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ABSTRACT
Swarm intelligence-based feature selection techniques are 
implemented by this work to increase classifier performance in 
classifying Amphetamine-type Stimulants (ATS) drugs. 
A recently proposed 3D Exact Legendre Moment Invariants (3D- 
ELMI) molecular descriptors as 3D molecular structure represen-
tational for ATS drugs. These descriptors are utilized as the 
dataset in this study. However, a large number of descriptors 
may cause performance degradation in the classifier. To com-
plement this issue, this research applies three swarm algorithms 
with k-Nearest Neighbor (k-NN) classifier in the wrapper feature 
selection technique to ensure only relevant descriptors are 
selected for the ATS drug classification task. For this purpose, 
the binary version of swarm algorithms facilitated with the 
S-shaped or sigmoid transfer function known as binary whale 
optimization algorithm (BWOA), binary particle swarm optimiza-
tion algorithm (BPSO), and new binary manta-ray foraging opti-
mization algorithm (BMRFO) are developed for feature selection. 
Their performance is evaluated and compared based on seven 
performance criteria. Furthermore, the optimal feature subset 
was then evaluated with seven different classifiers. Findings 
from this study have revealed the dominance of BWOA by 
obtaining the highest classification accuracy with the small 
feature size.
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Introduction

The introduction of new drugs of abuse on the illegal drug market presents 
analytical toxicologists with a steep challenge. Forensic drug analysis meth-
ods for the identification of existing and emerging ATS drugs are reviewed in 
the following works (Chung and Choe 2019; Harper, Powell, and Pijl 2017; 
Liu et al. 2018). Each of these techniques has several pros and cons associated 
with it that must be taken into consideration. Some of the drawbacks are its 
involves lengthy running time, complex testing processes, costly facilities 
with require well-trained skilled technicians, not update analytical methods 
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(libraries), and inconsistency result from different test-kits. Despite the 
proven utility, current analytical methods are constantly being improved 
and optimized to detect and classify existing and emerging illicit substances 
to increase sensitivity and selectivity (Brandt and Kavanagh 2017; Drummer 
and Gerostamoulos 2013; Carroll et al. 2012; Reschly-Krasowski and 
Krasowski 2018). It’s also important to develop new methods for determin-
ing these new substances to keep up with recent developments in the illegal 
drug trade.

Molecular similarity analysis (Stumpfe and Bajorath 2011) is one of the 
alternative cheminformatics methods to forensic drug analysis presently avail-
able (Bero et al. 2017; Krasowski and Ekins 2014). The assumption made by 
the molecular similarity analysis approach is that molecules with similar 
structures are more likely to have the same experimental properties (Grisoni, 
Consonni, and Todeschini 2018). Furthermore, this approach requires infor-
mative and discriminative molecular descriptors (Todeschini and Consonni 
2010) that provide information about the molecular features for the target 
candidate molecule in the chemical database (Grisoni, Consonni, and 
Todeschini 2018; Todeschini and Consonni 2010). One disadvantage related 
to cheminformatics is the high dimensionality of molecular descriptors 
(Lavecchia 2015). The principal steps of molecular descriptors generation 
are depicted in Figure 1 (Grisoni, Consonni, and Todeschini 2018). 
According to the figure, dimensionality reduction is required immediately 
after descriptors generation to remove redundant and irrelevant information 
in the original molecular descriptors. This is to provide the best subset of 
descriptors for computational models such as similarity search analysis 
(Krasowski et al. 2009), quantitative structure-activity relation (QSAR) 
(Cerruela García et al. 2019; Panwala et al. 2017) analysis, and machine 
learning approaches in cheminformatics (Khan and Roy 2018; Lo et al. 2018; 
Mitchell B.O. 2014; Vo et al. 2020).

