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The development of stereo matching algorithm is still one of the challenging problems, especially in ill-
posed regions. Hence, this article presents a survey on the algorithm frameworks related to the stereo
matching algorithm. Based on the early survey that had been conducted, two major frameworks available
in current stereo matching algorithm development, they are traditional and artificial intelligence (AI)
frameworks. Most of the traditional methods are very low accuracy compared to the AI-based approach.
This can be observed in the standard benchmarking dataset, such as from the KITTI and the Middlebury,
where AI methods rank at the top of the accuracy list. Additionally, the trend for solving computer vision
problems uses AI or machine learning tools that become more apparent in recent years. Thus, this paper is
focusing on the survey between the deep learning frameworks, which is one of the machine learning tools
related to the convolutional neural network (CNN). Several mixed approaches between CNN based method
and traditional handcraft method, as well as the end to end CNN method also discussed in this paper.
� 2020 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Recently the rapid growth in computer science and technology
intensifies the various implementation of computing platforms in
many aspects of our day-to-day activities. It changed the way we
perform our daily jobs. The decision-making process in our daily
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routines also influenced by the advancement in computing tech-
nology. For decades, the researchers in the artificial intelligence
(AI) field attempt to create the ultimate intelligent machine. This
perfect machine will help to make decisions based on the input
given. In recent years, there are so many articles published in the
area of AI. As mentioned in Chollet (2017), AI has become a concen-
trated topic in exaggerated publicity by the mass media. One of the
exciting areas in AI these days is machine learning. The beauty of a
machine learning algorithm is the capability to instruct the com-
puter to react or making decisions on certain conditions without
having to program the computer explicitly. Due to the flexibility
of machine learning, the algorithm capable of learning via self-
train, analysis, observation, and experience. Machine learning algo-
rithm capable of adapting new situations through pattern and
trend detection for better results. There are various machine learn-
ing applications related to our daily activities, such as computer
vision, syntactic pattern recognition, natural language processing,
search engines, and machine perception. Driven by the rapid devel-
opment in computer hardware and software, we have unlimited
possibilities to implement a machine learning algorithm. As men-
tioned in Forbes.com article (Bernard, 2018), the trend and direc-
tion for the manufacturing industry now and the future as
disclosed in Industry 4.0, are moving towards smarter and auton-
omous systems. The intelligent machines will be connected and
communicate with one another for critical autonomous decision-
making systems through the implementation of the machine learn-
ing algorithm and fueled by multiple class of input data.

1.1. Deep learning

Deep learning existed for more than three decades ago. It is
another branch of machine learning that has become the leading
research focus in recent years. According to Gibson and Patterson
(2016), the common definition of deep learning involves a neural
network that contains more than two layers. It also inspired by
how our human brain learns based on the different amounts of
data. As explained by Ketkar (2017), deep learning term refers to
the multiple hierarchies involve to learn from raw input data. This
hierarchical learning requires neural networks with multiple layers
to learn raw input data and transform it into something meaning-
ful based on how we want to define the conclusion. Most of the
implementation of a deep learning network is based on an artificial
neural network that contains a hidden layer in addition to the
input and output layer. The authors of Gibson and Patterson
(2016) discussed four types of network architectures in their book.
The types of architectures mentioned in their book were: unsuper-
Fig. 1. Architecture of LeNet-5
vised pre-trained networks, convolutional neural networks (CNN),
recurrent neural networks (RNN), and recursive neural networks.
Deep learning capable of solving problems in many areas such as
computer vision, speech-audio processing, natural language pro-
cessing (Goodfellow et al., 2016).

Deep learning became popular in the area of computer vision
when the author of Ciresan et al. (2012) published their work on
the effectiveness of CNN in the computer vision area. They showed
that running CNN on the graphics processing unit (GPU) improved
recognition rates in many vision benchmark databases such as
MNIST, NIST SD 19, CIFAR10, and NORB. The following advance-
ment on CNN and deep learning began to flourish the same year
made by Krizhevsky et al. (2012) when they won the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) 2012. The way
CNN revolutionize the computer vision related to the earlier works
led by LeCun. The related works (Lecun et al., 1998, LeCun et al.,
1989) provide the foundation for CNN to evolve in the computer
vision area. LeNet architecture presented by Lecun et al. (1998)
contains seven layers illustrated in Fig. 1 (except the input layer).
More layers and larger of CNNs are required to handle higher res-
olution images.

