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Abstract—Numerous strategies for determining the most 

influential nodes in a connected network have been developed. 

The use of centrality indices in a network allows the 

identification of the most important nodes in the network. 

Specific indices, on the other hand, cannot search for a network's 

entire meaning because they are only interested in a single 

attribute. Researchers frequently overlook an index's 

characteristics in favour of focusing on its application. The 

purpose of this research is to integrate selected centrality indices 

classified by their various properties. A symbolic regression 

approach was used to find meaningful mathematical expressions 

for this combination of indices. When the efficacy of the 

combined indices is compared to other methods, the combined 

indices react similarly and outperform the previous method. 

Using this adaptive technique, network researchers can now 

identify the most influential network nodes. 

Keywords—Centrality indices; combination; symbolic 

regressions; influential nodes 

I. INTRODUCTION 

For years, the prediction of the most influential nodes has 
been a source of contention [1]. The node with the most impact 
is ranked first, and the one with the least effect is ranked last 
[2]–[4]. Several research had been carried out to enlist the 
importance of nodes detection which is such as in finding 
importance suppliers [5], [6], detection of cancer or virus gene 
[7] or as well as to monitor the terrorist activities [8]. 

Over the years, over 403 indices have emerged from the 
four major indices: Degree Centrality (DC), Betweenness 
Centrality (BC), Eigenvector Centrality (EV), and Closeness 
Centrality (CC). Individual task and node importance priorities 
are claimed to impact the development of various indices. 
Various centrality measures have been employed to predict 
node outcomes, with the underlying assumption being that the 
more centrally situated the nodes are in the network, the greater 
their spreading potential [9], [10]. 

However, there were limitations to using indices as a single 
centrality metric because they could focus on one application 
area. DC for example, is a good indicator of a node's total 
connections [11]. Still, it does not necessarily imply a node's 
value in linking nodes or how central it is to the main group. 
CC on the other hand, determines how close a node is, but an 
independent network will not profit from its supremacy if two 
nodes are placed in distinct components [9]. In the case of BC, 

the result will be zero if many nodes are not on the shortest 
possible path to the remainder of the network [12]. 

A single centrality metric proved to be insufficient for 
accurately predicting the network's most important nodes [13]. 
Combining centrality indices to determine the most influential 
nodes has been floated. According to [7], [14], there is no 
single centrality measure that can accurately identify key 
nodes, but the combination of at least two centrality measures 
is the most accurate. Combining multiple indices is 
considerably more accurate than using one index while 
assessing a node's influence capacity [11]. The influence of a 
node may be evaluated by its location and surroundings. 

The researchers have recursively investigated this topic and 
determined that each indices have distinct features. This 
attribute, known as network topology, is reflected differently 
by different methods, and the evaluation results may include 
flaws or deficiencies. Borgatti [15]observed two forms of 
network topology: geodesic paths and walking paths. In the 
following research, Ashtiani [16]determined that centrality 
measures may be categorized into five classes based on the 
reasoning and formulas used. This characterization of centrality 
indices is also used by [17] while accessing the topological 
structure of student network. 

The goal of this research is to investigate the effectiveness 
of centrality indices combination. Genetic programming-based 
symbolic regression (SR) is used here to find expressions to 
combine the selected indices. Two datasets examined to test 
the performance of a mix of indices based on their individual 
properties. Vignery's topology principles guided the selection 
of the centrality indices in this study. Combination outcomes 
are compared to results from a previous combination strategy 
to get a better sense of how effective the combinations are. At 
the end of this research, the possibility on applying symbolic 
regression to combine centrality indices will be clarified, and 
whether the categorization of indices according to their 
characteristics similarities has an impact on the combined 
indices. 

II. MATERIALS AND METHODS 

A. Data 

Zachary and Les Misérables (Les-M) datasets, both 
weighted and unweighted, were used in this investigation. 
Thirty-four people from the karate club were included in the 
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Zachary dataset, which documented 78 connections between 
members who interacted outside the club. The novel Les-M 
features 77 nodes and 254 edges, including co-occurring 
characters. Both networks were depicted in the Fig. 1, with 
information on the most connected nodes. 

