
AN INTEGRATED TELEMONITORING FRAMEWORK FOR INSOMNIA DISORDER USING INTERNET OF HEALTHCARE

DOCTOR OF PHILOSOPHY

Faculty of Information and Communication Technology

Novi Azman

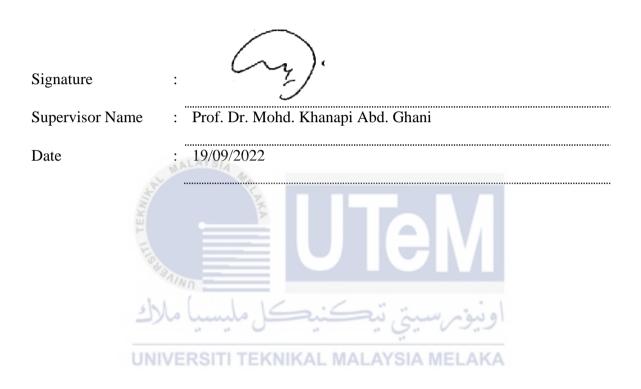
Doctor of Philosophy

2022

AN INTEGRATED TELEMONITORING FRAMEWORK FOR INSOMNIA DISORDER USING INTERNET OF HEALTHCARE THINGS

NOVI AZMAN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA


DECLARATION

I declare that this thesis entitled "An Integrated Telemonitoring Framework for Insomnia Disorder using Internet of Healthcare Things" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I hereby declare that I have read this thesis and in my opinion, this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

DEDICATION

I dedicate this work to my late father, Hj. Usman Bin Rakabi, and my late mother, Hj.Mardiana Binti Hj. Syech Abdulrahman, for raising me to become who I am today, and to my beloved wife, Dr. Betti Danil. Sp.A., as well as my son, Raziq Hanan Azman, for being there and supporting me all the way.

ABSTRACT

Insomnia is a health disorder caused by a disturbance in the continuity of sleep which causes serious problems for sufferers in carrying out daily activities. The prevalence of chronic insomnia sufferers is increasing in urban city life due to lifestyle and socioeconomic conditions in developing countries. Currently, the de facto method to assess sleep disorder is using the Polysomnography device. However, the Polysomnography device is expensive and cumbersome, with the lack availability of device in healthcare services. This results in access limitation of treatment for the patient due to the limited number of devices. Patients in distance from health service should travel which increase time for diagnosis and high cost. Therefore, this study aims to create a solution to increase patient access to insomnia treatment. A new proposed framework could overcome problems in monitoring and diagnosing insomnia disorder. Patients at distance could receive similar performance from specialist as if they come to the hospital. In addition, this research is also proposed a diagnostic device which is portable and cheaper than polysomnography devices. The proposed device can be an alternative to the current polysomnography with low cost. The analysis in this study involves to assess user experience. This study conducted two questionnaires where the first questionnaire is to find out the current treatment conditions, constraints, and needs from the healthcare side to provide effective and efficient treatment and diagnostic for insomnia disorder. The second questionnaire was carried to find out the acceptance and user experience on the proposed framework for telemonitoring systems and its proposed devices for the diagnosis of insomnia. The second questionnaire involved eleven medical officers consisting of doctors and nurses as well as seven patients where the medical officers corresponded to the first and second questionnaires, while the patients only corresponded to the second questionnaire. The results showed that the level of acceptance from both the medical staff and the patients agreed that the telemonitoring system created by the researcher helped the treatment and provided equal access to patients for treatment and diagnosis of insomnia. The results also shows that improvement requirement on the proposed framework of the insomnia telemonitoring system by adding a platform for conducting patient consultations and a learning platform for medical staff remotely. The findings of this study indicate that the telemonitoring framework that has been studied in this study has a positive impact on all parties, both medical and patient, such that the same or even more affordable cost is the biggest concern aspect. Most patients agree on the ease of use of the device.