The constraint on the CNN technique is the computing power of
the machine. However, as shown in earlier works (Ciresan et al.,
2012; Krizhevsky et al., 2012), the implementation of GPU capable
of catering to the limitation. The computational power required by
CNNmainly in two phases (Malita et al., 2018). The first one during
a training session where the learning process happens, and net-
work weights will be set up based on the training input. The sec-
ond phase is during the inference phase, where usually the real
application executed and the network with the proper training
data can classify the testing input. So, the advancement in comput-
ing technology such as in the high-end personal computer (PC) and
the GPUs enable the researchers to reduce training time from
weeks in the past into only hours for their CNNs nowadays.
Flynn et al. (2016) proposed DeepStereo to solve the problem
related to the image-based rendering (IBR) area. Flynn et al.
(2016) also mentioned about the possible improvement on their
network using GPUs to achieve real-time performance. In related
work (Fangmin et al., 2017) on 3D face reconstruction also men-
tioned the effectiveness of the deep learning approach, which helps
to build more accurate and fast method compare to the traditional
way. The trend in deep learning implementations conveys a better
future for deep learning to evolve in the future.

The research work on CNN helps to improve many algorithms.
Smith and Smith (2018) described that deep learning through the
implementation of CNNs has advanced the innovation of machine
for character recognition.



Fig. 2. Timeline Showing Active Topics in Computer Vision (Szeliski, 2011).

Fig. 3. Basic Structure of Stereo Vision (Hong and Kim, 2017).
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vision for the outdoor environment. Vu et al. (2018) successfully
designed a 3D-CNN model to perform a 2D image and 3D volumet-
ric classification by extending LeNet-5 CNN. Dense Convolutional
Network (DenseNet) proposed by Huang et al. (2017), connect a
layer to every other layer through the feed-forward direction. They
highlighted that DenseNets could be good feature extractors and
suits for many computer vision problems. Following the DenseNet,
another researcher, Swami et al. (2019), implemented DenseNet in
the stereo matching problem. They presented the end-to-end net-
work for disparity estimation, DISCO (Depth Inference from Stereo
using Context), to solve the stereo vision problem.

1.2. Stereo vision

3D shape and appearance reconstruction from images through
mathematical techniques have been active in the computer vision
research field. We are now capable of reconstructing the 3D model
of the environment based on multiple images through established
methods in computer vision (Flynn et al., 2016; Szeliski, 2011). As
highlighted by Hodges et al. (2019), computer vision has been
implemented ubiquitously in modern technologies. Computer
vision also being used in multiple industrial applications such as
optical character recognition (OCR), machine inspection, medical
imaging, automotive safety, surveillance, and others. Based on
the active topics on computer vision shown in Fig. 2, Szeliski
(2011) stated that the trend to implement machine learning to
solve computer vision problems becomes more prominent. Yang
et al. (2019b) proposed a framework to perform a quality assess-
ment on the stereo image using the deep belief network (DBN).

Vision-based object tracking and robot navigation are some of
the examples of the research output established from research
work on the computer vision field. Both are based on depth infor-
mation obtained from images from the image sensor or camera.
This is a part of the stereo vision research area, which provides a
wide range of applications. As mentioned in (Scharstein and
Szeliski, 2002), the main work in stereo vision is to get the depth
information, extracted from a pair of rectified images as input. In
relation to the depth information, the work on stereo vision also
helps to extract 3D information from the pair image (left and right)
taken from a different angle (Cambuim et al., 2017; Malekabadi
et al., 2019; Salehian et al., 2018). Fig. 3 illustrated the structure
of stereo vision (Hong and Kim, 2017), where both left and right
camera separated by a distance of B. The view from the stereo cam-
era also almost similar to human eye perception. The distance D
between target object and cameras can be determined by using
the equation (1), through camera focal length, f, and disparity, d
where the location difference of the target object inside reference
and target images yield the disparity value, d.

D ¼ B:f
d

ð1Þ
1.3. Stereo matching and depth/dense/disparity map

The study on the stereo vision mainly focuses on stereo match-
ing (Damjanović et al., 2012). Stereo matching still remains a chal-
lenging area to this day (Pang et al., 2018; Xue et al., 2019; Zhu
et al., 2016). In the stereo matching algorithm, the main objective
is to find the disparity value calculated based on the object in the
left and right image pairs. Disparity value obtained based on the
differences in the pixel location of particular corresponding fea-
tures recorded in the left and right images. This is similar to the
images seen by the left and right eyes of the human vision system
(Scharstein and Szeliski, 2002). The disparity map is the output of
the stereo matching algorithm ((Chen et al., 2018). The distance
between the camera and object revealed through the depth or dis-
parity map (Fu and Liang, 2019). The importance of depth percep-
tion by stereo matching also highlighted by Smolyanskiy et al.
(2018). According to the authors, the depth information enables
us to use for multiple applications such as scene reconstruction,
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virtual and augmented reality, obstacle avoidance, and several
other applications. Another related work (Fu et al., 2019) performs
stereo matching for 3D face reconstruction. They used the spatial-
temporal integral image (STII) for faster matching cost computa-
tion in stereo matching for the reconstruction process. According
to (Ma et al., 2019), the information from the disparity map will
provide more insight into 3D projective transformation. A similar
3D depth perception study also was done based on the mantis
vision system (Nityananda et al., 2018). They found that insect
stereopsis becomes more efficient and robust to low-resolution
image and becomes more responsive to the deviations in the pat-
tern of luminance between the two eyes. The mentioned research
works on the stereo vision will open new frontiers on the stereo
matching area when we utilize the unique traits of the natural ele-
ments surrounding us.