Feature selection is one of the popular dimensionality reduction 
approaches. The goal of this approach is to select a small subset of relevant 
features by removing redundancy, irrelevant and noisy features (Idakwo et al. 
2018; Shahlaei 2013). In cheminformatics, descriptor selection is essential for 
several reasons including (Goodarzi, Dejaegher, and Heyden 2012): (i) 
increase the computational model interpretability and understandability by 
fewer descriptors; (ii) avoid overfitting by eliminating noisy and redundant 
descriptors (iii) produce a fast and effective computational model, and (iv) 
prevents the activity cliff.

Swarm Intelligence (SI) algorithms undertook feature selection 
(Brezočnik, Fister, and Podgorelec 2018; Nayar, Ahuja, and Jain 2019; 
Nguyen-Tri et al. 2020) and proven as a technique that can solve NP-hard 
combinatorial search problems such as the selection of an optimal feature 
subset from high-dimensional features (Albrecht 2006). SI algorithms are 
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gaining prominence in feature selection because of their ability to escape 
local optima, simplicity and, easier of implementation (Ismail Sayed et al. 
2017).

The initial intention of the SI algorithm is to solve the continuous optimi-
zation problem. Researchers have taken advantage of the flexibility of this 
algorithm to implement it in feature selection problems by proposing the 
binary version of it. One common way to convert the continuous solution to 
a binary solution in the SI algorithm is to use a transfer function. Families of 
the transfer function in the literature include the S-shaped (Hussien et al. 
2019), V-shaped (Hussien, Houssein, and Hassanien 2017), time-varying (M. 
Mafarja et al. 2018), and quadratic (Algamal et al. 2020; Too, Abdullah, and 
Saad 2019a) transfer functions.

In cheminformatics, the implementation of SI-based feature selection 
approach to molecular descriptors has been shown in several works using 
particle swarm optimization (PSO) (Khajeh, Modarress, and Zeinoddini- 

Figure 1. Principal steps of molecular descriptors generation for computational models.
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Meymand 2013), firefly algorithm (FA) (Fouad et al. 2018), salps swarm 
algorithm (SSA) (Hussien, Hassanien, and Houssein 2017), grasshopper opti-
mization algorithm (GOA) (Algamal et al. 2020), etc.

No-Free-Lunch (NFL) theorem for search and optimization derived by 
Wolpert and Macready (1997) has become the motivation of this research to 
confirm the universality of binary particle swarm optimization (BPSO) 
algorithm, binary whale optimization algorithm (WOA), and binary manta 
ray foraging optimization (MRFO) algorithm as descriptors selection 
approach for ATS drug classification problem. The performance of the 
algorithms is evaluated using seven performance evaluation criteria. The 
optimally selected feature subset was tested using the k-Nearest Neighbor 
(k-NN) classifier.

The remainder of this paper is organized as follows: the next section reveals 
the necessary material and methods used in the study. The section is com-
prised of several subsections that briefly describe the overview of the 3D-ELMI 
molecular descriptors dataset, followed by the theoretical explanations regard-
ing BPSO, BWOA, and BMRFO algorithms and their application in feature 
selection. Section 3 displays and discusses the obtained empirical results of 
feature selection and classification by BPSO, BWOA, and BMRFO algorithms 
implementation. Finally, Section 4 concludes with some recommendations for 
future work.

Materials and Methods

The process flow of the proposed ATS drug classification system is presented 
in Figure 2. Firstly, the existing 3D-ELMI molecular descriptors dataset is 
obtained. Next, feature selection methods, BPSO, BWOA, and BMRFO are 
used for selecting the optimal feature subset. The selected feature subset is then 
inputted to the k-Nearest Neighbor (k-NN) algorithm to perform the classi-
fication process.

