

Faculty of Electronics and Computer Engineering

Ammar Mohammed Qaid Al-Ammari

Doctor of Philosophy

EVALUATION AND OPTIMIZATION OF WAVELET TECHNIQUE TO ENHANCE THE MAPPING ACCURACY OF LIGHTNING VHF INTERFEROMETRY

AMMAR MOHAMMED QAID AL-AMMARI

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this thesis entitled "Evaluation and Optimization of Wavelet Technique to Enhance the Mapping Accuracy of Lightning VHF Interferometry" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

Signature : Supervisor Name Dr. Mohd Riduan Ahmad : 27 June 2022 Date **UNIVERSITI TEKNIKAL MALAYSIA MELAKA**

DEDICATION

There are several people without whom and their fully support and encouragement this thesis may not have been written, and to whom I am greatly indebted.

To my beloved father Mohammed Qaid Al-ammari for his help and unlimited prayers, and my mother Fandah Saleh Muthanna who has been a source of encouragement and inspiration to me throughout my PhD journey.

I also dedicate this dissertation to my lovely wife Nor Aniza Ab Rahman who has supported me and deals with me as a great wife and mother to finish PhD program successfully.

I dedicate this work to my supervisors, co-supervisors as well as my best friends Prof. Dr Zen Kawasaki, Fuad Noman, Ahmed Aljanad, and Khaled Al-Aghbari. Thank you for love, guidance, understanding and support.

ABSTRACT

Despite the significant progress in the understanding of the phenomenon of lightning and the physics behind it, locating and mapping its occurrence remain a challenge. Such localization and mapping of very high frequency (VHF) lightning radiation sources provide a foundation for the subsequent research on predicting lightning, saving lives, and protecting valuable assets. A major technical challenge in attempting to map the sources of lightning is mapping accuracy. Several methods have been proposed for estimating the real pattern of the temporal location and spatial map of the lightning strikes. However, due to the complexity of lightning signals and the noise accompanying its recording, providing accurate lightning maps estimation remains a challenging task. To advance the lightning mapping it is vital to improve how lightning signals are pre-processed and how noise is filtered. Most existing studies of lightning mapping make use of the VHF interferometer (ITF) alongside crosscorrelation in time and frequency domain and phase difference of arrival techniques. These methods involve selecting a set of parameters which usually fail to accommodate all types of lightning flashes, discarding information that could be beneficial for further improvement of lightning mapping accuracy. In this thesis, a wavelet-based cross-correlation (CCWD) is proposed for a reliable lightning mapping estimation through means of signal enhancement and noise reduction, providing a better time- frequency resolution. Interpolation techniques were introduced to smoothen the correlation peaks for more accurate lightning localization. To confirm the effectiveness of the proposed method, a simulation of lightning signals was created, and the mapping results were verified. Moreover, a comparative study to investigate the effectiveness of different processing techniques was carried out. The benchmark environment involved the use of different filtering and cross-correlation techniques, introducing new processing methods such as Kalman filter and wavelet-based crosscorrelation. In addition, a particle swarm optimization technique is used to optimize the trajectory of the CCWD-based lightning maps by finding the optimal sliding window of the cross-correlation. The CCWD-PSO technique was further enhanced through the introduction of a novel lightning event extraction method that enables faster processing of the lightning mapping. Six positive narrow bipolar events were analyzed, and the results indicate that a good estimation of the lightning radiation sources was achieved using wavelet de-noising and CCWD with a minimal error of 3.46°. The results were further improved with the use of CCWD-PSO technique with Euclidean distance of 0.6243 at 300 iterations. The investigations carried out in this study confirm that the ITF mapping system could effectively map the lightning VHF radiation source, which makes the combination of ITF and the CCWD a potential candidate for lightning mapping technology.