1.4. Traditional approach for stereo matching

As mentioned by Hamzah and Ibrahim (2016), both local and
global approaches are the main categories in the stereo vision algo-
rithm. Due to the way the local approach method implemented,
the disparity computation at any point in the image determined
by the intensity values within a predefined support window. The
local approach also called the window-based approach. Because
of this behavior, the local approach capable of running faster with
low computational (Popovi et al., 2018). Due to this reason,
Sangeetha et al. (2018) chosen the local method for their robotic
arm real-time application. The global method is another interest-
ing topic on stereo matching. Wang et al. (2016) mentioned the
global method produces disparity based on energy minimization
process, which is commonly based on Markov Random Field
(MRF). The global method provides better accuracy for the dispar-
ity output. However, it will incur more computational complexity
(Sangeetha et al., 2018). The energy minimization in the global
method focuses on data term and smoothness term (Scharstein
and Szeliski, 2002). The previous study on the stereo vision algo-
rithm by Hamzah and Ibrahim (2016), Li et al. (2016), Scharstein
and Szeliski (2002) mentioned there are four main steps to produce
disparity map from the stereo based algorithm. The matching step
is the most important step in stereo vision (Salehian et al., 2018).
The summary of the general steps in the stereo vision algorithm
done by several authors (Hamzah and Ibrahim, 2016; Scharstein
and Szeliski, 2002) can be illustrated as per following Fig. 4.

Scharstein and Szeliski (2002) also described that different algo-
rithms might employ different step sequence combination. For
example, based on the explanation by Szeliski and Scharstein, the
aggregation step was often skipped in the global approach due to
the redundant purpose of global smoothness constraint when it
performs optimization step after the disparity computation step.
The main steps for the stereo vision algorithm, as depicted in
Fig. 4, will be explained in the following subsection.

1.4.1. Disparity computation
This step involves the calculation of the cost of assigning a spe-

cial disparity to each pixel (Salehian et al., 2018). For the local
approach, Sangeetha et al. (2018) implemented the sum of abso-
Fig. 4. Stereo Vision
lute difference algorithm (SAD) at the matching cost computation
stage after performing comparisons on commonly used cost func-
tions. They performed comparisons based on essential parameters
for real-time algorithms, which are the computational time and
memory requirement. The algorithm compares each block of pixels
in the reference image with the matching blocks in the pair image
and takes the absolute difference. These pixel differences in terms
of pixel intensities then summed together to determine the dissim-
ilarity between the two images (Sangeetha et al., 2018), as stated in
Eq. (2).

CSADðp;dÞ ¼
X

q2@p

jIL qð Þ � IRðq� dÞj ð2Þ

For each position p and disparities d, the matching cost CSAD will
be calculated. IL(p) and IR(p) represent image intensities at position
p in the left and right images. The @p contains the set of locations
within a fixed rectangular window centered at position p. The basic
idea representing the cost is cost will be high when the two
patches are centered around the image in different 3D points,
and vice versa. Other methods used for cost computation are the
sum of squared difference (SSD), normalized cross-correlation
(NCC), Zero Mean Normalized Cross-Correlation (ZNCC), rank
transform and census transform (CT) as explained in Hamzah
and Ibrahim (2016) and Scharstein and Szeliski (2002).

1.4.2. Cost aggregation
The second stage in the pipeline is the cost aggregation step. As

mentioned earlier, some algorithms might skip this step, especially
the algorithms which implement under the global approach. Typi-
cally in the local approach, the cost aggregation step involves sum-
ming or averaging over a support region in the disparity space
image (DSI) (Xu et al., 2014). The direct approach for cost aggrega-
tion, as mentioned by Zhu et al. (2016), is to equipped fixed kernel
size to a low pass filter such as box filter and Gaussian filter.
Another example mentioned by Scharstein and Szeliski (2002) is
the binomial filter, where they used the separable Finite Impulse
Response (FIR) filter. Another type of filter used for the purpose
is the edge-preserving filter such as bilateral filter (BF), guided fil-
ter (GF) which preserve good edge and better results in the aggre-
gation process (Hamzah and Ibrahim, 2016; Xu et al., 2014; Zhu
et al., 2016). Zhu et al. (2016) proposed Adaptive Edge-Preserving
Guided Filter (AEGF) in their work, which produced an accurate
performance for the indoor and outdoor environment. Williem
and Park (2018) also mentioned in their article that the guided fil-
ter performs better than the other algorithm based on their work
on depth estimation.

