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Abstract: Thixoforming is a promising method that offers several advantages over both liquid and
solid processing. This process utilizes semi-solid behaviour and reduces macrosegregation, porosity
and forming forces during the shaping process. Microstructural and mechanical characterization
of 0.3, 0.5 and 1.0 wt% graphene nanoplatelet (GNP) reinforced A356 aluminium alloy composite
fabricated by thixoforming was investigated. Stir casting was employed to fabricate feedstocks
before they were thixoformed at 50% liquid. The microstructure was characterized and evaluated
by field emission scanning electron microscopy with an energy dispersive X-ray detector and X-ray
diffraction. Mechanical testing, such as microhardness and tensile testing, was also performed to
estimate the mechanical properties of the composites. The incorporation of 0.3 wt.% GNPs in Al
alloy increased by about 27% in ultimate tensile strength and 29% in hardness. The enhancement in
tensile strength is primarily attributed to load transfer strengthening due to the uniform dispersion of
these GNPs within the Al matrix, which promotes effective load transfer during tensile deformation,
and GNPs’ wrinkled surface structure. Simultaneously, the addition of GNPs enhances the grain
refinement effect of the Al alloy matrix, resulting in a grain size strengthening mechanism of the
GNPs/Al composites. The results reveal that thixoformed composite microstructure consists of
uniformly distributed GNPs, α-Al globules and fine fibrous Si particles. The composites’ grains were
refined and equiaxed, and the mechanical properties were improved significantly. This study creates
a new method for incorporating GNPs into Al alloy for high-performance composites.

Keywords: aluminium; thixoforming; microstructure; graphene nanoplatelets

1. Introduction

Aluminium alloy plays a crucial role in various fields such as the automotive and
aerospace industries due to being an excellent lightweight structural and functional ma-
terial [1,2]. However, its strength cannot meet the developing needs of the industry [3,4].
Therefore, aluminium matrix composites (AMC) are increasingly attractive because of their
outstanding properties, such as low thermal expansion, high specific modulus and specific
strength, and good wear resistance [3].

The addition of reinforcement such as silicon carbide (SiC) [5,6], boron carbide (B4C) [7]
alumina oxide (Al2O3) [8] are common in AMC while graphene [9,10] and carbon nanotubes
(CNTs) [11–14] which are made up of carbon-based nanomaterials, have attracted tremen-
dous attention for AMC. Graphene nanoplatelets (GNPs) have become an excellent rein-
forcement because of their superior mechanical, thermal and electrical properties [15–17]
as compared with CNTs. This material exhibits ultra-high tensile strength up to 130 GPa,
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an elastic modulus of 1 TPa, a low thermal expansion coefficient and high thermal conduc-
tivity [18,19]. In addition, graphene has a 2D sheet-like structure with a higher surface area
and cheaper production cost than CNTs, thus making it an excellent alternative reinforcing
material for composites. However, the non-wetting characteristics of the surface of GNPs
have always resulted in severe issues with their dispersion in an aluminium matrix.

Various other processing methods have been developed to produce GNPs/Al compos-
ite, such as ultrasonic stirring, spark plasma sintering [20], hot extrusion process [21] and
semi-solid metal processing (SSMP). Powder metallurgy has been favoured over other meth-
ods to achieve a uniform dispersion of GNPs in the aluminium because of its low processing
temperatures, sufficient dispersion and low aggregation of the reinforcements [21,22]. How-
ever, it is not economical and has limitations in the fabrication of intricate parts. In this
regard, stir casting processing is a cheaper and more suitable route for complex designs
and bulk composite production [13]. Large specific surface area and attractive Van der
Waals interactions between graphene layers may still make it ineffective for uniformly
dispersing GNPs in the metal matrix. This process cannot overcome the agglomeration
issue. Therefore, methods which combine several processing stages have been proposed in
order to reduce the GNP agglomerations, such as SSMP. Thixoforming is a type of SSMP
that is well known for producing dense microstructures, less porosity, short cycle times
and large components with complex shapes, and it has been considered a potential route
for processing AMCs [23,24]. These features make thixoforming a favourable choice for
processing AMCs. A successful key to this technique is to get a billet with a non-dendritic
microstructure, which can be easily obtained by reheating the composite at a semi-solid
temperature within the range of 30–50% liquid fraction. Thus, liquid thixoforming has been
proposed in this current work to allow a uniform distribution of reinforcing particles and a
dense microstructure [18].