B. Theoretical Topology of Centrality Indices 

The definition of Vignery's eleven centrality indices is 
simplified and shown in Table I. Several of the indices had the 
same features and hierarchical clustering analysis is executed 
to observe whether the indices can be clustered into a single 
component to justify where the indices are converging. The 
dendrogram is built up by clustering observations and their 
similarity levels at each stage and assessing the similarity (or 
distance) levels of the produced clusters. As a first stage in the 
modeling technique, the value for each index is computed for 
each node. Following that, the indices was categorized based 
on their commonalities. The higher a cluster's similarity level, 
the more related the variables in that cluster are. These indices 
are divided into five theoretical groups, explained in Table I. 

   
(a) Zachary Network.  (b) Les-M Network. 

Fig. 1. Representation of both Networks. 

TABLE I. VIGNERY’S CENTRALITY INDICES SELECTION 

Type of centrality Definition Indices involved 

Geodesic Distance and 

Path 

A simple measure of 

the shortest path 

between two vertices. 
The length of a 

geodesic path is called 

geodesic distance or 
shortest distance.  

Eccentricity (EC), 
Closeness (CC), 

Residual closeness 

(RC), Geodesic K-path 
(GK), Betweenness 

(BC), Bottleneck (BN) 

Connectivity 

Number of direct 

connections a node has, 

which means that every 
pair of vertices has a 

path linking them. 

Eigenvector (EV), Hub 

& Authority (HUB & 
AUT), PageRank (PR) 

Neighbor’s prestige 

Measures the number of 
shortest pathways a 

specific node has 

between any other two 
nodes and is based on 

the premise that a node 

with the shortest paths 
controls communication 

flows. 

EV, HUB & AUT, PR 

Nodes’ adjacent 

The neighbourhood of a 

node is the collection of 
all vertices near the 

vertex. 

Cross-clique 
connectivity (CQ), 

Maximum 

Neighborhood 
Component (MNC) 

C. Combinations of Indices 

Network dynamics are examined as a function of the 
structure. The best estimate is made by combining a given 
number of indices based on the features of the component 
clusters. Genetic programming (GP) with symbolic regression 
(SR) is employed to generate mathematical expressions that 
may predict the simulation response values based on the 
topological indices used. SR is a technique that uses collected 
data to construct mathematical equations that may be used to 
test hypotheses [18]. With SR, the parameters and equation 
form are automatically searched, unlike typical regression 
methods that require a fixed-form model built from prior 
knowledge. GP is commonly utilized in SR because of the high 
computational complexity imposed by a vast search space that 
generates new solutions using the notion of biological 
evolution as a meta-heuristic [18], [19]. SR method's results 
will then be compared with those from other methods that use 
centrality indices as a comparison metric. Three algorithms are 
chosen for comparison which is provided by Eq. (1), (2) and 
(3). 

 C(v) algorithm: Wang [20] developed a combination 
formula with the integration of DC, diffusion degree 

(DD) and BC as denoted in Eq. 1 with 1a b c   . 

C( ) DC( ) DD( ) BC( )v a v b v c v  
            (1) 

 BC and Katz (BKC) algorithm: Zhang [21] merged BC 
and Katz's centrality. Eq. 2 expresses the relationship 
between BC and KC. 

( )BKC v aBC bKC 
             (2) 

 Integrated Value of Influence (IVI): Consider 
topological dimensions [22], IVI consider six key 
network centrality measurements (normalizes 
connectivity (NC), ClusterRank (CR), BC, collective 
influence (CI), DC and local index (LH)) into account 
as given in Eq. 3. 

    ' ' ' ' ' 'indexIVI NC CR BC CI DC LH   
          (3) 

III. RESULT AND DISCUSSION 

A. Cluster Analysis 

Clustering is used to group comparable data objects using a 
similarity measure. The similarity is a value that displays the 
strength of a relationship between two data items; it represents 
how similar data patterns are. The topological framework 
classifications from Vignery will be extended. We wanted to 
see how well the indices matched, so we applied a simple 
hierarchical clustering algorithm. 