1.4.3. Disparity computation/optimization
Winner Take All (WTA) optimization responsible for assigning

the disparity map value (Cambuim et al., 2017; Hamzah and
Ibrahim, 2016; Malekabadi et al., 2019; Zeglazi et al., 2018). Where
in WTA, the disparity associated with the lowest cost value is
chosen at each pixel (Szeliski, 2011). The equation (3) for the
WTA step as follows:

d ¼ argmin
d2dr

ðC p;dð ÞÞ ð3Þ
Algorithm Steps.
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where C(p,d) is the cost volume after aggregation, dr is the range of
the allowed disparity values. The maximum disparity value of dr is
based on the ground truth of the disparity map. Other examples of
the optimization stage are dynamic programming (DP), simulated
annealing (SA), scanline optimization (SO), and graph cut (GC), as
discussed by Scharstein and Szeliski (2002).

1.4.4. Disparity refinement
After the third step, the generated disparity or depth map may

contain noises, errors such as invalid matches, and occlusion. Some
of the methods to solve the problem is to implement methods such
as slanted plane smoothing for occlusion problem. The Left-to-
right-consistency (LRC) check will help to detect invalid pixels
(Hamzah and Ibrahim, 2016; Zhu et al., 2016). At this step, multiple
filtering techniques will be used to reduces the noises and errors.
Gaussian convolution and median filter techniques are commonly
used for local refinement. This last step also might introduce addi-
tional timing to the overall process due to the complexity. Huang
and Zhang (2016) propose two methods, belief propagation and
belief aggregation method for disparity refinement step. The
author of (Damjanović et al., 2012) applied the median filter to
the initial disparity maps in their works.

2. Deep learning on stereo matching development

As mentioned earlier, deep learning has become the catalyst to
evolve the stereo vision area. Deep learning implementation has
boosted the performance of stereo vision applications, as described
by Krizhevsky et al. (2012). Furthermore, as mentioned by Ciresan
et al. (2012), the traditional stereo vison cannot match the human
performance for recognition tasks. Butwith the assimilation of deep
learning into their algorithms, they canmatch human performance.
Since then, researchers around the globe have been working to
refine and implement deep learning in real-world stereo vision
applications. The advancement of the implementation of machine
learning also affected the study on stereo vision (Tonioni et al.,
2017). For example, in the image classification area, Chauhan
et al. (2019) implemented CNN for their works in transport engi-
neering for vehicle counting and classification. They were able to
classify different types of vehicles using their CNN based counting
system. In the following section, we will discuss the implementa-
tion of deep learning for the stereo matching algorithm.
Fig. 5. MC-CNN-a
2.1. CNN based stereo matching algorithm

Over the years, the implementation of CNN in stereo vision has
been tremendously excellent. For the area of stereo matching, the
application of CNN pioneered by Zbontar and LeCun (2016),
Zbontar and LeCun (2015). The authors described how they imple-
ment CNN to compute matching cost in their article. Their MC-
CNN-acrt network used to produce matching costs for disparity
or depth map displayed in Fig. 5. The eight layers of CNN based
network fed by 9x9 gray image patches. The first layer is a convo-
lutional layer with 32 kernels of 5x5 size. The other seven layers
implemented were fully connected layers. The output vectors of
the convolutional layers (Layer 1) passed through Layer 2 and 3
(fully connected layer with 200 neurons each). The vectors pro-
cessed from left and right image patches concatenated together
from 2 channels of the 200-dimensional vector (left and right) into
a single 400-dimensional vector. This will be passed to Layer 4 of
the architecture mentioned by the authors. The next layer, Layer
4, until Layer 7 are the single layer with 300 neurons each. The final
Layer 8 produced a distribution of good and bad match classes.

They accompanied all the layers with Rectified Linear Units
(ReLU) as the activation function except for the last layer. The
MC-CNN-acrt network directly produced the matching costs for
the next stereo matching algorithm step. The CNN network also
paired with stereo methods to evaluate the matching costs. Follow-
ing the previous work by Mei et al. (2011) and Zbontar and LeCun
(2015) implemented cross based cost aggregation (CBCA) and the
semi-global matching (SGM) to refine the matching cost. They per-
formed minimization of energy function using dynamic program-
ming, then the disparity image computed by using WTA
optimization with interpolation and subpixel enhancement pro-
cess. Finally, the disparity output has been applied with the
5 � 5 median filter followed by a bilateral filter after an enlarge-
ment process to match the original input size. They evaluated their
method with the KITTI stereo dataset (Geiger et al., 2013). Their
method was ranked as the best with the least error rate (2.61%)
compare to other methods. They concluded that increasing the
amount of the training set will help to achieve better performance.

Concerning their previous work, Zbontar and LeCun (2016) pro-
posed two architectures: Fast (MC-CNN-fst), and Accurate (MC-
CNN-acrt) architecture a. They elaborated further evaluations
made on KITTI 2012, KITTI 2015, and Middlebury dataset and pro-
crt network.