Several groups have investigated the optimum graphene content for Al matrix com-
posite. Wang et al. investigated the graphene effect on the microstructure and thermal,
electrical, mechanical and anticorrosive properties by Field Activated and Pressure Assisted
Synthesis (FAPAS). They found that 0.5 wt% of GNP content was uniformly dispersed at
grain boundaries in the Al matrix. As a result, the percentage increment of tensile strength,
hardness and corrosion resistance are 30.6%, 44%, and 31%, respectively, as compared
with pure Al. However, as the graphene content exceeds 0.5 wt.%, agglomeration occurs
at grain boundaries in the Al matrix, leading to a decrease in each property [25]. Mean-
while, Li et al. [3] used a two-step processing method including cryomilling and a hot
extrusion process to prepare the graphene/aluminium composite. They found that 0.5 wt%
of graphene successfully increased strength and unsubdued ductility over pure aluminium.
Furthermore, if the graphene nanoflakes were above 1.0 wt.%, the strengthening effect was
significantly reduced because of the graphene agglomeration. Rashad et al. [26] investi-
gated GNP-reinforced Al using a semi-powder method followed by hot extrusion. They
found that 0.3 wt.% GNP was distributed homogeneously in Al and exhibited +11.1% and
+14.7% higher UTS and yield strength, respectively, and had −40.6% lower failure strain.

The influence of graphene nanoplatelets on mechanical properties and microstructure
fabricated by the thixoforming process has not been extensively studied. Therefore, an
experiment on a thixoformed GNPs/Al composite with variation in the GNP content
is worth performing. First, the composite was reinforced with GNP content (at 0.3, 0.5
and 1.0 wt.%) via mechanical stir casting and then processed by thixoforming. GNPs
were selected as reinforcement because of their ultra-high strength and multiply wrinkled
graphene nanoplatelet structure resulting in increased strength and ductility as compared
with monolithic aluminium [3]. The optimum GNP content as the function of the ex-
pected enhancement, the main strengthening mechanism of the GNP particles and the
microstructure evolution were discussed.



Materials 2022, 15, 6791 3 of 15

2. Materials and Methods

2.1. Materials

A commercially available A356 aluminium alloy (Al-0.7Si-0.3Mg) was selected as the
matrix in this experimental study. It is a cast grade aluminium alloy supplied in the form
of an ingot. The chemical composition of the A356 alloy obtained from optical emission
spectroscopy (OES-Oxford) is tabulated in Table 1, which shows Silicon and Magnesium as
its major alloying elements. GNPs were obtained from Sigma-Aldrich (St. Louis, Missouri,
USA) with purity >95%, particle size of <2 um and average thickness of a few nm. Mg
powder with purity >99% was used as a wetting agent. Different ratios of GNPs (0, 0.3, 0.5
and 1.0 wt.%) and 1 wt% Mg were used for the experiment.

Table 1. A commercial A356 alloy matrix composition by weight fraction (wt.%).

Si Mg Fe Cu Mn Ti Zn Al

7.27 0.32 0.185 0.006 0.004 0.119 0.009 Balance

2.2. Composite Fabrication

The mechanical stir casting route was employed to fabricate the GNPs/Al composite
to produce non-dendritic feedstock for thixoforming. First, the GNP powder and 1 wt.%
of Mg were weighed using an analytical balance (Mettler Toledo, AB54-SRS, Germany)
before being mixed. Then, about 400 g of the Al-7Si alloy matrix was melted in the
induction furnace at 700 ◦C. The temperature decreased to 650 ◦C before the reinforcement
powder was injected via a hollow stainless steel rod. The rod acted as a plunger, pushing
the reinforcement powder into the bottom of the crucible. The liquid mixture was then
mechanically stirred at 500 rpm for 5 min using a three-blade radial impeller. Finally, the
molten composite was poured into a 150 ◦C preheated mould of 25 mm and 120 mm in
diameter and height, respectively, to cast the composite billets. The composite billets were
made with the addition of 0.3 wt.%, 0.5 wt.% and 1.0 wt.% of GNPs.

