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ABSTRACT 

 

 

Despite the significant progress in the understanding of the phenomenon of lightning and the 

physics behind it, locating and mapping its occurrence remain a challenge. Such localization 

and mapping of very high frequency (VHF) lightning radiation sources provide a foundation 

for the subsequent research on predicting lightning, saving lives, and protecting valuable 

assets. A major technical challenge in attempting to map the sources of lightning is mapping 

accuracy. Several methods have been proposed for estimating the real pattern of the temporal 

location and spatial map of the lightning strikes. However, due to the complexity of lightning 

signals and the noise accompanying its recording, providing accurate lightning maps 

estimation remains a challenging task. To advance the lightning mapping it is vital to 

improve how lightning signals are pre-processed and how noise is filtered. Most existing 

studies of lightning mapping make use of the VHF interferometer (ITF) alongside cross-

correlation in time and frequency domain and phase difference of arrival techniques. These 

methods involve selecting a set of parameters which usually fail to accommodate all types 

of lightning flashes, discarding information that could be beneficial for further improvement 

of lightning mapping accuracy. In this thesis, a wavelet-based cross-correlation (CCWD) is 

proposed for a reliable lightning mapping estimation through means of signal enhancement 

and noise reduction, providing a better time- frequency resolution. Interpolation techniques 

were introduced to smoothen the correlation peaks for more accurate lightning localization. 

To confirm the effectiveness of the proposed method, a simulation of lightning signals was 

created, and the mapping results were verified. Moreover, a comparative study to investigate 

the effectiveness of different processing techniques was carried out. The benchmark 

environment involved the use of different filtering and cross-correlation techniques, 

introducing new processing methods such as Kalman filter and wavelet-based cross-

correlation. In addition, a particle swarm optimization technique is used to optimize the 

trajectory of the CCWD-based lightning maps by finding the optimal sliding window of the 

cross-correlation. The CCWD-PSO technique was further enhanced through the introduction 

of a novel lightning event extraction method that enables faster processing of the lightning 

mapping. Six positive narrow bipolar events were analyzed, and the results indicate that a 

good estimation of the lightning radiation sources was achieved using wavelet de-noising 

and CCWD with a minimal error of 3.46°. The results were further improved with the use 

of CCWD-PSO technique with Euclidean distance of 0.6243 at 300 iterations. The 

investigations carried out in this study confirm that the ITF mapping system could effectively 

map the lightning VHF radiation source, which makes the combination of ITF and the 

CCWD a potential candidate for lightning mapping technology. 
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PENILAIAN DAN PENGOPTIMUMAN TEKNIK GELOMBANG KECIL UNTUK 

MENINGKATKAN KETEPATAN PEMETAAN INTERFERROMETRI KILAT VHF  

 

 

ABSTRAK 

 

 

Walaupun terdapat kemajuan yang signifikan dalam pemahaman fenomena kilat dan fizik 

yang mendasarinya, mencari dan memetakan kejadian tersebut masih mencabar. 

Penyetempatan dan pemetaan sumber radiasi kilat frekuensi sangat tinggi (VHF) menjadi 

asas kepada penyelidikan lanjut dalam meramal kilat, menyelamatkan nyawa, dan 

melindungi aset berharga. Cabaran teknikal utama dalam usaha memetakan sumber kilat 

ialah ketepatan pemetaan. Beberapa kaedah telah dicadangkan untuk menganggar pola 

sebenar lokasi temporal dan peta ruang pancaran kilat. Walau bagaimanapun, disebabkan 

kerumitan isyarat kilat dan bunyi yang dirakam serentak, menyediakan anggaran peta kilat 

yang tepat merupakan tugas yang mencabar. Untuk meningkatkan peta kilat, adalah amat 

penting untuk memperbaiki bagaimana isyarat kilat diproses dan bagaimana bunyi disaring. 