RANGKA KERJA SISTEM TELEPENGAWASAN BERSEPADU UNTUK PENYAKIT INSOMNIA MENGGUNAKAN INTERNET BENDA PENJAGAAN KESIHATAN

ABSTRAK

Insomnia adalah gangguan kesihatan yang disebabkan oleh gangguan kesinambungan tidur yang menyebabkan masalah serius kepada penghidap dalam menjalankan aktiviti harian. Prevalens penghidap insomnia kronik semakin meningkat dalam kehidupan bandar bandar disebabkan oleh gaya hidup dan keadaan sosio-ekonomi di negara membangun. Pada masa ini, kaedah de facto untuk menilai gangguan tidur menggunakan peranti Polisomnografi. Walau bagaimanapun, peranti Polisomnografi mahal dan menyusahkan, dengan kekurangan ketersediaan peranti dalam perkhidmatan penjagaan kesihatan. Ini mengakibatkan pengehadan akses rawatan untuk pesakit kerana bilangan peranti yang terhad. Pesakit dalam jarak jauh dari perkhidmatan kesihatan harus melakukan perjalanan yang meningkatkan masa untuk diagnosis dan kos yang tinggi. Oleh itu, kajian ini bertujuan untuk mencipta penyelesaian untuk meningkatkan akses pesakit kepada rawatan insomnia. Rangka kerja baru yang dicadangkan boleh mengatasi masalah dalam memantau dan mendiagnosis gangguan insomnia. Pesakit pada jarak jauh boleh menerima prestasi yang sama daripada pakar seolah-olah mereka datang ke hospital. Selain itu, kajian ini juga dicadangkan sebagai peranti diagnostik yang mudah alih dan lebih murah berbanding peranti polisomnografi. Peranti yang dicadangkan boleh menjadi alternatif kepada polisomnografi semasa dengan kos rendah. Analisis dalam kajian ini melibatkan untuk menilai pengalaman pengguna. Kajian ini menjalankan dua soal selidik di mana soal selidik pertama adalah untuk mengetahui keadaan rawatan semasa, kekangan, dan keperluan dari pihak penjagaan kesihatan untuk menyediakan rawatan dan diagnostik yang berkesan dan cekap bagi gangguan insomnia. Soal selidik kedua dijalankan untuk mengetahui penerimaan dan pengalaman pengguna pada rangka kerja yang dicadangkan untuk sistem telemonitoring dan peranti yang dicadangkan untuk diagnosis insomnia. Soal selidik kedua melibatkan sebelas pegawai perubatan yang terdiri daripada doktor dan jururawat serta tujuh pesakit di mana pegawai perubatan berkenaan dengan soal selidik pertama dan kedua, manakala pesakit hanya menjawab soal selidik kedua. Keputusan menunjukkan bahawa tahap penerimaan daripada kedua-dua kakitangan perubatan dan pesakit bersetuju bahawa sistem telemonitoring yang dicipta oleh penyelidik membantu rawatan dan menyediakan akses yang sama kepada pesakit untuk rawatan dan diagnosis insomnia. Keputusan juga menunjukkan bahawa keperluan penambahbaikan pada rangka kerja sistem telemonitoring insomnia yang dicadangkan dengan menambah platform untuk menjalankan perundingan pesakit dan platform pembelajaran untuk kakitangan perubatan dari jauh. Dapatan kajian ini menunjukkan bahawa rangka kerja telemonitoring yang telah dikaji dalam kajian ini memberi impak positif kepada semua pihak, sama ada perubatan mahupun pesakit, sehinggakan kos yang sama atau lebih berpatutan adalah aspek yang paling membimbangkan. Kebanyakan pesakit bersetuju dengan kemudahan penggunaan peranti.

