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ABSTRACT 

 

 

Many real-world production scheduling problems involve the simultaneous optimization of 

multiple conflicting objectives that are challenging to solve without the aid of powerful 

optimization techniques. This includes the multi-objective Job-shop Scheduling Problem 

(JSP), which is among the most difficult to solve owing to the existence of an intractably 

large, highly complex solution space. Particle Swarm Optimization (PSO) is a population-

based metaheuristic that possesses many advantages compared to other metaheuristics in 

solving scheduling problems. However, due to the complex nature of the multi-objective 

JSP, a single approach like PSO is not sufficient to explore the search space effectively 

owing to its shortcoming such as the tendency to become trapped in local optima. Besides, 

since PSO operates in the continuous domain, it cannot be applied directly to solve a discrete 

problem like the JSP efficiently. This research first proposes an improved continuous 

MOPSO to address the rapid clustering problem that exists in the basic PSO algorithm using 

three improvement strategies: re-initialization of particles, systematic switch of best 

solutions and mutation on global best selection. In order to establish an efficient mapping 

between the particle’s position in the continuous MOPSO and the scheduling solution in the 

JSP, this research proposes the JSP to be adopted within a discrete MOPSO through a 

modified solution representation using the permutation-based representation and a modified 

setup of the particle’s position and velocity. The discrete MOPSO also includes the modified 

maximin fitness function to promote solution diversity in the selection of global best 

solutions. In order to accomplish better performance by improving the search quality and 

efficiency of the discrete MOPSO, this research proposes a hybrid with the Diversification 

Generation Method in Scatter Search, the non-dominated sorting mechanism in non-

dominated sorting Genetic Algorithm II (NSGA-II) and the local search mechanism in Tabu 

Search. The experimentations of the proposed algorithm are conducted using existing 

benchmark instances and a published case study on an energy-efficient job-shop model. The 

computational results are evaluated against other optimization techniques published in the 

literature. From the results, it is found that the proposed improved algorithm is effective in 

solving the benchmark instances compared to when no improvement is implemented and 

with a reasonable increase in computational costs. It is also discovered that the hybrid-

discrete MOPSO (HD-MOPSO) algorithm manages to obtain higher values in the 

performance metrics consisting of non-dominance ratio and hypervolume compared to the 

competing algorithms. For the non-dominance ratio, HD-MOPSO is able to contribute 89% 

to 100% of solutions to the reference Pareto front. For the hypervolume values, HD-MOPSO 

manages to obtain a minimum of 1.0172 to 1.2862 out of the optimum value of 1.44. As 

higher values of metrics indicate better performance, HD-MOPSO thus outperforms the 

competing algorithms in solving the benchmark instances and the published case study. For 

these types of problems, the proposed algorithm is demonstrated to be capable of producing 

higher percentages of solutions in the overall non-dominated set with better quality in terms 

of convergence and diversity than those obtained by the competing algorithms.   
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PENGOPTIMUMAN KAWANAN ZARAH BERBILANG OBJEKTIF HIBRID-

DISKRIT UNTUK PENJADUALAN BENGKEL KERJA BERBILANG OBJEKTIF 

 

 

ABSTRAK 

 

 

Banyak masalah penjadualan pengeluaran dunia sebenar melibatkan pengoptimuman 

serentak berbilang objektif yang bercanggah dan mencabar untuk diselesaikan tanpa 

bantuan teknik pengoptimuman yang berkuasa. Ini termasuk Masalah Penjadualan Bengkel 

Kerja (MPBK) berbilang objektif, yang merupakan antara yang paling sukar untuk 

diselesaikan kerana kewujudan ruang penyelesaian yang sangat besar dan sangat kompleks. 

Pengoptimuman Kawanan Zarah (PKZ) ialah metaheuristik berasaskan populasi yang 

mempunyai banyak kelebihan berbanding metaheuristik lain dalam menyelesaikan masalah 

penjadualan. Walau bagaimanapun, disebabkan sifat kompleks MPBK berbilang objektif, 

pendekatan tunggal seperti PKZ tidak mencukupi untuk meneroka ruang carian dengan 

berkesan kerana kelemahannya seperti kecenderungan untuk terperangkap dalam optima 

tempatan. Selain itu, oleh kerana PKZ beroperasi dalam domain berterusan, ia tidak boleh 

digunakan secara langsung untuk menyelesaikan masalah diskret seperti MPBK dengan 

cekap. Penyelidikan ini pertamanya mencadangkan PKZ berbilang objektif (PKZBO) 