Overview of 3D Exact Legendre Moment Invariants (3D-ELMI) Molecular 
Descriptors Dataset

Before performing the ATS drug classification, the molecular descriptors of 
ATS and non-ATS drugs must be generated before and as input to the feature 
selection techniques and the classifier. Though, this study directly utilized the 
available dataset produced using the novel 3D-ELMI molecular descriptors 
introduced by Pratama (2017) on 7190 samples of drug molecules (3595 ATS 
drugs and 3595 non-ATS drugs). These descriptors generate a one- 
dimensional vector of 1185 independent features to describe the 3D molecular 
structure of each drug molecule. Table 1 outlines the attributes contain in the 
dataset.
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The Binary Version of Swarm-Intelligence Algorithms

The solutions in the feature selection problem are restricted to the binary 
values of 0 and 1. Similar to native algorithms, in binary version algorithms, 
the search agents (solutions) repetitively updating their locations to any posi-
tion in the search space following the leading search agent found so far. The 
transfer function is one way that can be applied to convert the real position of 
the search agent to binary values (Mirjalili and Lewis 2013). Search agents are 
forced to travel in a binary space by transfer function with probability defini-
tion which updates each element in the search agent to 1 (selected) or 0 (not 
selected). This study adopted an S-shaped transfer function, the sigmoid 
function that has been implemented in these studies (Al-Tashi et al. 2019; 
Eid 2018; Too, Abdullah, and Saad 2019b). Equation 1 shows the mathematical 
formulation of the sigmoid transfer function (Al-Tashi et al. 2019; Panwala 
et al.): 

S xð Þ ¼
1

1þ e� 10 x� 0:5ð Þ
(1) 

where x is the current position (continuos value) of the search agent. Then, x is 
updated as in Equation 2 (Kennedy and Eberhart 1997) based on the prob-
ability value S xð Þ obtained in Equation 1: 

x ¼ 1; if S xð Þ � rand
0; otherwise

�

(2) 

rand is a random number in the [0,1] interval.

Figure 2. Process flow of the proposed ATS drug classification system.

Table 1. Attributes description.

Attribute Attribute type
No. of 

attribute Description

Molecule 
id

String 1 Molecule id refers to the reference id of the drug molecule in the original 
database.

Featuren Numeric (real 
numbers)

1185 Moment invariants value calculated using 3D-ELMI molecular descriptors 
to represent the drug 3D molecular structure. n is feature number 
takes value from 1 to 1185.

Class Nominal {0,1} 1 0: non-ATS and 1: ATS
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Binary Particle Swarm Optimization Algorithm

An algorithm that simulates bird flocking was proposed by Kennedy and 
Eberhart, (1995) named Particle Swarm Optimization (PSO). The population 
PSO is made of n particles with two properties speed (velocity) and position. 
Kennedy and Eberhart (1997) introduced the initial binary PSO (BPSO) to 
solve the binary optimization problems. For finding the best solution, the 
particle moves around the search space finding the global maximum or 
minimum based on its own experience and knowledge (Gupta, Baghel, and 
Iqbal 2018). The optimal position of each particle is recognized as Pbest while 
Gbest is the global best solution in the population. The velocity of a particle is 
updated in each iteration t as in Equation 3: 

vd
i t þ 1ð Þ ¼ w tð Þ � vd

i tð Þ þ c1� r1� ðPbestd
i tð Þ � xd

i tð ÞÞ þ c2� r2
� ðGbestd

i tð Þ � xd
i tð ÞÞ (3) 

where x, v and i represent the position, velocity, order of the particle in the 
population. d denotes the search space dimension, w indicates the inertia 
weight, c1 and c2 represent the acceleration coefficients, r1 and r2 are the 
random vectors in [0, 1], and t the iteration number.