PENILAIAN DAN PENGOPTIMUMAN TEKNIK GELOMBANG KECIL UNTUK MENINGKATKAN KETEPATAN PEMETAAN INTERFERROMETRI KILAT VHF

ABSTRAK

Walaupun terdapat kemajuan yang signifikan dalam pemahaman fenomena kilat dan fizik yang mendasarinya, mencari dan memetakan kejadian tersebut masih mencabar. Penyetempatan dan pemetaan sumber radiasi kilat frekuensi sangat tinggi (VHF) menjadi asas kepada penyelidikan lanjut dalam meramal kilat, menyelamatkan nyawa, dan melindungi aset berharga. Cabaran teknikal utama dalam usaha memetakan sumber kilat ialah ketepatan pemetaan. Beberapa kaedah telah dicadangkan untuk menganggar pola sebenar lokasi temporal dan peta ruang pancaran kilat. Walau bagaimanapun, disebabkan kerumitan isyarat kilat dan bunyi yang dirakam serentak, menyediakan anggaran peta kilat yang tepat merupakan tugas yang mencabar. Untuk meningkatkan peta kilat, adalah amat penting untuk memperbaiki bagaimana isyarat kilat diproses dan bagaimana bunyi disaring. Sebilangan besar kajian mengenai pemetaan kilat menggunakan interferometer VHF (ITF) di samping korelasi silang dalam domain masa dan frekuensi dan perbezaan fasa teknik ketibaan. Kaedah ini melibatkan pemilihan sebuah set parameter yang biasanya gagal mengendalikan semua jenis pancaran kilat yang mengabaikan maklumat yang mungkin bermanfaat untuk peningkatan ketepatan pemetaan kilat. Dalam tesis ini, korelasi silang berdasarkan gelombang kecil (CCWD) dicadangkan bagi anggaran pemetaan kilat yang boleh dipercayai melalui peningkatan isyarat dan pengurangan bunyi yang memberikan resolusi frekuensi waktu yang lebih baik. Teknik interpolasi diperkenalkan bagi meratakan puncak korelasi untuk penyetempatan kilat yang lebih tepat. Bagi mengesahkan keberkesanan kaedah yang dicadangkan, simulasi isyarat kilat dicipta dan hasil pemetaan disahkan. Selain itu, kajian perbandingan untuk mengkaji keberkesanan teknik pemprosesan yang berbeza telah dijalankan. Persekitaran penanda aras melibatkan penggunaan teknik penyaringan dan korelasi silang yang berbeza memperkenalkan kaedah pemprosesan baru seperti saringan Kalman dan korelasi silang berasaskan gelombang kecil. Selain itu, teknik pengoptimuman kawanan partikel digunakan untuk mengoptimumkan trajektori peta kilat berasaskan CCWD dengan mendapatkan tetingkap slaid korelasi silang yang optimum. Teknik CCWD-PSO dipertingkatkan dengan pengenalan metode baharu pengekstrakan kejadian kilat yang memungkinkan pemprosesan pemetaan kilat lebih pantas. Enam peristiwa bipolar sempit positif dianalisis dan keputusan menunjukkan bahawa anggaran sumber radiasi kilat yang baik dicapai dengan menggunakan nyah bunyi gelombang kecil dan CCWD dengan ralat minimum 3.46°. Keputusan tersebut diperbaiki dengan penggunaan teknik CCWD-PSO dengan jarak Euclidean 0.6243 pada lelaran 300. Penyelidikan yang dilakukan dalam kajian ini mengesahkan bahawa sistem pemetaan ITF dapat memetakan sumber radiasi kilat VHF dengan berkesan yang menjadikan kombinasi ITF dan CCWD sebagai calon berpotensi teknologi pemetaan kilat.

ACKNOWLEDGMENTS

In the Name of Allah, the Most Gracious, the Most Merciful

First and foremost, I would like to thank and praise Allah the Almighty, my Creator, my Sustainer, for everything I received since the beginning of my life. I would like to extend my appreciation to the Universiti Teknikal Malaysia Melaka (UTeM) and Universiti Tenaga Nasional (UNITEN) for providing the research platform.

My utmost appreciation goes to my main supervisor, Dr. Mohd Riduan bin Ahmad for all his support, advice, and inspiration. His constant patience for guiding and providing priceless insights will forever be remembered. Also, for the hard questions which provided me to widen my research from various perspectives.