Fig. 6. DispNet Specification (Mayer et al., 2016).
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ven that their MC-CNN-acrt architecture performs better than any
other published method on all three datasets mentioned. In con-
trast, the result for their MC-CNN-fst architecture imposed some
increase in error but with 90 times faster computation than MC-
CNN-acrt. They also performed a comparison on their CNN method
to compute matching costs with other handcraft methods such as
SAD, CT, and NCC, and their architecture outperformed all the three
methods (Zbontar and LeCun, 2016). The overall conclusion based
on the work by Zbontar and LeCun (2016) CNN is well suited to
perform stereo matching cost computation.

Chen and Yuan (2016) proposed another variation of CNN to
performmatching cost computation. They mentioned due to main-
taining equal weight left and right image in the convolutional
layer, the relational information between the patches disappeared,
which caused the result less accurate at texture-less regions. So
they proposed a multi-scale CNN structure to calculate the stereo
matching cost. In their comparison between the work (Zbontar
and LeCun, 2016) and (Zagoruyko and Komodakis, 2015), they fol-
low the later method (Zagoruyko and Komodakis, 2017) where
they proposed to train corresponding patches in two-channel with
flexible weight which lead to higher accuracy.

Mayer et al. (2016), with their proposed network, was the ear-
lier contribution to end-to-end based networks for disparity esti-
mation. The authors proposed 1D correlation to the approximate
cost volume. They also presented a synthetic dataset with over
35,000 stereo frames. For their work on disparity estimation, they
proposed DispNet. This network is based on encoder-decoder
architecture. The first convolution layer on DispNet receives the
image as input. As shown in Fig. 6, the main architecture contains
contracting part (conv1 to conv6b) and expanding part made of
upconvolution (upconvN), convolution (iconvN, prN), and loss lay-
ers (lossN).

The disparity map predicted by pr1. They evaluated their Dis-
pNet on their synthetic dataset (FlyingThings3D, Sintel, and
Moonka) and real-world datasets from KITTI 2012 (Geiger et al.,
2012) and KITTI 2015 (Menze and Geiger, 2015) datasets. One of
their network variant, DispNetCorr, although fall behind MC-
CNN-acrt for KITTI 2015 results but it almost 1000 faster than
MC-CNN-acrt. They perform better than SGM and MC-CNN for
another dataset. As they fine-tuned the network based on the KITTI
dataset, the network tends to produce a larger error on another
evaluated dataset. The network was unable to predict image with
huge object displacement. This has become one of the demerits
of their network. The 2D and 3D convolutional layers in their archi-
tecture followed by batch normalization and ReLU.

In Fig. 7, GC-Net, a new method developed by Kendall et al.
(2017), where they implemented Siamese convolution for their
2D convolution with shared weights. They use the unary features
from both images and construct the cost volume to compute the
matching cost. They explained the reason for constructing the cost
volume of 4D (height, width, disparity, and feature size) enables
them to maintain the geometry information of the stereo vision.
The authors produced the 4D cost volume by concatenating the
unary feature from both the left and right images. They claimed
that the method to concatenate the features to get the cost volume
has better performance than the method of subtracting features or
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distance metric method. They implemented a 3D convolutional
process to acquire the feature representations based on height,
width, and disparity axis. They did mention the demerit of using
3D convolutional operation, which will incur more computational
time in the overall process.

Yang et al. (2018a) introduce semantic information for their
stereo matching works. They proposed their network, SegStereo.
They also introduce semantic softmax loss for better accuracy on
the disparity map generated. Semantic cues have been incorpo-
rated in SegStereo. Their network also integrates ResNet-50 by
He et al. (2016) for the encoder part. Their decoder part performs
disparity regression through several deconvolutional blocks to pro-
duce a full-size disparity map. They also embed segmentation sub-
network to extract semantic features using PSPNet-50 by Zhao
et al. (2017). They achieve the state-of-the-art result on KITTI
stereo benchmark dataset.

Kang et al. (2019a) extend their work by adding dilated convo-
lution to their end-to-end network. According to Kang et al.
(2019a), dilated convolution (also called as atrous convolution)
enables them to utilize multi-scale context information. The
authors also highlighted that the dilated convolution enhanced
the receptive field to make their network more robust in low tex-
ture areas. Kang et al. (2019a) also mentioned that the dilated con-
volution better in terms of computational cost compared to the 3D
CNN method used in Chang and Chen (2018) due to the 3D convo-
lution computational cost. The result of the KITTI dataset demon-
strates the improvement over original DispNet implementation.