Thixoforming was performed by placing the produced billet into the induction coil
with an inner diameter and height of 100 mm and 200 mm, respectively, by using a
T30–80 kHz 35 kW thixoforming machine. Each composite billet was machined to 25 mm
and 100 mm in diameter and length, respectively, before being placed within the induction
coil. Next, the billet was rapidly heated at 130 ◦C/min to prevent unfavourable grain
growth. Once the billet reached a temperature of 580 ◦C, at 50% liquid fraction, it was
maintained isothermally for 5 min to allow for spheroidization of the primary phase [27,28].
To monitor the temperature, a K-type thermocouple was inserted into a hole drilled at the
top of the billet’s centre to a depth of 4 mm. The thermocouple was then removed before
the billet was forged into the die using a laboratory press with a load of 20 kN and a speed
of 85 mm/s. Moreover, the applied pressure was held for 1 min after the press.

2.3. Analysis of Microstructure

The samples used for each process were sectioned in a middle region of about 10 mm
for metallographic examination, as shown in Figure 1. Microstructural analysis was per-
formed by field emission scanning electron microscopy (FESEM- ZEISS Sigma 500, Ger-
many) with an energy dispersive X-ray spectrometer operating at 20 kV. The standard
metallographic procedure was conducted as follows for FESEM: surface grinding at dif-
ferent grit sizes (320, 600, 800 and 1200), polishing with diamond fluid (6, 3 and 1 μm)
and etching with Keller’s solution agent for 10 s. Phase characterization results from
thixoforming were conducted on the polished specimens by X-ray diffraction (XRD) D8
Advance X-ray diffractometer (Bruker AXS, D8 Advance, Karlsruhe, Germany) for which
the system employed a Cu source and K-α as a radiation source. A characteristics study
of the GNPs was undertaken by transmission electron microscopy (TEM) (Thermo Fisher
Scientific, Talos L120 C, Waltham, MA, USA) at an accelerating voltage of 200 kV.
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Figure 1. Whole sectional macrographs of thixoformed A356 aluminium matrix composite component
reinforced by 0.3 wt.% GNPs (a) sample cut location; (b) whole length of billet composite (about
70 mm).

2.4. Mechanical Properties

The tensile test was carried out for each composite based on the ASTM E8M standard
for the yield strength (YS) at 0.2% strain offset, ultimate tensile strength (UTS) and elon-
gation to fracture. Tensile analysis was accomplished using a universal testing machine
(Zwick, ProLine100, Lübeck, Germany) at a crosshead speed of 1.2 mm/min. The test was
performed following the ASTM E8M standard. Tensile properties represent the average
of three successive test results. Figure 2 displays the tensile test sample with a gauge
length and diameter of 24 mm and 4 mm, respectively. The fractographic analysis was
conducted on the fractured surfaces of GNPs/Al composites. It was examined by FESEM
to understand the fracture mode during the tensile testing. The hardness of the composites
was measured using a Vickers hardness tester (Zwick, ZHVμ, Lübeck, Germany) with an
indenter load of 30 gf and a dwell time of 10 s.

Figure 2. Schematic of a tensile test specimen.