ACKNOWLEDGEMENTS

In the Name of Allah, the Most Gracious, the Most Merciful

First and foremost, I would like to thank and praise Allah the Almighty, my Creator, my Sustainer, for everything I received since the beginning of my life. I would like to extend my appreciation to the Universiti Teknikal Malaysia Melaka (UTeM), Universitas Nasional (UNAS), Rumah Sakit Mitra Keluarga Kemayoran for providing the research platform. Thank you also to the Universitas Nasional for the financial assistance provided.

My utmost appreciation goes to my main supervisor, Prof. Dr. Mohd Khanapi Abd Ghani, Faculty Information Communication Technology, Universiti Teknikal Malaysia Melaka (UTeM) for all his support, advice and inspiration. His perseverance in guiding and providing priceless insights will forever be remembered and cherished. Also, to my cosupervisor, Dr. Lizawati Salahudin, Universiti Teknikal Malaysia Melaka (UTeM) who constantly supported my journey.

Last but not least, from the bottom of my heart, I would like to show gratitude to my beloved wife, Dr. Betti Danil.Sp.A, for her encouragements and for being the pillar of strength in all of my endeavours. My eternal love also to all my children, Raziq Hanan Azman, for their patience and understanding. I would also like to thank my beloved parents for their endless support, love, and prayers. Finally, thank you to all the individuals who had provided me with assistance, support, and inspiration to embark on my study.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TABLE OF CONTENTS

	J	PAGE
DECI	LARATION	
APPR	ROVAL	
DEDI	CATION	
ABST	TRACT	i
ACK	NOWLEDGEMENTS	iii
TABI	LE OF CONTENTS	iv
LIST	OF TABLES	vii
LIST	OF FIGURES	viii
LIST	OF SYMBOLS AND ABBREVIATIONS	xii
LIST	OF APPENDICES	xiii
LIST	OF PUBLICATIONS	xiv
CHA 1.1 1.2	PTER 1 INTRODUCTION Background Research Motivation	1 1 3
1.3	Research Problem	4
1.4 1.5	Research Question Research Objective	10 12
1.6	The Scope of Research	12
1.7	Research Contribution	14
1.8	Thesis Outline	14
CHA 2.1	PTER 2 LITERATURE REVIEW	17 17
2.1	The Contexts of Sleep and Medical Aspect	18
2.3	Insomnia Sleep Disorder	24
	2.3.1 Determining The Scale of Sleep and The Scale of Its Psychological Effects	27
2.4	Analysis of Approach and Tools for the Insomnia Diagnostic	29
	2.4.1 Polysomnography as Gold Standard Sleep Over Night Study for	20
	Insomnia Assessment2.4.2 Electroencephalography as Main Bio Signal of Over Night Sleep	30
	Study for Insomnia Assessment	32
2.5	Analysis of Sleep Telemonitoring	35
	2.5.1 Sleep Telemonitoring Technology	43

