the system and the investigation of each parameter’s impact. 
Section 3 elaborates the outcome of this research in detail. Lastly, the conclusions are written up in Section 4. 
 
2. RESEARCH METHOD 

This section explains the research methodology of this research. It involves the development of the 
lab-scaled system and the selections of the parameters for the FDD.  

 
2.1.  Lab scaled of centralised chilled water air conditioning system 

Figure 1 shows the lab-scaled system developed in this research as described in [7], [8], [13]. It 
consists of a  chiller, cooling tower, AHU, and two rooms to replicate an actual centralised chilled water air 
conditioning system. The chiller used is a  ready-made chiller system equipped with a chilled water tank, and 
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the cooling tower is designed as a counter flow type. The AHU system has a cooling coil, a  fan, supply and 
return ducts for each room, and dampers. The speed of the fan can be varied to achieve a specific supplied 
airflow rate. The rooms were constructed by insulated board and poly-carbonate, and each of them sizes 2.4m 
× 1.2m × 1.6m. Five bulbs rated 100watt each was installed in each room to simulate heat from equipment and 
occupants.  

 
Figure 1. The lab-scaled of the chilled water system 

 
The system is a  set of standalone and self-contained equipment. It has a structured platform to 

accommodate the cooling tower, water-cooled chiller, and AHU system. Two rooms were installed next to the 
structured platform. Four lockable castor wheels were mounted at the bottom of the structure platform for easy 
mobilisation. The size of the platform is 64cm (W) x 150cm (L) x 170cm (H). A control board is used to control 
and operate the system. The system was equipped with fourteen sensors: thermocouple sensors, water flow rate 
sensors, airflow rate sensors, and current sensor, and the details of each sensor and the parameters measured 
were tabulated in Table 1. The system coefficient of performance (COP) was also analysed and presented in 
Sulaiman et al. [13]. The results show that the COPs reduce when the system has faults, which is consistent 
with the results energy audit of the actual system presented in Sulaiman et al. [1]. 

 
Table 1. List of the sensors in the lab-scaled system 

Sensor Type  Parameters measured 
Temperature sensor TTC1 = Air temperature in Room 1 

TTC2 = Air temperature in Room 2 
TS1 = Air temperature at ducting Room 1 
TS2 = Air temperature at ducting Room 2  
TCHWS = Supplied chilled water temperature 
TCHWR = Returned chilled water temperature 
TCWS = Supplied cooled water temperature 
TCWR = Returned cooled water temperature 

Airflow rate sensor VS1 = Airflow rate at ducting Room 1 
VS2 = Airflow rate at ducting Room 2 

Water flow rate sensor VCHWS = Supplied chilled water flow rate 
VCHWR = Returned chilled water flow rate 
VCWS= Supplied cooled water flow rate 

Current sensor CCH = Compressor current 
 

All parameters in Table 1 was logged during various conditions simulations in the lab-scaled system. 
The conditions simulated as described in Table 2. The location and type of faults were also portrayed in the 
table. It includes five faults throughout the entire system and one normal without fault condition. Three machine 
learning models were used to classify all conditions as described in Table 3. The parameter setting for each 
model is displayed in the table. All classifier models have successfully identified all conditions as presented in 
Sulaiman et al. [13]. 

  

Cooling 
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Air Ducting 
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Room 2 

Control 
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Table 2. List of conditions simulated in the lab-
scaled system [13] 

Condition Location of 
fault 

Type of 
fault 

Normal (no-fault) -- -- 
Evaporator Clogging Chiller Soft 
Compressor Failure Chiller Abrupt 
Cooling Tower Fan 
Faulty 

Cooling 
Tower 

Soft 

Damper Stuck AHU Soft 
Air Ducting Leakage AHU Soft 

Table 3. Simulation parameters [13] 
Models Parameter setting 
Deep learning Activation function for hidden layer: 

sigmoid 
Activation function for the output layer: 
softmax 
Optimization: Stochastic Gradient 
Descent (SGD) 

SVM Kernel function: polykernel 
MLP Activation function: sigmoid 

 
 
2.2.  Parameter selection 

Out of fourteen sensors, six were installed in the two rooms, three sensors for each room. If a practical 
system is considered, the number of sensors required would be extensive as it depends on the number of rooms 
in the actual building. In other words, more cost is needed as three sensors are required for each room. 
Therefore, it is essential to investigate the impact of these parameters in classifying the faults. Insignificant 
sensors can be eliminated to reduce installation costs. However, the elimination must not affect accuracy. Table 
4 represents the list of sensors and their location throughout the entire system. The data were categorised into 
two, Group A and Group B. Group A is a  set of parameters related to the rooms, and Group B is a  set of 
parameters associated with the central unit. 