2.5. Differential Scanning Calorimetry

The heat flow and liquid fraction versus temperature of an A356 aluminium al-
loy/GNP composite was determined by the differential scanning calorimetry (DSC) tech-
nique which is shown in Figure 3. Differential scanning calorimetry analysis was performed
on a Mettler Toledo TGA/DSC1 in an argon-controlled environment. A high-purity alu-
mina pan was used as a reference material. The mass of the specimen used for DSC analysis
was around 10 mg, and the sample was cut from the centre of the as-received alloys. The
sample was then heated to 700 ◦C with a heat rate of 10 ◦C/min and purged with a neutral
nitrogen gas atmosphere to prevent severe oxidation. The temperatures at the beginning
and the completion of solidification are called the liquidus temperature Tliquidus and the
solidus temperature Tsolidus, respectively. The solid line is the liquid fraction curve and the
dashed line is the heat flow. A solidus temperature of 568 ◦C and liquidus temperature of
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616 ◦C were achieved. The thixoforming involves reheating the billet from the solid to the
semi-solid region. Thus, it shows that the semi-solid region of 30–50% liquid fraction is
between 577–580 ◦C. Therefore, the thixoforming temperature would suggest that 580 ◦C
was the maximum temperature before the liquid fraction of 50% was exceeded.
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Figure 3. DSC and liquid fraction curve of 0.3 wt.% GNP/Al composite.

3. Results

3.1. Characterization of Raw Materials

Figure 4 shows the images of the A356 alloy and GNP powders. Figure 4a depicts the
morphology of the aluminium alloy and Figure 4b shows the plate-like structure of GNPs.
The selected area electron diffraction (SAED) pattern is shown in Figure 4c which represents
a single set of hexagon diffraction pattern characteristics. Meanwhile, the high-resolution
TEM image of as-received GNPs in Figure 4d indicates the thickness and shows that the
graphene’s surface is wrinkly, with several layers, and that the surface morphology is wavy
folds. Microstructural investigation shows that each layer’s average thickness dimension
of GNPs is 0.2–0.3 nm.

3.2. XRD Analysis of Al-GNPs Composite

Figure 5 illustrates the XRD spectra of the Al monolithic alloy and Al-GNPs composites
consisting of disparate weight fractions of GNPs. There are several peaks comprising peaks
of Al and Si. The distinct peaks correspond for Al detected at several places such as
at 38.47◦, 44.72◦, 65.10◦, 78.23◦ and 82.44◦. However, no peaks of GNPs are observed
because of the low graphene content and the limited resolution of elements of X-ray
diffraction. Research studies by Shao et al. [29] and Lou et al. [30] have also reported these
findings on the absence of GNPs. In addition, there was no obvious peak of the aluminium
carbide (Al4C3) phase found, thus proving that there was no chemical interaction between
GNPs and Al alloy. Hence, this suggests that high-quality GNPs/Al composites were
fabricated by the thixoforming process. The billet was reheated to a semi-solid temperature
before the formation process, and thus the GNPs did not react with the aluminium on the
grain boundaries.
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Figure 4. FE–SEM images of (a) Al alloy A356, (b) Graphene nanoplatelets (GNPS), and (c) SAED
pattern of GNPs; (d) TEM images of as-received GNPs.

Figure 5. XRD pattern for GNPs/Al composites with variation in GNP content.

3.3. Microstructural Analysis of Al-GNPs Composite

Figure 6 illustrates the backscattered diffraction images of thixoformed GNPs/Al
composite with the addition of 0.3 and 1.0 wt% GNPs and the EDS spectrum. Thixoforming
is an effective method for optimising the microstructure which has benefits in refining
the grain and improving the material’s properties [24,31]. The microstructure of each
composite was composed of eutectic silicon, α-Al and intermetallic compound. It is shown
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in Figure 6a,d that the grain of 0.3 wt.% GNPs is finer and more equiaxed than that of
1.0 wt.% GNPs. Hence, these findings suggest that low graphene content can promote
grain refinement to obtain a high-strength GNPs/Al composite. The addition of graphene
hindered the diffusion of Al atoms and refined the grain of the GNPs/Al composite,
resulting in increased hardness and tensile strength (see Figure 9 and Figure 10).