Nguyen and Jeon (2019) also proposed another end-to-end net-
work. According to them, the ill-posed region remains a challeng-
ing area for the matching algorithm to solve. Based on that, they
want to overcome the disadvantages of the previous end-to-end
networks, which unable to leverage the maximum capabilities of
CNN. They also highlighted that the other networks also lack on
exploiting the capabilities to maximize wide context information
utilization. They want the network to learn a wide context using
large receptive fields. They implemented Spatial Pyramid Pooling
(SPP) and dilated convolution for their wide context learning net-
work, which also used by other researchers (Chang and Chen,
2018; He et al., 2015; Kang et al., 2019b; Yang et al., 2018b). The
stacked encoder and decoder network contain spatial diffusion,
which responsible for refining the matching costs volume. Then
the matching costs will be regressed to produce a disparity map.

Swami et al. (2019) presented their DISCO network. The author
highlighted two issues related to another end-to-end based net-
work where the loss of spatial information due to excessive down-
sampling. Another problem is the smaller receptive field of the
network with low spatial resolution. They proposed to use dense
blocks to preserve low-level spatial information. They used varying
dilation rates on the dense blocks to enhance the effective recep-
tive fields to capture contextual information. Their implementation
on varying dilation on the dense block also similar to the method
introduced in Yang et al. (2018b) but for the different problem
which related to semantic segmentation. They also proposed a
new matching cost computation module denoted as Local and Glo-
bal Context Fusion (LGCF) module. Their network consists of three
following subnetworks: Feature Extraction; Disparity Estimation;
Disparity Refinement. Besides using a standard stereo benchmark-
ing system such as the KIITI and Middlebury dataset, the authors
also proposed their own dataset captured using a smartphone con-
taining approximately 10,000 stereo images and ground truth
images.

Song et al. (2019) also highlight the end-to-end network still
suffer from the difficulties to overcome related to the ill-posed
region and the accuracy of the disparity map of the near boundary
region. They proposed EdgeStereo, their end-to-end network. The
EdgeStereo contains a disparity network that contains the context
pyramid and residual pyramid. Context information obtained using
the context pyramid contains the relationship of an object and its
surroundings. It is very useful in stereo correspondence. Instead of
using stacking convolutional blocks like other methods, the author
used the context pyramid to grab the information. The authors
claimed that the residual pyramid used in the network simplified
the cascaded refinement process. They also implemented an edge
detection sub-network inside EdgeStereo. The edge sub-network
produces an edge map that guides the disparity through their
edge-aware smoothness loss for residual learning. They achieved
the state-of-the-art results on KITTI stereo benchmarks.

Yang et al. (2019a) proposed another end-to-end network,
HSMNet. Their implementation of the network is based on the
encoder-decoder architecture and the stereo matching performed
in the coarse-to-fine hierarchy. While extracting multi-scale fea-
tures, the network decreases the high-resolution input into a lower
resolution. The pyramid feature performs the matching in a hierar-
chical manner. It contains residual blocks and SPP layers with a
similar purpose to increase receptive fields. They reported that
their network was able to perform on-demand computation in
real-time. Where their network can produce a rough estimation
of large disparity objects before the pipeline complete, they
achieve a better result on Middlebury and KITTI dataset as com-
pared to other end-to-end networks (Chang and Chen, 2018;
Kendall et al., 2017; Song et al., 2019).

2.2. Overall comparison

As we can see previously, the pioneer for the CNN network was
developed, MC-CNN (Zbontar and LeCun, 2016) and DispNet
(Mayer et al., 2016). MC-CNN-acrt which combine CNN and hand-
craft post-processing method performs better than DispNet in term
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of accuracy in KITTI dataset. However, the demerit has been shad-
owed by DispNet speed, where it executes more than 1000 times
faster than MC-CNN-acrt. For MC-CNN-acrt, the execution time
also affected by handcraft processing time. The accuracy of the
MC-CNN mostly driven by the handcraft post-processing method.
For example the, in KITTI 2012 benchmark, they reported that
the validation error would increase from 2.61% to 4.26% when they
remove the SGM method. As discussed earlier, the demerit of Dis-
pNet is dependent on the dataset used. As they fine-tune their net-
work towards a particular dataset, the performance for another
dataset will degrade. So both methods also have their own advan-
tages and disadvantages for further consideration. The following
Table 1 illustrates the results for KITTI 2015 benchmark results
for comparisons between the pioneer CNN networks and latest
CNN networks.