Berterusan dipertingkatkan untuk menangani masalah pengelompokan pantas yang wujud 

dalam algoritma PKZ asas melalui tiga strategi penambahbaikan: pembentukan semula 

zarah, pertukaran penyelesaian terbaik secara sistematik dan mutasi pada pemilihan terbaik 

global. Untuk mewujudkan pemetaan yang efisien antara posisi zarah dalam PKZBO 

Berterusan dan penyelesaian penjadualan dalam MPBK, penyelidikan ini mencadangkan 

MPBK diguna pakai dalam PKZBO Diskret melalui pengubahsuaian representasi 

penyelesaian menggunakan representasi berasaskan permutasi serta pengubahsuaian 

tetapan posisi dan halaju zarah. PKZBO Diskret juga mengandungi fungsi kecergasan 

maximin yang diubah suai untuk menambah kepelbagaian penyelesaian dalam pemilihan 

penyelesaian terbaik global. Untuk mencapai prestasi yang lebih baik dengan meningkatkan 

kualiti dan kecekapan carian PKZBO Diskret, penyelidikan ini juga mencadangkan hibrid 

dengan Kaedah Penjanaan Kepelbagaian dalam Carian Taburan, mekanisme penyusunan 

tidak didominasi dalam Algoritma Genetik Penyusunan Tidak Didominasi II dan mekanisme 

carian tempatan dalam Carian Tabu. Ujikaji algoritma dilakukan menggunakan masalah 

penanda aras sedia ada dan kajian kes yang telah diterbitkan mengenai model cekap tenaga 

bengkel kerja. Hasil pengiraan telah dinilai berbanding teknik pengoptimuman sedia ada. 

Dari keputusan tersebut, didapati algoritma yang dicadangkan berkesan menyelesaikan 

masalah penanda aras berbanding apabila tiada penambahbaikan dengan peningkatan 

munasabah dalam kos pengiraan. Ia juga mendapati algoritma PKZBO hibrid-diskrit 

(PKZBO-HD) berjaya memperoleh nilai lebih tinggi dalam ukuran prestasi yang terdiri 

daripada nisbah bukan dominasi dan hipervolume berbanding algoritma pesaing. Untuk 

nisbah bukan dominasi, PKZBO-HD menyumbang 89% hingga 100% penyelesaian kepada 

rujukan sempadan Pareto. Untuk nilai hipervolume, PKZBO-HD memperoleh minimum 

1.0172 hingga 1.2862 daripada nilai optimum 1.44. Oleh kerana nilai ukuran yang lebih 

tinggi menunjukkan prestasi lebih baik, PKZBO-HD mengatasi prestasi algoritma pesaing 

dalam menyelesaikan masalah penanda aras dan kajian kes. Untuk jenis masalah ini, 

algoritma yang dicadangkan mampu menghasilkan peratusan penyelesaian yang lebih 

tinggi dalam set keseluruhan tidak didominasi dengan kualiti yang lebih baik dari segi 

penumpuan dan kepelbagaian berbanding yang diperoleh algoritma pesaing.   
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1 

 

 

 

INTRODUCTION 

 

In today's complex manufacturing setting, addressing crucial issues such as 

improvement of cost, throughput rate and customer satisfaction are among the challenging 

tasks encountered in the real-world manufacturing environment. The ability to cope 

efficiently with this type of situation will boost the firm's competitiveness. This study intends 

to address the subject by looking at benchmark instances and a published case study of job-

shop configurations and introduces an improved hybrid metaheuristic approach to aid 

decision-makers in an effort to deal with these concerns. 

 

1.1 Background 

Scheduling belongs to combinatorial optimization problems and it is generally 

concerned with the assignment of tasks to limited resources over an interval of time (Amrane 

et al., 2021). The scheduling problem has widespread applications in a variety of settings. 

The problem appears in many important fields including hydrothermal systems (Kaur et al., 

2020), transportation and logistics (Guo et al., 2018) and cloud computing (Wan and Qi, 

2021).  

Scheduling has become one of the major issues in the planning and operations of 

manufacturing systems. It has a direct impact on production efficiency, cost and quality. 