Figure 6. Backscattered images of thixoformed A356 alloy with the addition of (a) 0.3 wt.% GNPs
and (b) high magnification images of 0.3 wt.%, (c) EDS spectrum for selected area (yellow circle),
(d) 1.0 wt.% GNPs, (e) high magnification images of 1.0 wt.%, (f) EDS spectrum for selected area
(yellow circle).

Meanwhile, the microstructure α-Al phase in the thixoformed composite becomes
more globular with increasing GNP contents. Furthermore, grain refinement improves
the strength and plasticity as the grain size is in microns [15]. The backscattered electron
microscopy images reveal the distribution of eutectic Si (light grey areas indicated with
white arrows), α-Al matrix (a dark grey area) and EDS spectrum of the selected area in
Figure 6c,f.

Figure 7 exhibits the SEM images and element maps for each composite. The corre-
sponding element of C referring to GNPs for each 0.3, 0.5 and 1.0 wt.% GNPs/Al composite
is presented in Figure 7b,d,f, respectively. Homogenous distribution of GNP nanoparticles
in the Al matrix was observed in the sample with 0.3 wt.% GNPs, as shown in Figure 7b.
The great tensile strength attained by these composites further supported the strong bond-
ing at the interface between the aluminium matrix and GNP. However, the GNPs adhere
to the Al matrix surface because of the thixoforming process. It is worth mentioning that
the illustrated elemental mapping C has proven the uniform and even distribution of the
GNPs in the fabricated Al-GNPs composites.

On the other hand, Figure 7d,f indicate a high accumulation of carbon (C) in the red
strip-like phase as GNPs. Agglomeration of GNPs at several locations is observed for
0.5 wt.% and 1.0 wt.% of GNPs/Al composites as a result of a high percentage of GNPs,
where the liquid metal has segregated the graphene particles and impeded them from
mixing with the aluminium matrix [24,29].
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Figure 7. SEM images and their respective C element of thixoformed microstructure (a,b) 0.3 wt.%
GNPs, (c,d) 0.5 wt.% GNPs, (e,f) 1.0 wt.% GNPs/Al composite with their respective C element.

3.4. Density and Hardness of Al-GNPs Composites

The theoretical, experimental and relative density values of the thixoformed composite
are presented in Table 2. The theoretical densities of composites were calculated using
the rule of mixtures, with the densities of aluminium and GNPs assumed to be 2.7 g/cm3

and 2.25 g/cm3, respectively. Meanwhile, the experimental density was measured by the
Archimedes principle as shown in Equation (1).

ρc =
ρw × Wac

Wac − Wwc
(1)

Table 2. Theoretical density, experimental density and relative density of thixoformed Al-GNPs com-
posites.

GNP Content (wt.%)
Theoretical Density

(g/cm3)
Experimental

Density (g/cm3)
Relative Density (%)

0 wt.% 2.700 2.649 ± 0.004 98.119

0.3 wt.% 2.698 2.666 ± 0.006 98.826

0.5 wt.% 2.697 2.659 ± 0.018 98.586

1.0 wt.% 2.695 2.695 ± 0.002 98.485
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In this expression, ρc, ρw denote the density of composite and the density of distilled
water, and Wac, Wwc the weight of the composite in air and the weight of the composite in
water. Adding graphene has increased the density of Al alloy owing to its low theoretical
density. A similar trend in the density results was reported by Wang et al. on Al-Graphene
composites [25].

Figure 8 shows the relative density of composites which is essential for determining
the performance of a material. The relative density (ρr) of the developed composites was
determined using the measured density (ρm) and the theoretical density values (ρt) as
indicated in Equation (2). The relative density of 0.3 wt.% GNPs/Al composite is the
highest at 98.82%, suggesting that it has the lowest porosity and the densest as compared
with others. The relative density decreases significantly with increases in graphene content.
The presence of pores and agglomeration of graphene sheets at the grain boundaries of
the Al matrix can cause a reduction in relative density [25]. The GNP cluster was found in
composites containing 1 wt% GNPs, which were responsible for the existence of porosity
and decrease in the relative density. The evidence of the presence of clusters may be
witnessed in Figure 7d,f, which also show the cluster encapsulating the smaller aluminium
particles. These clusters cause a decrease in the density of composites and the effects appear
significantly at higher values of GNPs.