	2.5.2 Effectiveness of Sleep Telemonitoring	46
	2.5.3 Findings from Analysis of Sleep Telemonitoring	49
2.6	Summary	50
СНА	PTER 3 RESEARCH METHODOLOGY	52
3.1	Introduction	52
3.2	Research Strategy	52
3.3	Research Design	53
3.4	System Requirements	55
	3.4.1 Device Functional Requirements	55
	3.4.2 Non-Functional Requirement of the Device	56
3.5	Determination of Insomnia Severity Index Indicators	57
3.6	Ethical Committee Application	58
3.7	Field Study	59
	3.7.1 Questionnaire Design	59
	3.7.2 Selection of Participants	60
	3.7.3 Study of Selected Participants Polysomnnography Record	61
	3.7.4 Study of Selected Insomnia Patient	61
3.8	System Design	62
	3.8.1 Framework Development	62
	3.8.2 Detection Device Design with Vital Monitoring Based on Wireless	_
	System	63
	3.8.3 Development of a Centralised System for Data Collection and	
	Analysis	63
	3.8.4 System Testing and Optimisation	64
	3.8.5 Functional Prototype Development	64
2.0	3.8.6 Integrated Data Collection	64
3.9	System Verification and Validation MALAYSIA MELAKA	64
	3.9.1 Data Collection for System Benchmarking	65
2 10	3.9.2 Research Process and Classification	65
3.10	Data Analysis	67 67
	3.10.1 Qualitative Analysis	67 67
2 1 1	3.10.2 Quantitative Analysis	67 68
3.11	Summary	68
СНА	PTER 4 THE ANALYSIS OF DIAGNOSIS PROCESS OF SLEEP	
DISC	ORDER AND THE NEED OF TELEINSOMNIA SYSTEM: INDONESIAN	
PERS	SPECTIVE	70
4.1	Introduction	70
4.2	The Background of The Case Study	70
4.3	Case Study Organisation Background	72
4.4	Discussion on Case Study Data Collection	76
4.5	Discussion on Finding of the Current State of Insomnia Disorder	86
4.6	Discussion on Findings of the Need for Portable Insomnia Disorder Monitoring	3
	Device for Remote Areas	90
4.7	Conclusion from the Case Study	91
4.8	Summary	92

V

CHAP	TER 5 THE FRAMEWORK OF INTEGRATED	
TELE	MONITORING SYSTEM FOR INSOMNIA SLEEP DISORDER (TMSFI)94
5.1	Introduction	94
5.2	The Proposed Framework	95
	5.2.1 Overview of the framework	95
	5.2.2 On-Premises Monitoring and Alert	97
	5.2.3 Cloud Public/Private	98
	5.2.4 Hospital Enterprise Network and Systems (HENS)	99
5.3	5	100
		100
		105
	es	107
	5.3.4 The Device General Overview of The Insomnia Telemonitoring	
	5	109
	5	110
	,	113
5.4	Conclusion	122
СНАР	PTER 6 FRAMEWORK VALIDATION	123
6.1	Introduction	123
6.2	Validating on the Viability of the Proposed Framework	123
		124
		126
6.3	19	128
	6.3.1 Tool Shape Perception of Medical Personnel Questionnaire	130
	6.3.2 Price of Equipment Perception of Medical Personnel Questionnaire	139
	6.3.3 Diagnostic Result Perception of Medical Personnel Questionnaire	143
6.4	Discussion on the Feedback of the Satisfaction of the Patient in the Use of the	
	1 /	145
	1 1 4	146
		149
		155
	1 1	158
6.5		159
6.6	Summary	165
CHAP	PTER 7 CONCLUSION	167
7.1	Introduction	167
7.2	Summary of the Completed Work	167
7.3	Contribution	169
7.4	Further Research for future improvement	172
7.5	-	173
REFE	RENCES	176
APPE	NDICES	197

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1 NREM	and REM sleep stages	20
Table 2.2 EEG Wa	aves and their Corresponding Stages	22
Table 2.3 The Stru	acture of sleep for all ages	23
Table 2.4 Diagnos	stic criteria for primary insomnia	26
Table 2.5 The Rec	chtschaffen and Kales sleep staging	31
Table 2.6 Selected	l studies for sleep telemonitoring section	39
Table 5.1 Framew	ork Classification	100
U	NIVERSITI TEKNIKAL MALAYSIA MELAKA	

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1	A Cycle of Sleep	20
Figure 2.2	Flow diagram of study selection	38
Figure 3.1	Research design of this work	54
Figure 4.1	Mitra Keluarga Kemayoran Hospital Organisation Structure	74
Figure 4.2	Response distribution on the importance of accuracy	77
Figure 4.3	Response distribution of need for a portable device	78
Figure 4.4	Response distribution of patients' complaints about no facility around patients	78
Figure 4.5	Response distribution on the importance of new device safety for	
	everyone.	79
Figure 4.6	Response distribution of question about the remote device for sending data to hospital	80
Figure 4.7	Response distribution on the importance of being user-friendly.	80
Figure 4.8	Response distribution of importance - easy to repair	81
Figure 4.9	Response distribution of affordable price for the new device	82
Figure 4.10	Response distribution of importance of affordable fee for maintenance	82
Figure 4.1	Response distribution of is the existing data record that takes a long time	e 83
Figure 4.12	2 Response distribution of is the need on the new device	84
Figure 4.13	3 Response distribution of importance diagnostic speed	84
Figure 4.14	4 Response distribution of the diagnostic result being accessible via	
	smartphone	85