Sebilangan besar kajian mengenai pemetaan kilat menggunakan interferometer VHF (ITF) 

di samping korelasi silang dalam domain masa dan frekuensi dan perbezaan fasa teknik 

ketibaan. Kaedah ini melibatkan pemilihan sebuah set parameter yang biasanya gagal 

mengendalikan semua jenis pancaran kilat yang mengabaikan maklumat yang mungkin 

bermanfaat untuk peningkatan ketepatan pemetaan kilat. Dalam tesis ini, korelasi silang 

berdasarkan gelombang kecil (CCWD) dicadangkan bagi anggaran pemetaan kilat yang 

boleh dipercayai melalui peningkatan isyarat dan pengurangan bunyi yang memberikan 

resolusi frekuensi waktu yang lebih baik. Teknik interpolasi diperkenalkan bagi meratakan 

puncak korelasi untuk penyetempatan kilat yang lebih tepat. Bagi mengesahkan 

keberkesanan kaedah yang dicadangkan, simulasi isyarat kilat dicipta dan hasil pemetaan 

disahkan. Selain itu, kajian perbandingan untuk mengkaji keberkesanan teknik pemprosesan 

yang berbeza telah dijalankan. Persekitaran penanda aras melibatkan penggunaan teknik 

penyaringan dan korelasi silang yang berbeza memperkenalkan kaedah pemprosesan baru 

seperti saringan Kalman dan korelasi silang berasaskan gelombang kecil. Selain itu, teknik 

pengoptimuman kawanan partikel digunakan untuk mengoptimumkan trajektori peta kilat 

berasaskan CCWD dengan mendapatkan tetingkap slaid korelasi silang yang optimum. 

Teknik CCWD-PSO dipertingkatkan dengan pengenalan metode baharu pengekstrakan 

kejadian kilat yang memungkinkan pemprosesan pemetaan kilat lebih pantas. Enam 

peristiwa bipolar sempit positif dianalisis dan keputusan menunjukkan bahawa anggaran 

sumber radiasi kilat yang baik dicapai dengan menggunakan nyah bunyi gelombang kecil 

dan CCWD dengan ralat minimum 3.46°. Keputusan tersebut diperbaiki dengan 

penggunaan teknik CCWD-PSO dengan jarak Euclidean 0.6243 pada lelaran 300. 

Penyelidikan yang dilakukan dalam kajian ini mengesahkan bahawa sistem pemetaan ITF 

dapat memetakan sumber radiasi kilat VHF dengan berkesan yang menjadikan kombinasi 

ITF dan CCWD sebagai calon berpotensi teknologi pemetaan kilat. 
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CHAPTER 1 

 

INTRODUCTION 

1.  

1.1 Background 

Lightning is a natural phenomenon in which electrical discharges occur between two 

objects with different polarities. It may occur between clouds and the ground, between two 

clouds, or within a cloud. When discharges are generated, electromagnetic (EM) radiations 

over frequencies ranging from ultra-low frequency to ultra-high frequency, are produced 

(Cummins et al., 1998).  Lightning discharges are mainly categorized into two types, namely, 

cloud-to-ground (CG) discharges, for example downward negative, upward negative, 

downward positive, and upward positive and in-cloud discharges (intra-cloud (IC), cloud to 

cloud (CC), and cloud-to-air) (Shao and Krehbiel, 1996; Rison et al., 1999; Thomas et al., 

2001; Zhang et al., 2012; Sun et al., 2013). Although the physics behind lightning initiation 

remains unclear, many hypotheses have been proposed in the literature. Two candidate 

theories about lightning initiation have been considered, and they are hydrometeor-initiated 

positive streamers and cosmic ray-initiated runaway breakdown (Petersen et al., 2008). 

When the electric field between charges becomes sufficiently large, lightning is initiated. 

The massive amount of electromagnetism generated makes lightning a major cause of EM 

interference that can affect various electronic systems. Lightning is also one of the major 

causes of death in various countries around the world. Hence, different lightning mapping 

systems have been introduced long ago to protect humans and valuable assets. However, 

these old systems have problematic processing times because they are implemented offline 

(Manabu Akita1, 1955; Rison et al., 1999; Ushio et al., 2011; Stock et al., 2014; Zeng et al., 