The results of clustering are depicted in Fig. 2a and 2b. We 
discovered that for both networks, all the indices could be 
clustered into four groups. Take note that the component 
clustering is quite close to Vinery's recommendations. The 
final partition specifies how the indices will be clustered. In 
those eleven indices, both networks were supposed to cluster 
similarly into four groups, except for Les-M, where PR will be 
in Cluster 2 rather than Cluster 3 (as in Zachary). EC has the 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 5, 2022 

594 | P a g e  

www.ijacsa.thesai.org 

lowest similarity score and is not assigned to any category. EC 
was not assigned to any cluster because it has the lowest 
similarity score (10.56 and 7.00) compared to the other indices. 

 
(a) 

 
(b) 

Fig. 2. (a). Hierarchical Clustering of Indices for Zachary. (b). Hierarchical 

Clustering of Indices for Les-M. 

B. Combinations of Indices 

Turingbot software was applied to execute the symbolic 
regression codes, which entails combining a set of base 
functions into simple formulas to produce a regression model. 
Fig. 3 depicts the steps we take to generate different 
mathematical formulations for each cluster. Because the output 
of SR will vary, we choose the phrase with the lowest value in 
terms of root mean square error (RMS error) and the highest R-
squared (R-sq). Finally, we obtained four distinct expressions 
for each cluster specified, namely C1, C2, C3, and C. C is an 
expression that includes all the indices involved. As a result of 
efficient training and shifting, the analytic equations for both 
networks are shown in Table II are derived. 

C. Pearson Correlation Analysis 

The combined indices and component clusters employed in 
the earlier approach are compared. The correlation technique 
can be used to discover the similarity of combined centrality 
indices. The dataset also includes an average value (AVE) for 
the average result for each node from the Combined, IVI, 
BKC, and C(v). This AVE value will serve as the reference 
result to which the correlation converges. 

Correlation for both networks show a significant and 
favorable relationship as shown in Tables IIIa and IIIb. In 
Zachary, there is a high correlation between AVE and IVI, 
BKC, and C(v). There is a high association between IVI and 
the clustered group and all other combined indices. The 
concept of combining indices while considering their spreaders 
and hubs can be extended for future use. With a correlation 
coefficient of 0.797, the relationship with C is likewise 
satisfactory. It is fascinating to notice that the C1 and C2 are 
more closely linked to AVE than is C, while C3 is obviously 
diverged from correlation toward others. 

Results for Les-M also give results like Zachary's network 
when looking at each cluster component, with C1 and C2 being 
more correlated than C and C3. However, it is interesting to 
observe that IVI is quite diverging for this network. According 
to these findings, the SR modeling combination model has 
successfully identified influential nodes. In the following 
section, the node's ranking position is being observed. 

D. Node’s Ranking of Position 

In this section, the placements of nodes were analyzed and 
arranged in descending order. When comparing procedures 
side by side in Tables IVa and IVb, the top ten ranking position 
of each approach is considered. NodeAVE is a reference 
column that contains the average positioning value of nodes for 
each method, as expressed by the average positional value of 
nodes for each technique. Zachary and Les-M discovered that 
BKC and C(v) have a very similar node detection to AVE 
when comparing the two algorithms. 

Nodes in IVI react similarly in Zachary, whereas they 
deviate significantly in Les-M. However, when compared to C 
for both networks, C1 and C2 show more comparable node 
detection for both networks when compared to C. To better 
understand the similarity result, we use the Jaccard similarity 
(JS) score and Kendall's tau-b to access the top ten nodes' 
ranking positions. Kendall's tau-b indices are used to measure 
the strength of a method's ranking position to understand the 
similarity result from the JS-score better. 