For BPSO, the sigmoid transfer function is applied to the velocity to convert 
to a probability value: 

S vd
i t þ 1ð Þ

� �
¼

1

1þ e� 10 vd
i tþ1ð Þ� 0:5ð Þ

(4) 

Finally, the new position is updated using Equation 5. 

xd
i t þ 1ð Þ ¼

1; if S vd
i t þ 1ð Þ

� �
� rand

0; otherwise

�

(5) 

Binary Whale Optimization Algorithm

An algorithm that is inspired by the hunting mechanism of humpback whales 
called bubble-net foraging was proposed by Mirjalili and Lewis (2016) known 
as a whale optimization algorithm (WOA). The binary WOA (BWOA) is 
firstly proposed by Zamani and Nadimi-Shahraki (2016) for feature selection 
in disease diagnosis. In the initial stage, the WOA algorithm will assume the 
target prey as the best search agent that is near to the optimum. Then, other 
whales (search agents) will update their positions based on the best search 
agent. WOA swarming behavior is simulated in mathematical formulations 
below: 

D ¼ CX� tð Þ � X tð Þj j (6) 
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X t þ 1ð Þ ¼ X� tð Þ � AD (7) 

where t is the iteration number. X tð Þdenotes the candidate search agent at 
iteration number t and X� tð Þ indicate as the best search agent (prey) so far. A 
and C are coefficient numbers mathematically formulated by Equation 8 and 
Equation 9. D indicates the distance vector between whale (search agent) and 
prey (best search agent). In each iteration X� tð Þ is updated when there is 
a better solution. 

A ¼ 2ar þ a (8) 

C ¼ 2r (9) 

where r is a random vector in [0, 1]. The value of a linearly decreases from 2 to 
0 over iterations. The bubble-net behavior of humpback whales in the exploi-
tation phase is designed based on two mechanisms: (1) Shrinking encircling of 
prey: The humpback move in a shrinking encircling along a spiral-shaped path 
toward the prey by decreasing a variable value in Equation 8. A is a random 
value in the interval � a; að Þ, 

a ¼ 2 � t
2

MaxIter
(10) 

where t indicates the iteration number and MaxIter is the maximum number 
of iterations. (2) Spiral updating position: A logarithmic spiral function is used 
to imitate the helix-shaped movement of humpback whales between the 
candidate whale (search agent) X tð Þ, and the prey (best search agent), X� tð Þ
so far. This procedure is mathematically expressed in Equation 12. 

D� ¼ X� tð Þ � X tð Þj j; (11) 

X t þ 1ð Þ ¼ D�ebl cos 2πlð Þ þ X� tð Þ; (12) 

where b is a constant and l is a random number in the range between −1 and 1.
During the optimization phase, an assumption of 50% probability is used to 

choose between these two mechanisms to update the whales’ position. The 
mathematical formulation to model this behavior is established as follows: 

X t þ 1ð Þ ¼
X� tð Þ � AD; if p0:5;
D�ebl cos 2πlð Þ þ X� tð Þ; ifp � 0:5;

�

(13) 

where p is a random number in 0; 1ð Þ:

In the exploration phase, the hunt for prey is conducted at random. 
Contradicting with the exploitation phase, a search agent position is updated 
following a randomly chosen search agent. A contains a random value that is 
either greater than 1 or less than −1. These values will urge the search agent to 
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move far away from the best whale. With this mechanism and Aj j> 1, it allows 
WOA to perform a global search in overcoming the problem of the local 
optima. Equation 15 describes the mathematical formulation: 

D ¼ CXrand � Xj j (14) 

X t þ 1ð Þ ¼ Xrand � AD (15) 

where Xrand indicates a whale that is randomly chosen from the current 
population.

For BWOA, the sigmoid transfer function is applied to the solution position 
to convert to a probability value: 

S X t þ 1ð Þð Þ ¼
1

1þ e� 10 X tþ1ð Þ� 0:5ð Þ
(16) 

Finally, the new position is updated using Equation 17. 

X t þ 1ð Þ ¼
1; if S X t þ 1ð Þð Þ � rand
0; otherwise

�

(17) 

Binary Manta Ray Foraging Optimization Algorithm

Manta ray foraging optimization (MRFO) algorithm is recently proposed by 
Zhao, Zhang, and Wang (2020) that inspired by manta ray foraging. MRFO 
comprises three foraging behaviors which are chain foraging, cyclone foraging, 
and somersault foraging. Manta rays dine on plankton, small fish, and small 
shrimp. The early binary MRFO (BMRFO) algorithm was proposed by Ghosh 
et al. (2021) using transfer functions.