Issues in production scheduling involve the use of resources efficiently, reduction of 

production costs and delivery of high-quality products by given deadlines (Birgin et al., 

2020). Due to the realistic expectations, production scheduling has gained considerable 
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research effort among scheduling researchers (Fazel Zarandi et al., 2020). The challenge is 

to find a good assignment of an operation to a machine in order to obtain a schedule that 

optimizes certain pre-defined objective functions.  

The Job-shop Scheduling Problem (JSP) belongs to one of the best known and most 

studied production scheduling problems (Zhang et al., 2019; Horng and Lin, 2021). It 

involves a permutation of jobs with the aim of optimizing one or more objectives. The JSP 

can commonly be described as having n jobs to be scheduled on m machines (Pinedo, 2016). 

Every job consists of an order of operations with precedence constraints. The operations of 

the job will follow the assigned processing route, specific for each job. The execution of job 

i on machine j is denoted as operation Oij, and its duration is pij.  

The JSP is regarded as significant because it reflects the actual operation of several 

industries and many complex industrial problems are generally modelled as the JSP. In a 

job-shop production environment, a number of jobs may require scheduling, each with a 

different processing sequence and a different processing time on the machines. Jobs may 

have promised delivery dates and the solution procedure differs as the objective of the 

scheduling changes. A typical example of real-life job-shop scheduling is the wafer 

fabrications in the semiconductor industry in which an order commonly involves a batch of 

a particular product type that has to go through the facility according to a given route with 

specific processing times. 

The motivation behind production scheduling is the goal of attaining a job sequence 

in such a way that one or more objectives are optimized. The objectives can be grouped into 

either process-oriented or customer-oriented objectives (He et al., 2018). The common 

process-oriented objective is to find the optimum value of the makespan, i.e. the minimum 

completion time of the final job to leave the system (Bürgy and Bülbül, 2018). Makespan 

signifies a good measure of performance for the JSP; a schedule with minimum makespan 
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suggests high machine utilization (Pinedo, 2016). The customer-oriented objectives portray 

close conformance to prescribed due dates. The due date-related objectives have been 

studied extensively. At present, many objective functions are developed such as minimum 

tardiness penalty costs (Kim et al., 2020), minimum total weighted earliness and tardiness 

(Wei et al., 2021), minimum mean tardiness (He et al., 2021), etc.  

The majority of the works carried out for the JSP have concentrated on a single 

objective and the optimization of makespan. However, real-world scheduling problems are 

multi-objective by nature and thus it demands decision-makers to take into account a number 

of different objectives simultaneously. A multi-objective optimization involves a problem 

with a number of objectives to be achieved and these objectives are generally conflicting 

(Gunantara, 2018). Hence, the trade-offs involved in considering these conflicting objectives 

can provide the decision-makers with a better understanding of the problem where all the 

consequences of a decision with respect to all the objectives can be explored before arriving 

at any conclusion.  

A wide range of solution methodologies has been proposed to solve the optimization 

of multiple objectives. At the very beginning, the research on single-objective optimization 

focused on the exact methods. Due to the need for solving large-scale scheduling problems 

and the deficiency in computational resources, it was soon identified that the exact methods 

were impractical. Therefore, the research has now centred on metaheuristic techniques. 

There are various metaheuristic approaches reported in the literature for solving the 

JSP, which include Simulated Annealing (Garza-Santisteban et al., 2019), Tabu Search (Xie 

et al., 2021), Artificial Bee Colony algorithm (Hakim et al., 2019), Ant Colony Optimization 

(Chaouch et al., 2019), Genetic Algorithm (Mencía et al., 2021) and Particle Swarm 

Optimization (Anil Kumar and Das, 2020). These algorithms are able to find near-optimal 

solutions within an acceptable computational time. 



4 

Particle Swarm Optimization (PSO) is one of the computational intelligence 

techniques developed by James Kennedy and Russell Eberhart (Kennedy and Eberhart, 

1995). The original algorithm was discovered through a simplified social model simulation. 

It is a population-based search algorithm and is initialized with a population of random 

solutions called particles. The particle flies through the search space with a velocity that is 

dynamically adjusted according to its own flying experience and its companions’ flying 

experiences. Hence, the particles have a tendency to fly towards a better search area over the 

course of the search process. PSO has been observed to be capable of producing superior 

solutions at a very low computational cost, where it has performed considerably well in a 

broad range of applications (Wang et al., 2018).  