Besides, I am also truly grateful to my co-supervisor, Dr. Ammar Ahmed Alkahtani, Universiti Tenaga Nasional (UNITEN), for his reading of my manuscript and thesis, his insightful comments monitoring, and suggestions in each step in my PhD journey.

Finally, from the bottom of my heart a gratitude to Dr. Fuad Noman Dr. Ahmed Al-janad and Dr. Khaled Al-aghbari for all the help and support I received from them.

Furthermore, I would like to thank my beloved wife, Mrs. Noraniza Binti Ab Rahman, for her encouragements and who have been the pillar of strength in all my endeavors. I would also like to thank my beloved parents for their endless support, love, and prayers. Finally, thank you to all the individuals who had provided me the assistance, support, and inspiration to embark on my PhD journey.

TABLE OF CONTENTS

			PAGE
DEC	CLARA	ATION	
APP	ROVA	۱L	
DED	DICAT	ION	
ABS	TRAC		i
ABS	TRAK		ii
ACK	KNOW	- LEDGMENTS	iii
TAR		F CONTENTS	iv
LIST	ΓΟΓΤ	TARI FS	vii
I ISI	L OL L L OL E	ICURFS	viii
	Г ОГ Г Г ОГ А	A PPFNDICES	viiv
LIST	Г ОГ Л Г ОF S	WMROLS AND ARREVIATIONS	AI V VV
I ISI	L OL 9 L OL 6	VIRLOUS AND ADDREVIATIONS VIRLICATIONS	AV VVIII
L151	I OF I	UDEICATIONS	AVIII
CHA	PTER	k la	1
1.	INT	RODUCTION	1
	1.1	Background	1
	1.2	Problem Statement	4
	1.3	Research Objective	6
	1.4	Research Scope	6
	1.5	Research Questions	8
	1.6	Thesis Outline	8
-			
2.	LIT	ERATURE REVIEW	10
	2.1	Introduction	10
	2.2	Sources and Methods	11
	2.3	Magnetic Direction Finder (MDF)	12
	2.4	Time of Arrival (TOA)	18
	2.5	Interferometer (ITF)	28
		2.5.1 Linear Fit Method	32
		2.5.2 Broadband ITF based on CG, IC and Wavelet Transform	33
		2.5.3 Broadband Interferometer (ITF) using Cross-correlation and F	hase
		Fitting	36
	2.6	Discussion and Open Issues	52
	2.7	Particle Swarm Optimization for Lightning Mapping	53
		2.7.1 Particle Swarm Optimization (PSO) for Lightning Mapping	56
		2.7.2 General procedure of PSO	57
		2.7.3 PSO-mathematical formulation of an optimization problem	59
	2.8	Summary	61
3.	RES	SEARCH METHODOLOGY	62
	3.1	Introduction	62
	3.2	Proposed Methodology (Materials and Methods)	63
		3.2.1 Broadband Interferometer (ITF)	63
		3.2.2 Experimental Setup	65
		3.2.3 Parameters	66
			00