The three MRFO foraging strategies’ mathematical formulation is described 
in the following: (1) Chain foraging: Manta rays swim in an orderly line 
toward the position of the observed plankton. If former manta rays (search 
agents) missed plankton, other subsequent manta rays (search agents) will 
scoop it. Highly concentrated plankton at a respective position signifies 
a better position. The chain foraging mathematical modeling is represented 
in Equation 12: 

xd
i t þ 1ð Þ ¼

xd
i tð Þ þ r xd

best tð Þ � xd
i tð Þ

� �
þ α xd

best tð Þ � xd
i tð Þ

� �
ifi ¼ 1

xd
i tð Þ þ r xd

i� 1 tð Þ � xd
i tð Þ

� �
þ α xd

best tð Þ � xd
i tð Þ

� �
ifi ¼ 2; . . . ;N

�

(18) 

α ¼ 2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log rð Þj j

p
(19) 
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where xd
i tð Þ denotes the position of the search agent. i is the order of the manta 

ray, d denotes the search space dimension, t the iteration number, and r is 
a random vector in [0, 1]. α represents the weight coefficient. The position with 
the highest plankton concentration is denoted as xd

best and it is assumed as the 
best solution in MRFO. (2) Cyclone foraging: Manta ray (search agent) moves 
spirally toward plankton and swim to other manta rays (search agent) in the 
head-to-tail link. The mathematical model of the spiral-shaped movement is 
defined as follows: 

xd
i t þ 1ð Þ ¼

xd
best tð Þ þ r xd

best tð Þ � xd
i tð Þ

� �
þ β xd

best tð Þ � xd
i tð Þ

� �
ifi ¼

xd
best tð Þ þ r xd

i� 1 tð Þ � xd
i tð Þ

� �
þ β xd

best tð Þ � xd
i tð Þ

� �
ifi ¼ 2; . . . ;N

�

(20) 

β ¼ 2er1
T� tþ1

T sin 2πr1ð Þ (21) 

where T is the maximum number of iterations, β is a weight coefficient and r1 
is a random vector in [0, 1]. A new random position that is far from the 
current best one is assigned to each search agent to promote an extensive 
global search in MRFO. Equation 23 express the mathematical model: 

xd
rand ¼ Lbd þ rUbd � Lbd (22) 

xd
i t þ 1ð Þ ¼

xd
rand tð Þ þ r xd

rand tð Þ � xd
i tð Þ

� �
þ β xd

rand tð Þ � xd
i tð Þ

� �
ifi ¼ 1

xd
rand tð Þ þ r xd

i� 1 tð Þ � xd
i tð Þ

� �
þ β xd

rand tð Þ � xd
i tð Þ

� �
ifi ¼ 2; . . . ;N

�

(23) 

where xd
randindicates the search agent random position, Lbd and Ubd are lower 

and upper boundaries and d denotes the dimension of the search space. (3) 
Somersault foraging: The position of the best plankton found so far is used as 
a pivot. Each search agent swims back and forth around the pivot and 
somersault to a new position. Equation 24 shows the mathematical model: 

xd
i t þ 1ð Þ ¼ xd

i tð Þ þ S r2xd
best � r3xd

i tð Þ
� �

; i ¼ 1; 2; . . . ;N (24) 

where S is the somersault factor, r2 and r3 are random numbers in [0, 1].
For BMRFO, the sigmoid transfer function is applied to the solution posi-

tion to convert to a probability value: 

S xd
i t þ 1ð Þ

� �
¼

1

1þ e� 10 xd
i tþ1ð Þ� 0:5ð Þ

(25) 

Finally, the new position is updated using Equation 26. 