In comparison between mixed method CNN and other end to
end based networks, GC-Net and MC-CNN, GC-Net outperform
the MC-CNN in terms of accuracy and speed for KITTI 2015 on all
pixel and non-occluded pixels results. GC-Net also beats DispNet
for accuracy, but in terms of execution speed, the DispNet is
roughly 15 times faster than GC-Net on a similar benchmark. This
is due to the 3D CNN computational method used in GC-Net. Same
situation when comparing with DispNet. For example, PSMNet
outperforms DispNet for accuracy for the D1-all error for KITTI
2015 benchmark. But similarly, PSMNet also lost to DispNet for
speed. However, PSMNet outperforms GC-Net for both terms.
Based on the architecture comparison between GC-Net and
PSMNet, the spatial pyramid pooling (SPP) module and the way
they implement stacked hourglass 3D CNN for cost volume aggre-
gation enhanced the result for PSMNet as compared to GC-Net.
Another end-to-end network, GA-Net, implemented stacked hour-
glass architecture for feature extraction in contrast to PSMNet. GA-
Net aggregate the cost volume using their proposed Semi-Global
Guided Aggregation (SGA) and Local Guided Aggregation (LGA)
module. Whereas in PSMNet, the stacked hourglass CNN has been
used for cost aggregation. In comparison for cost aggregation steps
between GA-Net and PSMNet, the GA-Net perform better in term of
speed and accuracy. Both GA-Net and PSMNet implement similar
disparity regression applied in GC-Net. GA-Net outperformed
PSMNet in terms of accuracy for the KITTI 2015 benchmark for
overall performance. However, in terms of speed, GA-Net still can-
not beat the execution speed shown by PSMNet.

The following Table 2 summarizes the comparison of the previ-
ous works, which mixed the CNN based approach with the tradi-
tional handcraft algorithm for the standard stereo pipeline. The
work by Zbontar and LeCun (2015) inspired many other research-
ers on the implementation of the CNN based method for matching
cost computation. Most of the mixed methods also using WTA to
Table 1
The comparison methods from the KITTI benchmarking evaluation system which these m

Models Non Occluded

D1-bg D1-fg D1

MC-CNN (Zbontar and LeCun, 2016) 2.48 7.64 3.3
DispNet (Mayer et al., 2016) 4.11 3.72 4.0
GC-Net (Kendall et al., 2017) 2.02 5.58 2.6
SGM-Nets (Seki and Pollefeys, 2017) 2.23 7.44 3.0
PSMNet (Chang and Chen, 2018) 1.71 4.31 2.1
SegStereo (Yang et al., 2018a) 1.76 3.70 2.0
GA-Net-15 (Zhang et al., 2019) 1.40 3.37 1.7
HSMNet (Yang et al., 2019a) 1.63 3.40 1.9
EdgeStereo (Song et al., 2019) 1.69 2.94 1.8
compute the disparity image together with several handcraft
methods to refine the disparity map such as LRC to remove the
rid of outlier pixels in the final disparity map. SGM method also
has been used by several authors in their work for better accuracy
and low computational cost. However, tuning the SGM penalty
parameters quite difficult. Seki and Pollefeys (2017) try to improve
the problem through their learning-based penalties estimation
method, SGM-Nets. The SGM-Net results show better than hand
tune SGM method (Zbontar and LeCun, 2015). This shows that
the implementation of a learning-based method capable of
improving the overall performance.

3. Conclusion and recommendation

In this article, several published methods have been introduced
and discussed, based on the implementation of deep learning to
solve the stereo matching problem. It has been highlighted most
of the researchers implemented CNN in their methods to solve
the problem. Basically, the work by Zbontar and LeCun (2016)
inspired many other researchers to further improve the patch-
based learning method for calculating matching costs. The mixture
of machine learning elements such as CNN and handcraft algo-
rithm provide variety to the stereo matching solutions. It is proven
that the simple implementation of CNN could boost the perfor-
mance of the algorithm. Based on the works on CNN documented
in this paper, we can see that some of the researchers implemented
CNN for different stages in the stereo algorithm. Some of the
researchers focused on the specific subnetwork to solve certain
stage in stereo algorithm steps. Some of the researchers also utilize
CNN for enhancing handcraft optimization using neural networks
approach such as SGM-Net. There is also another approach on
CNN for the stereo algorithm pioneered by Mayer et al. (2016)
and Kendall et al. (2017). The authors implemented the end-to-
end network for disparity regression using CNN. Both ends to
end networks, DispNet and GC-Net, also inspired several other
researchers in later works on generation of the stereo based dispar-
ity map. However, this does not make the end-to-end based net-
work superior compared to other mixed methods. As mentioned
in other articles (Seki and Pollefeys, 2017; Song et al., 2019), the
problem of the end-to-end network the accuracy achieved still
not enough. There is still some more room for mixed and end-to-
end based networks to grow. The variety of approaches on machine
learning becomes more interesting with other types of networks
such as Recurrent Neural Network (RNN), Generative Adversarial
Network (GAN), which could further improve the stereo matching
algorithm for better disparity maps and 3D output generation. This
also demonstrates the power of new machine learning tools sup-
ported by enhancement of the cutting-edge computing hardware.
ethods are based on the deep learning technique.

All Runtime (sec)

-all D1-bg D1-fg D1-all

3 2.89 8.88 3.89 67
5 4.32 4.41 4.34 0.06
1 2.21 6.16 2.87 0.90
9 2.66 8.64 3.66 67
4 1.86 4.62 2.32 0.41
8 1.88 4.07 2.25 0.60
3 1.55 3.82 1.93 1.80
2 1.80 3.85 2.14 0.15
9 1.87 3.61 2.16 0.70



Table 2
Summary of framework comparison on mixed CNN-based stereo matching algorithms.