	3.3	Preprocessing		
		3.3.1 Band Bass Filter	68	
		3.3.2 Wavelet Denoising Method	72	
		3.3.3 Kalman Filter (KF)	77	
	3.4	Cross-correlation Method	79	
		3.4.1 Time Domain Cross-correlation (TDCC)	80	
		3.4.2 Frequency Domain Cross-correlation (FDCC)	81	
		3.4.3 Wavelet Domain Cross-correlation (WDCC)	83	
		3.4.4 Time Difference of Arrival (TDOA)	84	
		3.4.4.1 Lightning Mapping (Azimuth and Elevation	1	
		angles)	85	
	3.5	Simulation Processes	90	
		3.5.1 Generation of Azimuth and Elevation Angles	90	
		3.5.2 Derivation of Time Delay	91	
		3.5.3 Simulated ITF Signals	92	
		3.5.4 Limitation of Proposed Methodology	93	
	3.6	The proposed lightning mapping flowchart	94	
	3.7	ITF lightning maps optimization based on PSO algorithm	95	
		3.7.1 Lightning Mapping Optimization	99	
		3.7.2 Objective Function	100	
		3.7.3 Optimization Constraints and PSO-Parameters	102	
	3.8	Summary	102	
4.	RES	104		
	4.1	Introduction	104	
	4.2	Data Analysis	104	
		4.2.1 Simulation Results	109	
		4.2.2 Real Data Results	118	
		4.2.2.1 Lightning Mapping (NBEs Flash Initiations) 119	
		4.2.2.2 NBE1 Results Using CCWD in BPF and FF	K 120	
		4.2.2.3 NBE1 Results Using CCWD in Mother Wa	velet	
		Functions (Families)	120	
		4.2.2.4 NBE2-NBE3 Using CCWD	124	
		4.2.2.5 NBE4-NBE6 using CCWDS	126	
	4.3	Cross-correlation Wavelet Domain-based Particle Swarm	Optimization for	
Lig	htning	g Mapping	130	
		4.3.1 Proposed PSO-based Technique	130	
		4.3.2 Evaluation of Lightning Event Extraction Method	135	
		4.3.3 Lightning Mapping Optimization	137	
		4.3.4 Comparison analysis (real data and CCWD-PSO)	140	
		4.3.5 Comparison of NBEs with previous studies	142	
	4.4	Summary	144	
	4.5	Findings	145	
5	CO	NCI LISION AND FUTURE WORK	1/7	
J.	5 1	Conclusion	147 1/7	
	57	Major Findings in Answering the Research Questions	147	
	5.4	5.2.1 Research Question 1	140	
		5.2.2 Research question 2	140	
			112	

	5.2.3 Research question 3	149
	5.2.4 Contribution to Knowledge	150
5.3	Recommendation for Future Work	153
REFEREN APPENDI(CES CES	155 172

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Summary of existing lightning detection/lightning mapping array	
	systems	12
2.2	Summary of MDF method from the literature	17
2.3	Summary of studies related to TOA	25
2.4	Summary of studied related to ITF	45
2.5	Comparative summary of selected lightning detection and mapping	
	systems	49
2.6	Metaheuristic optimization techniques	55
2.7	Comparison of PSO and other popular existing optimization	
	techniques adopted from (Hammed, Ghauri and Qamar, 2016)	55
3.1	The parameters for the interferometer and the lightning flash	67
3.2	IIR band pass filter procedures	71
4.1	Comparison (Euclidean distance) of lightning mapping estimation	
	consisting of different filtering and cross-correlation approaches	111
4.2	Comparison (Euclidean distance) of lightning mapping estimation	
	consisting of different filtering and cross-correlation approaches	129
4.3	Parameters of CCWD-PSO technique	131
4.4	PSO-Wavelet based techniques using different number of iterations	132
4.5	Comparison findings of the real data and CCWD-PSO results	141

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Common lightning mapping techniques	10
2.2	Lightning mapping methods	11
2.3	Lightning detection using MDF. (a) Multi-station MDF; (b)	
	orthogonal magnetic antenna	14
2.4	Time of Arrival (TOA) lightning localization technique	19
2.5	Two-orthogonal baseline schematic diagram of 2D ITF lightning	
	location system	29
2.6	Comparison of GA and PSO accuracy	56
2.7	Initialization and execution phases of PSO algorithmm	58
2.8	Geometric algorithm of PSO, (a) Particle position (b) Swarm	
	procedures (Simple Model of PSO)	60
3.1	The procedure of lightning mapping	64
3.2	VHF broadband digital interferometer data acquisition system	65
3.3	Overall response of the band pass filter	70
3.4	Biquad section for a bandpass filter	71
3.5	Preprocessing of Band Pass Filter	71
3.6	Wavelet desnoising procedures for filtring lightning signals	73
3.7	Segment D from the original captured signals	73
3.8	Decompose ITF signal using DWT	74