xd
i t þ 1ð Þ ¼

1; if S xd
i t þ 1ð Þ

� �
� rand

0; otherwise

�

(26) 
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Application of BPSO, BWOA, and BMRFO for Feature Selection

Maximize the classification accuracy and minimizing the feature size are the 
two main goals of the feature selection technique (M. Mafarja and Mirjalili 
2018). Since a wrapper-based feature selection technique is used, the evalua-
tion process includes a learning algorithm for classification. The k-Nearest 
Neighbor (k-NN) algorithm (Altman 1992) with the Euclidean distance matric 
where k = 5 is used in this study (Eid 2018; M. Mafarja et al. 2019b). The k-NN 
algorithm is chosen because of its satisfactory results and speedy processing.

An optimal feature subset should have a minimal classification error rate 
and a small-size feature subset. A fitness function for feature selection is 
designed to balance the two criteria. The fitness function for evaluating the 
solutions is presented in Equation 27: 

# Fitness ¼ αγR Dð Þ þ β
Rj j
Cj j

(27) 

where γR Dð Þ is the classification error rate. Rj j denotes the length of the 
selected feature subset, and Cj j indicates a total number of features in the 
original dataset. Parameters α; and β correspond to the importance of classi-
fication quality and feature subset length where α 2 1; 0½ � and β ¼ 1 � αð Þ

(Emary, Zawbaa, and Hassanien 2016a; Sharawi et al. 2017). In this study, the 
classification metric is the most important thus we set α to 0.99 (Hussien et al. 
2019; Houssein et al. 2020; M. M. Mafarja and Mirjalili 2019).

Experimental Dataset Preparation
The molecule id attribute is excluded during the experiment (refer to Table 1). 
In all experiments, the hold-out validation was employed where 80% of 
samples were chosen randomly as training set and the remaining 20% of 
samples are used as the testing set. This partitioning was also applied in several 
works in the literature (M. Mafarja et al. 2019a; M. Mafarja and Mirjalili 2018).

Parameter Settings
Table 2 shows the specific parameter settings that are utilized in binary SI 
algorithms as feature selectors. For a fair comparison, this study has fixed the 
number of iteration (t) to 70 for all algorithms. On the other hand, the number 
of search agents (n) was chosen at 5. Problem dimension (d) is the same as the 
number of original features in the dataset, in this case, is 1185.

Evaluation Criteria
The experimental results are viewed as the mean of metrics obtained from 15 
independent runs (M) to obtain statistically valid results. To ensure the 
consistency and statistical significance of the obtained results, the data parti-
tioning is repeated in each independent run. All algorithms are implemented 
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and analyzed in Matlab R2019b and executed on an Intel Core i7-6700 
machine, 3.40 GHz CPU with Windows 10 operating system, and 16 GB 
of RAM.

The following evaluation metrics are employed in (Emary, Zawbaa, and 
Hassanien 2016b; Hussien, Hassanien, and Houssein 2017) are implemented 
and recorded from the testing data in each run: 

Mean Accuracy ¼
1
M

XM

j¼1

1
N

XN

i¼1
Match Ci; Lið Þ; (28) 

where M is the total runtime, N indicates the total instance in the testing set, Ci 
is predicted label by the classifier for instance i, Li is the actual class label, for 
instance, i, and Match is a function that validates whether Ci and Li are the 
same by outputting 1 if identical and 0 vice versa. 

Best fitness ¼
M

min
i ¼ 1

gi
� (29) 

Worst fitness ¼
M

max
i ¼ 1

gi
�; (30) 

Mean fitness ¼
1
M

XM

i¼1
gi
�; (31) 

Table 2. BPSO, BWOA, and BMRFO parameters 
setting.