 
Table 4. List of conditions simulated in the lab-scaled system 
Group  Location of the sensors Parameters measured 
Group A  
(Sensors located at 
rooms) 

Room 1 TTC1 
TS1 

VS1 
Room 2 TTC2 

TS2 
VS2 

Group B 
(Sensors located at 
the central unit) 

The central unit of the 
system 

TCHWS 
TCHWR 
TCWS 
TCWR 
VCHWS 
VCHWR 
VCWS 
CCH 

 
In general, the number of parameters can be presented as, 
 
𝑛𝑛𝑃𝑃 = 𝑛𝑛𝐴𝐴𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅+ 𝑛𝑛𝐵𝐵 = 3𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 8, ,     (1) 
 

where nP represents the number of total parameters, nA is the number of parameters from Group A, NROOM is 
the total number of rooms, and nB is the number of parameters from Group B. Equation (1) indicates that the 
more rooms used in the system, the more parameters will increase. Therefore, it is essential to identify the 
critical parameters to detect all six conditions in FDD. Hence it can minimise the number of sensors used in a 
practical system and eventually reduce the cost. The values of standard deviation and accuracy were used to 
investigate the impact of these parameters to detect faults without compromising the performance of the 
classifiers. 

 
2.3.  Standard deviation 

In statistics, a  standard deviation is used as a measure of variation in the dataset. A low value of 
standard deviation represents the data is close to the mean value. In contrast, a  high value indicates that the 
data has a broader range and is farther than its mean value. In this paper, the standard deviation can be used to 
identify which parameters have notably changed throughout the simulation. Thus, it can be used to analyse the 
impact of parameter selection in identifying the faults. Table 5 shows the standard deviation value of each 
parameter in the dataset. The subscript x in parameter Group A denotes the room number, where x = 1,2,…, 
NROOM. 
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Table 5. Standard deviation value for all parameters in the dataset 
Group  Parameters Parameters measured 
Group A  VSX 10.03 

TSX 5.2 
TTCX 2.57 

Group B TCHWS 5.67 
TCWR 5.31 
TCWS 4.45 
TCHWR 4.03 
VCHWS 2.38 
VCHWR 1.83 
CCH 1.53 
VCWS 1.22 

 
Table 5 shows that VS and TCHWS have the highest standard deviation value for each group. In contrast, 

TTC and VCWS have the lowest standard deviation values. It shows that parameters of VS and TCHWS significantly 
changed during simulations compared to TTC and VCWS data. Therefore, the higher value of standard deviation 
may represent a more significant impact on the fault simulations. There is also a possibility that the low value 
of standard deviation was less critical in fault classification and can be removed from the dataset. 

The parameters selection for new datasets of Group A and Group B are described in Table 6 and Table 
7. One parameter was eliminated for every dataset formed in both Table 6 and Table 7. The datasets were 
formed based on the standard deviation values shown in Table 5. Datasets in Group A and Group B were then 
combined one by one as, 

 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = { 𝐴𝐴1𝐵𝐵1;𝐴𝐴1𝐵𝐵2;… ;𝐴𝐴2𝐵𝐵1;𝐴𝐴2𝐵𝐵2; …; 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴},   (2) 
 

where 𝑛𝑛 is the number of datasets in Group A, and 𝑚𝑚 is the number of datasets in Group B. Each combination 
was tested and compared with all three machine learning classifiers in Table 3. 

 
Table 6. The selection of parameters in  

Group A 
Dataset List of parameters 
Original VSx, TSx, TTCx 
A1 VSx, TSx  
A2 TTCx, VSx 
A3 TTCx, TSx 
A4 VSx 
A5 TSx 
A6 TTCx 

 
Table 7. The selection of parameters in Group B 

Dataset List of parameters 
Original TCHWS, TCWR, TCWS, TCHWR, VCHWS, VCHWR, CCH, VCWS 
B1 TCHWS, TCWR, TCWS, TCHWR, VCHWS, VCHWR, CCH 
B2 TCHWS, TCWR, TCWS, TCHWR, VCHWS, VCHWR 
B3 TCHWS, TCWR, TCWS, TCHWR, VCHWS 
B4 TCHWS, TCWR, TCWS, TCHWR 
B5 TCHWS, TCWR, TCWS 
B6 TCHWS, TCWR 
B7 TCHWS 