 

Fig. 3. Illustrations on Indices Combination for each Group. 
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TABLE II. MATHEMATICAL EXPRESSION OF COMBINED INDICES 

Zachary Les-M 

Cluster 1 (C1): CC RC GK 

       0.00103544 1.33583 0.915295 0.122916RC GK cos GK   
 

RMS Error = 0.000248416 
R-Sq = 0.987144 

 

Cluster 1 (C1): CC RC GK 

     0.00727966 / 0.0565855* 0.802185* 0.121368*" " " " 2.51961GK RC    

RMS Error = 0.000248416 

R-Sq = 0.987144 

Cluster 2 (C2): BC BN 

      
  

   

  2.12409 - tanh -0.457495 tan tan 0.208093

-2.28163- cos

cos -0.39

6

0946 - 0.54258

0.31

8

68 9

round BN BN

round BN

floor BN
BN



 
 
  
  
  
  

 





 
RMS Error = 0.841825 
R-sq = 0.998876 

 

Cluster 2 (C2): BC BN PR 

 
   

       

0.00897528 1.00369* 169.68
3.95423 05

0.329319 * 368.183

tan BN BC
e

cos cos BN BC BC

 
 
 

  



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




 
 

 

RMS error = 0.00283 
R-sq = 0.946660 

Cluster 3 (C3): EV AUT HUB PR CQ MNC 

 

 

   

  0.00344533

0.41957 / 0.39926
0.066212 2.55262*

PR

MNC CQ MNC
cos HUB

AUT



  
  

 

  
 

  
    

RMS Error = 0.0356482 

R-Sq = 0.985527 

 

Cluster 3 (C3): EV AUT HUB CQ MNC 

 

   

     
 

3.98809 1.13497 0.0407873 0.0729471

2 / 0.0705538* 0.0449964

0.092534

tan CQ

log CQ AUT tan tan tan CQ

AUT

 







  
  
  
   
 


  

 

  

 
 

 
RMS Error = 0.2957 

R-Sq = 0.99513 

Combine (C): EC CC RC GK BC BN EV AUT HUB PR CQ MNC 

   

     

  

1.23832

7.32811 0.9791850.0113009* *
0.000275397

0.814871

9.00789

tan GK cos MNC

MNCGK BN

tan RC BN tan BC

sinh HUB RC

    
    
     
     

          
 

  

   


  

  
 

RMS Error = 0.008983 
R-Sq = 0.97642 

 

Combine(C): EC CC RC GK BC BN EV AUT HUB PR CQ MNC 

   
   

 

 " "/ 0.0140288 0.000763124*" " " " 4.15684

1.32335*" " " " 9.22003 103.165*" "

" " 8.01939*" "

PR BC EV

MNC RC HUB

cos EC RC



  

   

 
 

RMS = 5.4994 
R-Sq = 0.9941 

TABLE III. (A) CORRELATIONS IN ZACHARY 

 IVI BKC C(v) C C1 C2 C3 

BKC 0.910             

C(v) 0.823 0.929           

C 0.712 0.736 0.605         

C1 0.752 0.726 0.592 0.975       

C2 0.800 0.856 0.735 0.778 0.762     

C3 0.484 0.525 0.439 0.278 0.268 0.366   

AVE 0.951 0.988 0.943 0.724 0.729 0.839 0.510 

TABLE III.       (B). CORRELATIONS IN LES-M 

 IVI BKC C(v) C C1 C2 C3 

BKC 0.320             

C(v) 0.539 0.943           

C 0.718 0.641 0.852         

C1 0.445 0.691 0.841 0.872       

C2 0.487 0.925 0.954 0.770 0.785     

C3 0.050 -0.004 0.042 0.079 0.087 0.093   

AVE 0.570 0.944 0.997 0.851 0.817 0.953 0.031 
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TABLE IV. (A) TOP TEN NODES BASED ON RANKING IN ZACHARY 