Parameter Value

BPSO, BWOA, BMRFO
No. of runs, M 15
Problem dimension, d 1185
No. of search agents, n 5
No. of iterations, t 70
α parameter in the fitness function 0.99
β parameter in the fitness function 0.01
BPSO
Cognitive factor, c1 2
Social factor, c2 2
Maximum velocity, Vmax 6
Minimum velocity, Vmin −6
Inertia weight, w 0.9 to 0.4
BWOA
~a in WOA 2 to 0
b 1
BMRFO
Somersault factor, S 2
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where M is the total runtime; gi
� has the optimal solution resulted from 

a runtime i. Best_fitness indicates the smallest fitness value achieved at the 
maximum iteration by each algorithm over runtime. Worst_fitness denotes the 
largest fitness value achieved by each algorithm over runtime. Mean fitness 
signifies the average fitness value achieved by each algorithm over runtime. 
The algorithm that achieved the minimal value of Best_fitness, Worst_fitness, 
and Mean_fitness is considered as having good convergence. 

Standard deviation ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1
M � 1

r
X gi

�� Mean fitnessð Þ
2

; (32) 

Mean Feature Selected Size ¼
1
M

XM

i¼1

size gi
�

� �

D
; (33) 

where size (gi
�) is the size of the selected feature subset, and D is the number of 

features in the original data set.  

Mean Computation Time ¼
1
M

XM

i¼1
Runtimei; (34) 

where Runtimei, is the computation time in second at runtime i.

Results and Discussion

Table 3 presented the average of the minimum, maximum, mean, standard 
deviation of fitness values and their mean computation time to converge. The 
best result for each method is highlighted in bolded text. From the results, 
BPSO is seen to achieve the lowest fitness value. Instead, BWOA achieves the 
lowest maximum and mean fitness values. To reflect and compare the opti-
mization accuracy and convergence rate of each algorithm more intuitively, 
the average convergence curves of the three algorithms are plotted, as shown 
in Figure 3. Based on the curves in Figure 3, it is observed that BMRFO shows 
the fastest convergence at early iteration and starts to remain stagnance at 
iteration 30 and onwards. Instead, BPSO and BWOA continue to converge, 
and leading BMRFO at iteration 40 resultant in the lowest fitness achieved by 
BPSO and BWOA in second.

Moreover, the results of the computation time of each binary algorithm 
displayed that BPSO was also the fastest algorithm to converge with the 
shortest computation time. BPSO was able to attain the lowest fitness within 
34.51 seconds compared to BPSO and BMRFO with 402.51 seconds and 
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1015.03 seconds. By observing the standard deviation result in Table 3, the 
standard deviation obtained for all the algorithms is low and shows that the 
average fitness results deviate less. This suggests that these algorithms have 
provided consistent and robust performance over different runs. Despite that 
BMRFO has the lowest standard deviation, it also achieved the high minimum 
fitness that demonstrated BMRFO is suffered from premature convergence 
and stagnation behaviors.

The experimental results that quantify the mean accuracy and mean 
selected feature size attained by BPSO, BWOA, and BMRFO are listed in 
Table 4. By examining the result in Table 4, it can be seen that BWOA has 
obtained a comparable mean classification accuracy with BPSO, whereas 
BMRFO scored the lowest accuracy. On the other hand, BPSO is shown to 
have selected the smallest set of relevant features followed by BWOA and 
BMRFO.

Table 3. Results show the mean of minimum fitness (Min), maximum fitness (Max), mean fitness 
(Mean), standard deviation (Std), and computation time (CT) obtained by BPSO, BWOA, and 
BMRFO algorithms.

Algorithm Min Max Mean Std CT

BPSO 0.18451 0.26298 0.19746 0.01585 34.51
BWOA 0.18650 0.23819 0.19535 0.01152 402.51
BMRFO 0.18997 0.24396 0.19536 0.00945 1015.03

Figure 3. Convergence curves of BPSO, BWOA, and BMRFO algorithms.
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Table 4 also stated the mean classification accuracy of 62.63% is attained by 
k-NN when all features in the dataset were utilized. Mean classification 
accuracy increased approximately 30% after the feature selection technique 
is implemented by using BPSO, BWOA, and BMRFO. In terms of the number 
of features, Table 4 shows the feature reduction of 96.88%, 75.25%, and 70.45% 
from the original dataset was obtained by BPSO, BWOA, and BMRFO. The 
smaller and optimal feature subset can enrich the learning and understand-
ability of the classifier model to provide a good prediction. In addition, it may 
also accelerate the classifier learning and prediction processes.