3.9	Wavelet-denoising filtration processes	76
3.10	Kalman Filter Recursive Algorithm	77
3.11	Cross correlation example of antenna B and D, (a) signal of antenna	
	B; (b) Signal of antenna D; (c) cross correlation of the antenna B	
	signal expanded view of the cross-correlation around its peak without	
	interpolation; (d) Cross correlation of antenna D with interpolation of	
	factor 8	81
3.12	Implementation of cross-correlation in frequency domain (CCFD)	82
3.13	Cross correlation example of antenna B and C.(a) shows the procedure	
	CCWD of two recived lightning signals . (b) Cross-correlation in	
	wavelet domain (CCWD).	84
3.14	Basic interferometer geometry (Rhodes et al., 1994; Stock et al., 2014)	85
3.15	The procedure of simulating lightning signals	91
3.16	The general procedure of simulating ITF signals	94
3.17	Compression structure processes MALAYSIA MELAKA	95
3.18	The general structure of the proposed framework for ITF lightning	
	maps optimization based on PSO algorithm	96
3.19	Lightning event extraction algorithm	98
3.20	Flow chart of lightning mapping procedures using PSO-based	
	algorithm	101
4.1	Three captured signals (B, C, and D)	105
4.2	Three normalized and segmented signals within the range of (∓ 1)	106
4.3	Example of the processing steps used to determine the TDOA (τ d) at	
	antennas B and C, (a) The normalized waveforms from the two ix	

	antennas B and C for a 256 (1.042 $\mu s)$ sample window; (b) The cross	
	correlation of antennas B and C signals with two vertical red dash-	
	lines indicate the zoomed plot area in (c); (c) The interpolation fitting	
	(red color) of the expanded view of the cross-correlation (blue color)	
	with a vertical red dash-line showing the peak of correlation	107
4.4	Calculating the time difference of arrival between the received signals	
	(TDA- $\tau d1$, and TDA- $\tau d2$) of the antennas BC and BD	108
4.5	Example of angles augmentation by adding Gaussian noise, (a)	
	Simulated and augmented lightning map, (b) Corresponding time	
	difference of arrival	113
4.6	Example of angles augmentation by scaling, (a) Simulated and	
	augmented lightning map, (b) Corresponding time difference of	
	arrival	114
4.7	Example of angles augmentation by flipping, (a) Simulated and	
	augmented lightning map, (b) Corresponding time difference of	
	arrival VERSITI TEKNIKAL MALAYSIA MELAKA	114
4.8	Example of angles augmentation by scaling and flipping, (a)	
	Simulated and augmented lightning map, (b) Corresponding time	
	difference of arrival	115
4.9	Example of angles augmentation by scaling with noise, (a) Simulated	
	and augmented lightning map, (b) Corresponding time difference of	
	arrival	116
4.10	Example of angles augmentation by scaling, flipping and noise, (a)	
	Simulated and augmented lightning map, (b) Corresponding time	
	difference of arrival	116

4.11	Example of angles augmentation by scaling, flipping and noise, (a)	
	Simulated and augmented lightning map, (b) Corresponding time	
	difference of arrival	117
4.12	Example of angles augmentation by flipping, scaling and noise, (a)	
	Simulated and augmented lightning map, (b) Corresponding time	
	difference of arrival	117
4.13	Fast Electric field pulse relevant to a positive (NBE1)	119
4.14	VHF radiation signals associated with positive NBE1, received by	
	antennas B, C, and D	119
4.15	Interferometer data for NBE1, (a,b) Lightning map plotted in	
	elevation vs. azimuth of BPF-CCWD and KF-CCWD, expanded view	
	of lightning map and the breakdown. Each coloured circle-marker	
	denotes the elevation angles (Altitude) vs. time	122
4.16	Interferometer data for NBE1, (a-c) Mother wavelet functions for	
	lightning map plotted in elevation vs. azimuth, expanded view of the	
	lightning map and showing the breakdown, where each coloured	
	circle-marker denotes the elevation angles (altitude) vs. Time	123
4.17	Interferometer data for NBE2, (a) Lightning plotted in elevation vs.	
	Azimuth, (b) Expanded view of lightning map of a, (c) Breakdown is	
	shown, each coloured circle-marker denotes elevation angle (altitude)	
	vs. Time	124
4.18	Interferometer data for NBE3, (a) Lightning plotted in elevation vs.	
	Azimuth, (b) Expanded view of lightning map of a, (c) Breakdown is	
	shown, each coloured circle-marker denotes elevation angle (altitude)	
	vs. time	125