Rank Node AVE Node IVI Node BKC Node Cv Node C Node C1 Node C2 Node C3 

1 1 1 1 1 1 1 1 34 

2 34 34 34 34 3 34 3 22 

3 33 33 33 33 34 3 33 1 

4 3 2 3 28 32 33 32 3 

5 32 3 32 3 14 32 34 2 

6 2 4 9 32 33 2 24 25 

7 14 8 2 6 9 9 9 15 

8 9 24 14 23 20 14 2 5 

9 6 9 20 27 2 20 14 18 

10 24 14 6 26 4 4 20 17 

TABLE IV.        (B) TOP TEN NODES BASED ON RANKING IN LES-M 

Rank Node AVE Node IVI Node BKC Node Cv Node C Node C1 Node C2 Node C3 

1 Valjean Gavroche Valjean Valjean Valjean Valjean Valjean Simplice 

2 Gavroche Courfeyra Myriel Gavroche Gavroche Marius Myriel Toussaint 

3 Marius Bahorel Gavroche Marius Marius Gavroche Gavroche Woman2 

4 Fantine Joly Marius Fantine Javert Javert Fantine Tholomye 

5 Myriel Combefer Fantine Myriel Enjolras Thenardie Marius Bamatabo 

6 Thenard Feuilly Thenardie Thenardie Thenardie Enjolras Cosette Mlle.Gille 

7 Enjolras Valjean Javert Javert Bossuet Bossuet Enjolras Gillenorm 

8 Javert Enjolras Mlle.Gille Enjolras Courfeyra Cosette Montparn Fantine 

9 Bossuet Mabeuf Enjolras Bossuet Bahorel Fantine Mme.The Marius 

10 Courfeyr Grantaire Tholomye Mme.The Joly Babet Thenardie Prouvaire 

 

 Jaccard similarity score 

Jaccard similarity (JS) score compares two sets of scores by 
counting the number of elements in each group. JS can be 
calculated numerically by dividing the intersection of sets by 
the union of sets [23]. The higher the value, the greater the 
correlation between the two data sets. The higher the Jaccard 
similarity indices, the closer two sets of data are to one. 
Definition of JS is formulated as in Eq. 4. 

number of observations in both sets
( , )

number in either set

A B
JS A B

A B


 


  (4) 

For Zachary, C has a higher similarity score than Les-M 
when looking at the Jaccard scores for the two networks. If we 
look at Zachary and compare C to the previous combined 
technique, we see that C has the same top ten ranking entities 
for IVI (0.6667), BKC (0.8182), and AVE (0.6667). C has a 
low degree of similarity (less than 0.5) to IVI, BKC, and AVE 
in Les-M. C1 and C2 are interestingly comparable to C with 
the IVI, BKC, and C(v), which follow similar patterns. The JS-
score heatmap for both networks are shown in the Tables Va 
and Vb. The greater the degree of resemblance between 
methods, the darker is the color. 

TABLE V. (A) JACCARD SIMILARITY SCORE FOR ZACHARY 

  C1 C2 C3 C IVI BKC C(v) AVE 

C1 1               

C2 0.8182 1             

C3 0.25 0.25 1           

C 0.6667 0.8182 0.25 1         

IVI 0.6667 0.6667 0.25 0.6667 1       

BKC 0.8182 0.8182 0.25 0.8182 0.5385 1     

C(v) 0.3333 0.3333 0.1765 0.3333 0.25 0.4286 1   

AVE 0.6667 0.8182 0.25 0.6667 0.667 0.8182 0.4246 1 
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TABLE V.       (B) JACCARD SIMILARITY SCORE FOR LES-M 

  C1 C2 C3 C BKC AVE C(v) AVE 

C1 1               

C2 0.5385 1             

C3 0 0.1111 1           

C 0.5385 0.3333 0 1         

IVI 0.1765 0.1765 0 0.4286 1       

BKC 0.5385 0.5385 0.25 0.4286 0.1765 1     

C(v) 0.6667 0.6667 0.4286 0.5385 0.1764 0.6667 1    

AVE 0.5385 0.4286 0.4286 0.4286 0.1765 0.5386 0.6667 1 

 Kendall’s tau-b 

When comparing the rankings of different methods, 
Kendall's tau-b is applied to determine the ordinal relationship 
between pairs of observations [24], [25]. Correlation strength 
and direction are measured using Kendall's tau-b correlation 
coefficient. According to the theory of rank correlations, the 
closer two sets of data are linked together, the more closely 
they are related. Within this range, positive and negative 
numbers can indicate concordance or discordance, which is 
characterized by increasing or decreasing values, respectively. 
The correlation value between two variables increases when 
the ranks of the observations are similar; the correlation value 
decreases when the positions of the observations are different. 
Kendall’s tau-b is defined as in Eq. 5. 