ρr =
ρm

ρt
× 100 (2)

Figure 8. Relative density of thixoformed composite sample.

Figure 9 shows the hardness of each composite at varying GNP contents. Overall, the
composites’ hardness value is superior to that of the Al alloy. The addition of GNPs has a
significant influence on the hardness increment. The hardness was enhanced by more than
29% when 0.3 wt.% GNPs were added, from 78 HV to 101 HV. However, as the GNP content
increased, the hardness value tended to decrease. This trend is highly associated with
changes in density and the microstructures. As discussed earlier, the 0.3 wt.% GNP/A356
composite with the highest relative density exhibited the highest hardness.

3.5. Mechanical Properties and Fracture Mechanism

The tensile stress–strain curve of Al and composites with variation in GNP content
are shown in Figure 10a. Hence, the ultimate tensile strength (UTS), yield strength (YS)
and fracture elongation are shown in Figure 10b to further analyse the trend changes in
mechanical properties of GNPs/Al. The value of UTS, YS and elongation are summarised
in Table 3. It is seen that the UTS and YS of nanocomposites compared with unreinforced
alloy received remarkable enhancements. As compared with Al alloy, the ultimate tensile
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strength of 0.3, 0.5 and 1.0 wt% GNPs/Al composites increases by 27% (246.5 MPa), 11%
(215.0 MPa) and 19% (231.6 MPa), respectively, and the yield strength increases by 43%
(141.5 MPa), 34.6% (132.67 MPa), 19% (117.3 MPa), respectively. The addition of 0.3 wt.%
of GNPs improves the ultimate tensile strength and yield strength by almost 50% of that
measured for Al alloy.
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Figure 9. Comparison of the hardness of alloy and composite with different compositions.

(a) (b)

Figure 10. Tensile properties of Al alloy and GNPs/Al composites with different graphene contents.
(a) Tensile stress–strain curve; (b) relationship between fracture elongation and YS, UTS.

Table 3. Mechanical properties of GNPs/Al composites.

Samples
Ultimate Tensile
Strength (MPa)

Yield Strength (MPa) Elongation (%)

Al alloy 193.0 ± 17.0 98.5 ± 6.0 7.46 ± 3.18

0.3 wt% GNPs/Al 246.5 ± 19.0 141.5 ± 2.6 5.25 ± 2.62

0.5 wt% GNP/Al 215.0 ± 6.0 132.6 ± 4.6 3.96 ± 0.20

1.0 wt% GNP/Al 231.6 ± 9.3 117.3 ±3.2 4.36 ± 1.39
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On the other hand, the fracture elongation decreased by 30%, 47% and 41% for
0.3 wt.%, 0.5 wt.% and 1.0 wt.%, respectively. The 0.3 wt.% GNPs/Al composites maintain
the favourable ductility of the A356 alloy as compared with the other composites. This
suggests that adding 0.3 wt.% of GNPs is sufficient to preserve the ductility. Furthermore,
it is noticed that the fracture elongation of the composites is linked inversely to their UTS
with increasing graphene content. Typically, such extraordinary features are attributed
to the synergistic interactions between evenly dispersed GNPs and ultrafine-grained Al
matrices [25].

The fracture surface morphology of Al alloy and GNPs/Al composites are shown
in Figure 11. Figure 11a is the fracture profile of Al alloy and the fracture shown is a
typical dimple formation type. Figure 11b–g shows the fracture morphology of 0.3, 0.5, and
1.0 wt.% GNPs and their high magnification, respectively. The dimples slightly decrease
with the increases in GNP content and porosity, and are more evident in 0.5 wt.% and
1.0 wt.%. The change in fracture surface was accompanied by a decrease in elongation, as
described in Table 2. The decrease in dimples and elongation as GNPs increased were also
observed by Li et al. [32]. It is found that the fracture characteristics of 0.3 wt% composite
changes the dimple size and depth with the bright ridges as shown in Figure 11c. This
indicates the ductile failure characteristics consistent with high percentage of elongation
obtained in 0.3 wt.% GNPs. GNPs are observed to be either parallel or perpendicular to the
load direction, as shown in Figure 11f, further confirming the random distribution of GNPs
in the matrix.