PSO is initially proposed to solve continuous optimization problems, but it can also 

be modified to solve problems in discrete spaces, such as combinatorial optimization 

problems that involve sequencing or permutation. Its modified model, namely the discrete 

PSO, has been developed to achieve this purpose. Unlike the continuous PSO, each particle 

in the discrete PSO directly represents the candidate solution. For scheduling problems like 

the JSP, this means that for the solution representation, each particle is directly mapped to a 

sequence of operations or a schedule, instead of its position in the continuous search space. 

This is in order to establish a direct and efficient mapping in handling the JSP as a 

combinatorial optimization problem that is set in the discrete domain. 

There are several approaches to solving the problems of multi-objective optimization 

using PSO. The most popular approach is based on Pareto dominance, which optimizes all 

objective functions simultaneously (Yasear and Ku-Mahamud, 2021). According to the 

notion of Pareto optimality, it produces a set of Pareto optimal solutions that are non-

dominated with respect to each other (Gunantara, 2018). The non-dominated solutions 

represent diverse compromises or trade-offs among the objectives. When considering real-
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life cases, Pareto-optimal solution sets are commonly desired over single solutions since they 

are more practical in real-world production systems. 

 

1.2 Problem Statement 

The Job-shop Scheduling Problem (JSP) is one of the most difficult production 

scheduling problems in the industry, with the aim to obtain a sequence of jobs in optimizing 

one or multiple objectives. Although a single objective like makespan is often used, the 

achievement of multiple objectives such as the improvement of cost, machine utilization and 

on-time deliveries are among the greater concerns encountered in real-world production 

systems (Sha and Lin, 2010; Reza Tavakkoli-Moghaddam et al., 2011; Meng et al., 2018). 

Nevertheless, research works on solving the JSP with multiple objectives are still limited 

compared to the single objective (Lei, 2008a; Feng et al., 2010; R. Tavakkoli-Moghaddam 

et al., 2011; Wisittipanich and Kachitvichyanukul, 2013).  

The existing methods used on the standard single-objective model are also 

impractical to directly be applied to real-world scheduling scenarios in solving multiple 

objectives simultaneously. Instead of a unique, single solution produced as the output in a 

single-objective case, there exists a number of solutions in a multi-objective case that 

correspond to the most feasible compromises among the objectives. A multi-objective case 

is also more challenging to solve as the objectives are normally in conflict with each other, 

where one objective cannot be improved without degrading at least another objective (Zitzler 

and Thiele, 1999).  

There have been several methods and algorithms proposed to solve multi-objective 

problems. More recently, swarm intelligence approaches have been developed for this 

purpose (Yasear and Ku-Mahamud, 2021), where the success of the PSO algorithm in 

solving single-objective optimization problems has inspired research works in the extension 
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of this method to problems of multi-objective optimization. In comparison with evolutionary 

algorithms, PSO has inherent advantages in scheduling problems. For instance, it does not 

have to devise special mutation or crossover operators to inhibit the presence of illegal 

individuals. Its structure is simpler, with a memory function to retain the best position of the 

population, as well as the best location of the individuals. It also contains less complex 

mathematical calculations and requires fewer parameter adjustments, which furnishes it with 

high search efficiency. The relative simplicity of PSO, its straightforward implementation 

and its adaptability to a wide range of domains have rendered it an emerging prospect to be 

extended for multi-objective optimization (Freitas et al., 2020). However, one main 

shortcoming of the basic PSO design is that the swarm is inclined to cluster rapidly towards 

the current best location, resulting in a stagnation of the search process when the swarm 

becomes stuck at a local optimum (Sengupta et al., 2018). This issue is magnified further 

when dealing with multi-objective optimization (Wang et al., 2018; Freitas et al., 2020). 

Thus, improvement strategies need to be implemented in the existing PSO design to address 

this rapid clustering problem in optimizing the JSP with multiple objectives. Hence, the first 

research question in this study is: 

 Research Question 1: What strategies can be implemented to improve the rapid 

clustering problem in the existing PSO design in solving the JSP with multiple 

objectives? 

 

Traditionally, PSO has been introduced as an optimization technique in the 

continuous search space where it works by adjusting trajectories through the manipulation 

of each coordinate of a particle. Each particle represents a solution encoded as a real variable 

in a multi-dimensional search space. All the dimensions are typically independent of each 

other, thus the updates of the velocity and the position are performed independently in each 