4.19	Interferometer data for NBEs (4-6), (a) Lightning plotted in elevation	
	vs. azimuth, (b) Expanded view of lightning map of a, (c) Breakdown	
	is shown, each coloured circle-marker denotes elevation angle	
	(altitude) vs. time	128
4.20	PSO performance for estimating lightning maps. (a) The PSO-	
	convergence curves as a function of number of iterations and fitness	
	value. (b) An expanded view of (a).	132
4.21	PSO algorithm of the simulated lightning map plotted in elevation vs.	
	azimuth with each expanded view, (a) At 200 iterations, (b) At 200	
	iterations, (c) At 300 iterations, (d) At 500 iterations	133
4.22	Regression performance for estimating lightning map at 300 iteration,	
	(a) Elevation regression line, (b) Azimuth regression line	134
4.23	Lightning Mapping Regression performance at 200 iteration, (a)	
	Elevation regression performance, (b) Azimuth regression	
	performance	135
4.24	Interferometer data NBE1, (a) Original ITF data, (b) Lightning event	
	extraction	136
4.25	Interferometer data NBE1, (a) NBE2 and (b) NBE3 using of lightning	
	event extraction method	137
4.26	Interferometer data for NBE1, (a) Lightning map plotted in elevation	
	vs. Azimuth, (b) Expanded view of lightning map of (a), (c) The	
	Breakdown each coloured circle-marker denotes the elevation angles	
	(Altitude) vs. time	138
4.27	Interferometer data for NBE2, (a) Lightning map plotted in elevation	
	vs. Azimuth, (b) Expanded view of lightning map of (a), (c) The	

Breakdown each coloured circle-marker denotes the elevation angles (Altitude) vs. time

- 4.28 Interferometer data for NBE3, (a) Lightning map plotted in elevation
 vs. Azimuth, (b) Expanded view of lightning map of (a), (c) The
 Breakdown each coloured circle-marker denotes the elevation angles
 (Altitude) vs. time
- 4.29 NBEs lightning flashes produced by ITF system. (a) +NBE captured
 by Rison et al.2016. (b) –NBE observed by Tilles et al., (2019). (c)
 +NBE observed by current study using of an ITF system
- 5.1 NBEs lightning flashes produced by ITF system. (a) +NBE captured by Rison et al.2016. (b) –NBE observed by Tilles et al., (2019). (c)

+NBE observed by current study using of an ITF system

152

139

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	TDOA values of (τ_{d2}) using CCFD	172
В	TDOA values of (τ_{d2}) using CCFD	174
С	TDOA values of (τ_{d1}) using CCTD	176
D	TDOA values of (τ_{d1}) using CCWD	178
Ε	TDOA values of ($ au_2$) using CCWD	180

LIST OF SYMBOLS AND ABBREVIATIONS

-	One Dimension
-	Two Dimension
-	Three Dimension
-	Artificial Intelligence
-	Artificial Neural Network
-	Azimuth Angle
-	Band Pass Filter
-	Kalman Filter
-	Band-width
-	Cross-Correlation
-	Cloud-to-GroundEKNIKAL MALAYSIA MELAKA
-	Direction Correlation
-	Digital Interferometer
-	Direction of Arrival
-	Elevation Angle
-	Electromagnetic Radiations
-	Fast Fourier Transform
-	Firefly Algorithms
-	Generalized Cross-Correlation
-	Global Lightning and Sprite Measurements