GNP 
perpendicula

Porosity 

Figure 11. The FESEM fractured surface morphology and high magnification images of the GNPs/Al
composites at various graphene contents: (a,b) 0 wt.% GNPs; (c,d) 0.3 wt.% GNPs; (e,f) 0.5 wt.%
GNPs; (g,h) 1.0 wt.% GNPs.
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Meanwhile, porosity was observed on the fracture of the 0.5 wt% and 1.0 wt%
GNPs/Al composites in Figure 11e,g, thus indicating insufficient interface bonding between
GNPs and Al composite and early failure of the composites. The crack propagation around
the GNPs forms dimples of different sizes and shapes and some of them show tear ridges.
In addition, it can be viewed on the higher magnification images, as shown in Figure 11d,h,
that some GNPs were pulled out (marked by the white arrow in the figure), which serves in
transferring the load. Further, this phenomenon helps to impede the propagation of cracks.
Therefore, it is confirmed that effective bonding occurs between GNPs and the Al matrix.
The analysis of fracture morphology establishes the properties of the composites.

3.6. Strengthening Mechanism

The addition of GNP nanoparticles has contributed to the enhancement of properties
in composites because of several strengthening mechanisms. The strengthening mechanism
of graphene reinforcement is assumed to be related to the unique structural characteristics
of graphene, good bonding interfaces between graphene and aluminium and excellent
mechanical properties.

Thermal mismatch strengthening, load transfer mechanisms, the Orowan strengthen-
ing mechanism and grain refinement can be attributed to the strengthening enhancement in
mechanical properties [26]. The coefficient of thermal expansion of graphene nanoplatelets
is 1 × 10−6 K−1, the same as graphite. On the other hand, aluminium has a coefficient of
thermal expansion of 23.6 × 10−6 K−1. As a result, GNPs/Al composites have a significant
coefficient of thermal expansion mismatch, resulting in prismatic dislocations punching at
the interface, leading to composite matrix strengthening. The following formula [27] can be
used to calculate the contribution of the thermal mismatch mechanism to tensile strength:

Δσthermal = kGmb

√
12

ΔT ΔC Vg

bdg
(3)

where k is a constant (0.5), Gm is the shear modulus of the matrix (27.5 GPa), b is the Burgers
vector of matrix Al (0.286 nm), ΔC is the thermal coefficient expansion (CTE) difference
between matrix and reinforcement, and ΔT is the temperature difference between the
thixoforming process (580 ◦C) and ambient temperature 25 ◦C. In addition, the Vg is the
volume fraction of GNPs and dg is the mean particle size of the GNPs.

The Shear lag model [26] can explain the load transfer from the matrix to reinforcement.
Load transfer from the matrix to reinforcement is primarily determined by interfacial
bonding between the matrix and reinforcement caused by interfacial shear stress. Figure 7b
shows that GNPs are uniformly embedded in the Al matrix, resulting in efficient load
transfer from the matrix to reinforcement and increased composite strength. The following
Equation (4) can be used to calculate the increase in yield strength of composites caused by
load transfer.

ΔσLT =
Vgnp σm

2
(4)

where σm is the strength of matrix and Vgnp is the volume fraction of GNPs. The Orowan
strengthening mechanism also plays a significant role in strength enhancement. The
nanoparticles in the composite can inhibit dislocation movement and enhance the materials’
strength. According to Zhang et al., the presence of highly dispersed nanosized rein-
forcement particles (smaller than 100 nm) in a metal matrix makes Orowan strengthening
preferable in AMC due to the resistance of closely spaced hard particles to the dislocation
passage. The following Equation (5) can be used to calculate the increase in yield strength
of composites caused by Orowan strengthening.