Table 5 outlines the results of mean classification accuracies from using 
different classifiers. Additionally, the time taken by each classifier to learn and 
predict the class label is also specified in Table 6. The results from Table 5 and 
Table 6 were averaged and displayed in Figure 4. The results confirmed that 
BWOA has achieved a better classification performance of 77.12% with only 
utilizing 24.75% of selected relevant features from the original dataset among 
others. Besides, BMRFO is in second place with a comparable mean accuracy 
of 77.10%. BPSO is seen has gained the lowest mean accuracy from the table. It 
indicates that too small features may be caused information loss and disad-
vantages to some classifiers. Overall, it is proven that the feature selection 
technique can improve the classifier efficiency in terms of prediction and speed 
when significant features are provided.

Our overall research finding reveals the importance of feature selection in 
molecular descriptors in the cheminformatics domain that always deals with 
an enormous volume of chemical data. Specifically, this research has recom-
mended an alternative in drug forensic toxicology which combined the image 
processing technique as a feature extractor to form molecular descriptors from 
previous research and feature selection technique and machine learning 

Table 4. Results show the means of accuracy an selected feature 
size of BPSO, BWOA and BMRFO algorithms.

Algorithm
Mean 

Accuracy (%) Mean Selected Feature Size

All 62.63% 1185
BPSO 81.39% 37
BWOA 81.41% 293.3
BMRFO 81.11% 350.15

Table 5. Mean classification accuracies with different classifiers.
Classifier All BPSO BWOA BMRFO

k-NN 62.63% 81.39% 81.41% 81.11%
SVM (linear) 77.98% 78.62% 79.83% 79.88%
SVM (RBF) 67.24% 80.93% 82.00% 82.02%
SVM (Polynomial) 50.29% 66.40% 79.51% 79.75%
SVM(Gaussian) 67.46% 80.95% 81.99% 82.00%
NB (Normal) 68.37% 71.15% 68.57% 68.23%
NB (Kernel) 66.53% 68.77% 66.52% 66.73%
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classifiers in the current research that able to reduce time, cost, and effort in 
identifying existing and new ATS drugs through their 3D molecular structure. 
The authors believe that further improvement to this proposed method may 
yield more promising results in the future.

Conclusion and Future Works

This paper has proved the advantages of implementing BPSO, BWOA, and 
new BMRFO algorithms in the wrapper feature selection methods to improve 
the ATS drug classification task. The 3D-ELMI molecular descriptors dataset 
is utilized to validate the performance of these three algorithms in selecting 
significant features without degrading the classification accuracy. 
Experimental results quantified that BWOA is proficient as a feature selector 
where it manages to produce a small and relevant feature subset for different 
classifiers to provide good classification. In the future, this research plan to 
tune the BWOA parameters such as the number of search agents and the 
number of fitness iteration. Furthermore is to examine BWOA with other 

Table 6. Mean classification time in seconds with different classifiers.
Classifier All BPSO BWOA BMRFO

k-NN 3.12 0.07 0.69 0.82
SVM (linear) 64.44 1.91 3.43 3.94
SVM (RBF) 22.40 0.97 3.56 4.18
SVM (Polynomial) 40.96 69.03 69.90 74.84
SVM(Gaussian) 22.00 0.95 3.61 4.27
NB (Normal) 0.39 0.02 0.10 0.10
NB (Kernel) 98.01 2.92 23.49 27.16

Figure 4. The average mean classification accuracies and times by all classifiers.
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families of transfer functions. Finally is to evaluate the dataset with other 
available SI-based algorithms in the literature.
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