GC/s	-	Giga-Samples Per Second
IC	-	Intra-Cloud flashes
DL	-	Dart Leader
ITF	-	Interferometer
LDAR	-	Lightning Detection and Ranging System
LF	-	Low Frequency
LLS	-	Lightning Localization System
LMA	-	Lightning Mapping Array
LMD	-	Lightning Mapping Detection
LNA	-	Low Noise Amplifire
MDF	-	Magnetic Direction Finding
MS/s	-	Mega Samples Per Second
NLDN	-	National Lightning Detection Network
LINET	-	Lightning Detection Network
USPLN	-	US Precision Lightning Network
ENTLN	-	Earth Networks Total Lightning Network A MELAKA
WWLLN	-	World Wide Lightning Location Network
GLD360	-	Global Lightning Dataset
PSO	-	Particle Swarm Optimization
SNR	-	Signal-to-Noise Ratio
TD	-	Time Difference
TDOA	-	Time Difference of Arrival
TOA	-	Times –of-Arrival
UHF	-	Ultra High Frequency
ULF	-	Upper High Frequency

VHF	-	Very High Frequency
VLF	-	Very Low Frequency
WD	-	Wavelet Domain
WT	-	Wavelet Transform
TDL	-	Triggered Dart Leader
TDCC	-	Time Domain Cross-Correlation
FTCC	-	Frequency Domain Cross-Correlation
WDCC	-	Wavelet Domain Cross-Correlation
SR	-	Sampling Rate
PSO	-	Particle Swarm Optimization
CCWD-PSO- Cross-correlation wavelet domain-based particle swarm optimization		
FA	-	Fast Antenna
EM	-	Electromagnetic Waves
IIR	-	Infinite Impulse Response
A4	-	Parallel plate antenna of size A4
A3	-	Parallel plate antenna of size A3 ALAYSIA MELAKA
ACO	-	Ant Colony Optimization
GA	-	Genetic Algorithm

LIST OF PUBLICATIONS

Alammari, A., Alkahtani, A.A., Ahmad, M.R., Noman, F., Mohd Esa, M.R., Sabri, M.H.M., Mohammad, S.A., Al-Khaleefa, A.S., Kawasaki, Z. and Agelidis, V., 2020. Kalman filter and wavelet cross-correlation for VHF broadband interferometer lightning mapping. *Applied Sciences*, 10(12), p.4238. [Q2, IF = 2.474 (2019)]

Alammari, A., Alkahtani, A.A., Ahmad, M.R., Noman, F.M., Esa, M.R.M., Kawasaki, Z. and Tiong, S.K., 2020. Lightning Mapping: Techniques, Challenges, and Opportunities. *IEEE Access*, 8, pp.190064-190082. [Q1, IF = 3.745 (2019)]

Alammari, A., Alkahtani, A.A., Ahmad, M.R., Aljanad, A., Noman, F. and Kawasaki, Z., 2021. Cross-Correlation Wavelet-Domain-Based Particle Swarm Optimization for Lightning Mapping. *Applied Sciences*, 11(18), p.8634. [Q2, IF = 2.679 (2020)]

CHAPTER 1

INTRODUCTION

1.1 Background

Lightning is a natural phenomenon in which electrical discharges occur between two objects with different polarities. It may occur between clouds and the ground, between two clouds, or within a cloud. When discharges are generated, electromagnetic (EM) radiations over frequencies ranging from ultra-low frequency to ultra-high frequency, are produced (Cummins et al., 1998). Lightning discharges are mainly categorized into two types, namely, cloud-to-ground (CG) discharges, for example downward negative, upward negative, downward positive, and upward positive and in-cloud discharges (intra-cloud (IC), cloud to cloud (CC), and cloud-to-air) (Shao and Krehbiel, 1996; Rison et al., 1999; Thomas et al., 2001; Zhang et al., 2012; Sun et al., 2013). Although the physics behind lightning initiation remains unclear, many hypotheses have been proposed in the literature. Two candidate theories about lightning initiation have been considered, and they are hydrometeor-initiated positive streamers and cosmic ray-initiated runaway breakdown (Petersen et al., 2008). When the electric field between charges becomes sufficiently large, lightning is initiated. The massive amount of electromagnetism generated makes lightning a major cause of EM interference that can affect various electronic systems. Lightning is also one of the major causes of death in various countries around the world. Hence, different lightning mapping systems have been introduced long ago to protect humans and valuable assets. However, these old systems have problematic processing times because they are implemented offline (Manabu Akita1, 1955; Rison et al., 1999; Ushio et al., 2011; Stock et al., 2014; Zeng et al.,