2.4.  Accuracy 
The accuracy of the deep learning classifier was analysed when one of the parameters was removed 

from the dataset. The results represent the ability of the classifier to identify and classify the faults. Therefore, 
the higher accuracy obtained when a parameter was taken out from the dataset represents that the parameter 
does not impact the fault classification. However, should the accuracy decrease much when the parameter was 
eliminated from the dataset, the parameter significantly impacts the fault classification. The results were 
presented in Table 8, while Table 9 shows the parameters selection for new datasets of Group B. The datasets 
of Group A remain unchanged, as in Table 4. Similarly, each dataset’s combination was tested and compared 
with three machine learning classifiers 
 
Table 8. The accuracy of the classifier when each of 

these parameters was deleted from the original dataset 
Group  Parameters 

deleted 
Parameters 
measured 

Group A  VSX 91.4% 
TTCX 93.1% 
TSX 94.0% 

Group B TCWS 91.5% 
TCHWS 93.7% 
VCHWS 93.8% 
TCWR 94.0% 
CCH 94.0% 
TCHWR 94.1% 
VCWS 94.3% 
VCHWR 94.5% 

 
Table 9. The selection of parameters in Group B 

Dataset List of parameters 
Original TCHWS, TCWR, TCWS, TCHWR, VCHWS, VCHWR, 

CCH, VCWS 
B11 TCWS, TCHWS, VCHWS, TCWR, CCH, TCHWR, VCWS 
B12 TCWS, TCHWS, VCHWS, TCWR, CCH, TCHWR 
B13 TCWS, TCHWS, VCHWS, TCWR, CCH 
B14 TCWS, TCHWS, VCHWS, TCWR 
B15 TCWS, TCHWS, VCHWS, CCH 
B16 TCWS, TCHWS, VCHWS 
B17 TCWS, TCHWS 
B18 TCWS 
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3. RESULTS AND DISCUSSION 
Table 10 shows the results of the best combination datasets formed using both methods discussed in 

the previous section. The combination was selected for the least parameters with a minimum of 90% accuracy. 
For instance, dataset A1B5 combined dataset A1 from Group A and dataset B5 from Group B. It was the best 
combination in dataset A1 with a minimum number of parameters that reached 90% accuracy. Dataset A5 was 
not listed because all combinations with any datasets Group B produced below 90% accuracy. The number of 
parameters required for each dataset was developed as in Equation (1). The first part of the equation represents 
the parameters from Group A, while the second part represents the parameters in Group B. Based on the 
equations, the number of sensors depends on the number of rooms in the system. The results show that datasets 
A4B3, A6B3, A4B16, and A6B16 required the least number of sensors when the number of rooms increased, 
as compared to others. 
 

Table 10. Results for the best combination datasets formed 
Method Dataset Number of parameters 

required, nP 
Number of sensors for 

Nroom = 1 Nroom = 2 Nroom = 3 Nroom = 4 
Standard 
deviation 

A1B5 2𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 3 5 7 9 11 
A2B5 2𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 3 5 7 9 11 
A3B4 2𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 4 6 8 10 12 
A4B3 𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 5 6 7 8 9 
A6B3 𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 5 6 7 8 9 

Accuracy A1B16 2𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 3 5 7 9 11 
A2B17 2𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 2 4 6 8 10 
A3B16 2𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 3 5 7 9 11 
A4B16 𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 3 4 5 6 7 
A6B16 𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 3 4 5 6 7 

 
Based on the investigation results in Table 10, the datasets combination of Dataset A4 and A6 for 

standard deviation and accuracy selection methods were identified as the minimum number of required sensors. 
Table 11 compares the classification results from our previous study in [13] with the highlighted datasets in 
Table 10: A4B3, A6B3, A4B16, and A6B16. Three machine learning classifiers: deep learning, support vector 
machine (SVM), and multi-layer perceptron (MLP), were used to measure the accuracy of all five datasets. 
The accuracy of these newly combined datasets was a bit lesser than the original dataset in [13], around 0.6% 
- 3.4%. Nonetheless, the differences were not much and are still reliable. 