Year Author Matching Cost Computation Cost Aggregation Disparity Computation/Optimization Disparity Refinement

2015 Zbontar
& LeCun

Cost computed directly from CNN
network MCCNN-acrt and MC-CNN-fst
Binary classification for matching cost

Cross based Cost Aggregation SGM (Dynamic Programming) + WTA LR cross consistency
check (LRC)

2015 Chen
et al.

CNN based with multiscale deep
embedding model. Compute similarity in
Euclidean space faster than MCCNN.

– SGM Left Right Check

2016 Zbontar
& LeCun

Cost computed directly from CNN output Cross based Cost Aggregation SGM + WTA + Interpolation + Subpixel
Enhancement

Median Filter and
Bilateral Filter

2016 Chen &
Yuan

Multi scale CNN to compute matching
cost. L and R image patches downsampled
and sent to Layer 1 of Convolutional Sub
network and this will produce vectors
result from different scale (from different
conv subnetwork) Layer 8 output the
initial matching cost

Multiscale Cross-Based Cost
Aggregation

WTA + Scanline Optimization LRC + subpixel
enhancement

2016 Wang
et al.

CNN + CRF – – LRC Check + Four-
direction
propagation + Gradient
Domain guided image
filter

2016 Luo et al. Faster CNN network for computing local
matching costs as a multi-label
classification of disparities using a
Siamese network

Average Pooling SGM Slanted
Plane + Interpolation

2016 Seki &
Pollefeys

Based on MC-CNN-acrt and MC-CNN-fst Similar to Zbontar & LeCun with
Correspondence confidence fused with
SGM

Similar to Zbontar &
LeCun median
filter + modified bilateral
filter.

2017 Yang
et al.

CNN - Matching cost directly based on L2
distance in Euclidean space + SGM
(dynamic programming)

– Multi-scale Segmentation SGM + WTA LRC Check + Median
filter

2017 Shaked
& Wolf

CNN based with constant highway
residual block (outer and inner-k residual)
and skip connection block.

Cross based Cost Aggregation SGM + Global Disparity Network (CNN
based)

LRC Check and
Interpolation + Subpixel
Enhancement + Median
and Bilateral Filter

2017 Seki &
Pollefeys

Author try two methods MC-CNN and
ZNCC

– SGM-Net – learning penalty parameter
to predict penalty input for SGM
algorithm + WTA

–

2017 Joung
et al.

MC-CNN-fast + multiscale cost
computation

Cross based Cost
Aggregation + SGM

WTA + Interpolation + Subpixel
Enhancement

Median Filter and
Bilateral Filter

2017 Wen CNN based using binary cross-entropy
loss during training process

Guided filter based on ARSW WTA Region voting + Median
Filter

2018 Yang
and Lv

CNN - Matching cost directly based on L2
distance in Euclidean space + SGM
(dynamic programming)

Fast cost aggregation using
orthogonal integral image (OII)

Generalized SGM + WTA LRC Check + Median
filter

2018 Liang
et al.

Initial Disparity Estimation Subnetwork of
iResNet through correlation layer

Done in Initial Disparity
Estimation Subnetwork of
iResNet by concatenating left
image features with the
matching cost

Done in Initial Disparity Estimation
Subnetwork of iResNet

Disparity Refinement
Subnetwork of iResNet

2019 Song
et al.

MC-CNN + DD-CNN (disparity
discontinuous) classify DD region

– SGM –

2019 Nguyen
and Jeon

MC-CNN-fst + Census Transform Cost Volume Unary
Network + Disparity
Boundaries Pairwise
Network + Weighted least
squares (WLS) optimization
framework

SGM + Interpolation + Subpixel
enhancement

–

2019 Brandao
et al.

Faster CNN network for computing local
matching costs as a multi-label
classification of disparities using a
Siamese network

Average Pooling SGM Slanted
Plane + Interpolation

2019 Xue Same as Zbontar (Change the activation
function and add batch normalization)

CBCA SGM + WTA + Subpixel enhancement Median Filter and
Bilateral Filter

2019 Yang
et al.

CNN based method (Feature
Extraction + Volume Creation + Similarity
Computation)

2D and 3D CNN (Aggregation
Proposal + Aggregation
Guidance)

Soft Argmin Function similar to Kendall
et al. (2017)

–

2019 Fu et al. Similar to Wen but with implementation
of Atrous CNN to enhance receptive fields

Average Pooling + SGM WTA Interpolation + Median
Filter

2019 Brandao
et al.

Faster CNN network for computing local
matching costs as a multi-label
classification of disparities using a
Siamese network

Average Pooling SGM Slanted
Plane + Interpolation
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