ΔσOrowan =
0.13 Gmb

dr

[(
1

2Vg

)1/3 − 1
] ln

dr

2b
(5)
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where Gm and b are the shear modulus and the Burgers vector of matrix Al. Vg is the
volume fraction of reinforcements in the composite.

The grain refinement mechanism is another possible strengthening mechanism for
AMCs reinforced by GNPs. The finer the grain, and the more grain boundaries, the greater
the resistance to dislocation motion. Because of dislocation pile-up concentrated at the
grain boundaries the stress concentration was calculated theoretically. The Hall–Petch
Equation (6) describes the grain-boundary strengthening mechanism as shown below [28].

ΔσGR = σ0 +
ky√

d
(6)

where σ0 is the friction stress, d is the average grain diameter and ky is the Hall–Petch slope.
This effect is mainly related to the inhibition of the reinforcement on grain growth during
the thixoforming process.

The enhancement in strength is caused by adequate bonding and dispersion of GNPs
between the reinforcement and matrix. Apart from that, the thixoforming process con-
tributes to a more refined and compact primary α-Al grain distribution, which reduces the
crack initiation and porosity, which leads to the increment in tensile strength, as shown
in Figure 7a. Based on the previously described Hall–Petch relationship, a refined grain
increases the tensile strength since a globular grain is more equiaxed than a columnar grain,
which would produce higher strength with reduced elongation [33]. The deformation or
shear force caused by the thixoforming process separates the dendritic arm and multiplies
the grain [31,34]. Billet reheating promotes the formation of globular grain structures. The
globular grain structure and the refinement of the grain as the effects of the thixoforming
process were proven to increase the mechanical properties of Al alloy [28,31,35].

Load transfer from aluminium to high-strength graphene is made possible by high
interfacial strength. The Hall–Petch effect could also be responsible for this increment
in composite strength. Chak et al. and Boostani et al. found similar results in the load
transfer strengthening mechanism in their research findings [17,36]. In contrast to other
composites, the agglomeration of GNPs caused the composite to fail earlier (1.0 wt.%). The
refined grain and strengthening effect of GNPs are responsible for the improvement in the
mechanical properties of composites reinforced with GNPs. During the deformation course
of the composites, the reinforcement is strengthened by the Orowan strengthening effects,
increased dislocation density, and load-bearing effects. This is because the GNPs in the
current work are a few nm in size, and thus the Orowan strengthening mechanism works
more effectively.

4. Conclusions

The effects of GNP on the microstructure, mechanical properties and strengthening
mechanism of GNPs/A356 composite with a variation in the number of GNPs prepared by
stir casting and thixoforming were successfully investigated. It is worth noting that the
0.3 wt.% GNPs/Al alloy nanocomposites have a significant advantage in ductility, strength
and hardness. The thixoforming process is beneficial for a homogenous distribution of
GNPs, resulting in a 47% and 23% increment in yield strength and ultimate tensile strength,
respectively. The wrinkled structure of GNPs and effective bonding may be attributed to
this behaviour. During plastic deformation, the wrinkled structure was straightened. When
further increased in deformation, this promotes GNPs pulling out from the matrix.

Even though some encouraging results have been obtained, unexplored influences
of interfacial reaction and structural integrity in GNPs/Al composites still need to be
investigated. Therefore, our future study will concentrate on enhancing the properties by
precipitation-hardening heat treatment to increase the strength and improve the dispersion
of GNPs in the metal matrix.

The formation of phase composites having an agglomeration effect with increasing
concentration of GNPs is confirmed by the structural (XRD) and compositional analysis
(EDX). The morphologies of eutectic Si in different processes are noticeably different. The
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thixoforming process promotes a smaller and compact eutectic structure. The hardness in-
creases with up to 0.3 wt% GNPs and then decreases. Therefore, the GNP/A356 composite
exhibits an improved tensile strength (from 193 MPa to 246 MPa) and yield strength (from
98 MPa to 141 MPa) and maintains good ductility simultaneously.
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