 
Table 11. Comparison results between the original dataset, Dataset A4B3, A6B3, A4B16, and A6B16 

  Original 
dataset 
[13] 

Dataset 
A4B3 

Dataset 
A6B3 

Dataset 
A4B16 

Dataset 
A6B16 

Classification 
accuracy 

Deep learning 94% 93.2% 91.8% 93.4% 92.3% 
SVM 97% 94.6% 94.3% 94.3% 93.6% 
MLP 99.4% 97.5% 97.3% 97.4% 96.6% 

Parameters Group A VSx VSx TTCx VSx TTCx 
TSx     
TTCx     

Group B TCHWS TCHWS TCHWS TCHWS TCHWS 
TCWR VCHWS VCHWS VCHWS VCHWS 
TCWS TCWS TCWS TCWS TCWS 
TCHWR TCHWR TCHWR   
VCHWS TCWR TCWR   
VCHWR     
CCH     
VCWS     

 
The original dataset has three parameters Group A and eight parameters of Group B. In comparison, 

datasets A4B3 and A6B3 have one parameter of Group A and five parameters of Group B. Although Group 
A’s parameter is different, the parameters of Group B are the same for both datasets. Similarly, it is the same 
case for datasets A4B16 and A6B16, where Group B has the same parameters for both datasets. For 
information, datasets A4B16 and A6B16 have one parameter from Group A and three parameters of Group B. 
Moreover, the parameters of Dataset B16 were part of the parameters of Dataset B3. It can be concluded that 
TCHWS, VCHWS, and TCWS were among the critical parameters in Group B to classify all six conditions. As for 
Group A, either TTCx or VSx can be regarded as equally crucial for data-driven FDD because both datasets had 
almost similar accuracy. Mathematically, the list of proposed parameters for data-driven FDD for centralised 
chilled water air conditioning system can be written as follow, 
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑃𝑃 = { 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ,𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶}      (3) 
where 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �𝑇𝑇𝑇𝑇𝑇𝑇,𝑥𝑥�𝑥𝑥 = 1,2, …. ,𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�   𝑂𝑂𝑂𝑂   {𝑉𝑉𝑆𝑆,𝑥𝑥�𝑥𝑥 = 1,2,…. ,𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅}  
and 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = {𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 , 𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ,𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶}. 
 
The minimum number of parameters required to identify six conditions, as described in Table 10 

successfully, can be expressed as, 
 
 𝑛𝑛𝑃𝑃 = 𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 3,        (4) 

 
where NROOM represents the total number of rooms. The constant 3 indicates the three critical Group 

B parameters, which are TCHWS, VCHWS, TCWS. The other parameter associated with the number of rooms is 
either VS or TTC. In this research, two thermocouples were used to measure TTC, the temperature of each room, 
while for the airflow sensor, model SD2001 from ifm electronic was used to measure VS. The price of an 
airflow sensor is very much higher than the price of thermocouples. Therefore, in terms of cost, all four 
parameters in Dataset A6B16 can be considered the critical parameters to identify six classes of faults for this 
research at a  lower cost than dataset A4B16. Although the accuracy of the Dataset A4B16 was slightly higher 
than the Dataset A6B16, the difference was not much and was still above 90%.  

 
 
4. CONCLUSION 

This paper has presented the developed lab-scaled of a  centralised chilled water air-conditioning 
system to represent the actual system. It is a  complete system with a cooling tower, chiller, AHU and two 
rooms. Six conditions had successfully simulated in the lab-scaled system and presented in our previous study. 
However, if a  practical system is considered, the number of sensors required would be extensive as it depends 
on the number of rooms in the building. In other words, more cost is needed as the number of sensors is 
increased with the number of rooms. Therefore, this paper has proposed critical parameters for data-driven 
FDD of a centralised chilled water system. The impact of each parameter was identified and carefully analysed 
to maintain a good FDD accuracy. Four critical parameters were proposed in this paper: the rooms’ 
temperature, TTCx, supplied chilled water temperature, TCHWS, supplied chilled water flow rate, VCHWS, and 
supplied cooled water temperature, TCWS. Results showed that the data-driven FDD successfully diagnosed all 
six conditions with the proposed parameters for more than 92.3% accuracy. Furthermore, the results were only 
differed by 0.6% - 3.4%, which was almost similar to our previous study. With the proposed parameters, only 
critical parameters to be installed in the actual building thus can reduce the sensors installation cost. 
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