0 1

( , )
( )( )

C D

b

m m
A B

m T m T





 
            (5) 

The top ten ranking of nodes using Kendall's tau-b results 
for Zachary and Les-M are shown in Tables VIa and VIb. 
Comparing C with IVI, BKC, C(v), and AVE shows that C has 
a rather low and moderate positive tau value in the Zachary 
network, while it has a high-rank similarity for the Les-M 
network. C also has significance and a strong positive tau 
correlation with C1 (0.644). C1 also shows the importance and 
positive correlation with C2. Observe from AVE analysis 
shows that results were significant in Les-M compared to 
Zachary except for C3. Since there were differences in C2 and 
C3 for Zachary and Les-M, it might affect the way on the rank 
behavior. 

TABLE VI. (A) KENDALL’S CORRELATION SCORE FOR ZACHARY 

 C1 C2 C3 C IVI BKC C(v) AVE 

C1  1               

C2 0.067 1             

C3 -0.244 -0.467 1           

C -0.022 0.467 -0.566* 1         

IVI 0.111 -0.111 -0.156 0.067 1       

BKC 0.378 0.244 -0.244 0.156 0.556* 1     

C(v) 0.2 0.244 0.022 0.333 0.467 0.467 1   

AVE 0.244 0.2 -0.378 0.022 0.6* 0.6 0.156 1 

*. Correlation is significant at the 0.05 level (2-tailed). 

TABLE VI.     (B) KENDALL’S CORRELATION SCORE FOR LES-M 

 C1 C2 C3 C IVI BKC C(v) AVE 

C1 1               

C2 0.556* 1             

C3 0.244 -0.2 1           

C 0.644* 0.467 0.156 1         

IVI 0.111 0.111 0.067 0.378 1       

BKC 0.644* 0.644* 0.067 0.644* 0.289 1     

C(v) 0.556 0.467 0.156 0.822* 0.467 0.733* 1   

AVE 0.6* 0.511* 0.111 0.867* 0.511* 0.778* 0.956* 1 

*. Correlation is significant at the 0.05 level (2-tailed). 
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IV. CONCLUSION 

The selection of influential nodes is crucial for fostering 
knowledge and behavior adoption in a network because they 
can influence other nodes. It is possible to gain a better 
understanding of network structure and behavior by using 
prominent nodes. The importance of centrality in identifying 
influential network spreaders in this scenario cannot be 
overstated. 

Our results show that combining centrality indices can 
identify the influential nodes in a network. To combine these 
indices, symbolic regression can identify appropriate 
mathematical expressions that will fit the network's features. 
When it comes to recognizing significant nodes, the newly 
constructed mathematical expression's function performs 
similarly or better than previous methods (IVI, BKC, and C(v)) 
that were validated using Pearson correlation, Jaccard 
similarity score, and Kendall's tau-b correlation of ranking. 

It was discovered while clustering indices based on similar 
attributes that each cluster component may have the same 
impact as aggregating all indices. Clustering can reduce the 
total number of indices to be combined while achieving the 
same overall result. It was also discovered that index selection 
is critical. A few indices, including Katz centrality and 
Closeness centrality, could not be computed. Katz's centrality 
fails to detect connections between high-centrality nodes. To 
function, closeness centrality requires a well-connected 
network, and it fails when two nodes belong to different 
components. Large, complex datasets necessitate more 
computationally intensive methods. Clustering for the indices 
involved would be difficult, as it is here. 

In future work, the selection of suitable indices to be 
combine is important. Analyzing their features as well as the 
computational time required to run each of the indices may be 
put into factor selection. It is also a good idea to run another 
run-up for a different network with a different number of 
weighted nodes if possible. 
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