Figure 5.1 Proposed Framework TMSFI	96
Figure 5.2 OFFSA Framework General Overview	116
Figure 5.3 File Processing in Middleware	119
Figure 6.1 The distribution of medical staffs age as the questionnaire respondents	129
Figure 6.2 The distribution of medical staffs' answers on their knowledge of the	
previous device	130
Figure 6.3 The distribution of medical staffs' answers on their knowledge whether or	
not such device already exists	131
Figure 6.4 The answer distribution of the medical staff about whether or not they	
have seen the same device before	131
Figure 6.5 The answer distribution of the medical staff about the weight of the	
medical device in the research	132
Figure 6.6 The answer distribution of medical staff about the portable medical device	
that is easy to carry anywhere	132
Figure 6.7 The answer distribution of the medical staff on the device accuracy	133
Figure 6.8 The answer distribution of the medical staff on the sufficiency of the	
medical device for both the patients and the medical staff	134
Figure 6.9 The answer distribution of the medical staff on whether the device is	
helpful	134
Figure 6.10 The answer distribution of the medical staff on whether the device could	
send the result to the hospital	135
Figure 6.11 Answer distribution of medical personnel about the device have radiation	
that causes other diseases	136
Figure 6.12 Answer distribution of medical personnel about patients' accessibility	136

Figure 6.13 Answer distribution of medical personnel about patient accessible	137
Figure 6.14 Distribution of Answers by medical personnel about validity of results	137
Figure 6.15 Answer distribution of medical personnel about medical personnel apps	138
Figure 6.16 Answer distribution of medical personnel about result send to medical	
personnel cell phone	139
Figure 6.17 Answer distribution of medical personnel about easy to use for patient	139
Figure 6.18 Answer distribution of medical personnel about the price of medical	
device	140
Figure 6.19 Answer distribution of medical personnel about easy to use for patient	141
Figure 6.20 Answer distribution of medical personnel about another device price	142
Figure 6.21 Answer distribution of medical personnel about other cost of repairing	142
Figure 6.22 Answer distribution of medical personnel about other high cost of	
maintenance	143
Figure 6.23 Answer distribution of medical personnel about device speed result	144
Figure 6.24 Answer distribution of medical personnel about one day result	144
Figure 6.25 Answer distribution of medical personnel about the result to cellphones	145
Figure 6.26 Patient responses about knowing the device beforehand	146
Figure 6.27 Patient responses about knowing the device shape	147
Figure 6.28 Patient responses about the mobility of the devices	148
Figure 6.29 Patient responses about the use of other tools beforehand	148
Figure 6.30 Patient response about knowing similar device beforehand	149
Figure 6.30 Patient response about knowing similar device beforehand Figure 6.31 Patient response about known to use the device	149 150

Figure 6.34 Patient response about the effectiveness of the medical device	152
Figure 6.35 Patient response about device working effectively	152
Figure 6.36 Patient response about easy to teach new people	153
Figure 6.37 Patient response about patient get help with the medical device	153
Figure 6.38 Patient response about easy to teach new people	154
Figure 6.39 Patient response about the device causing other health problems	154
Figure 6.40 Patient response about widely use by the public	155
Figure 6.41 Patient response about knowing the price of the device	156
Figure 6.42 Patient response about repairing cost	156
Figure 6.43 Patient response about mass-produced	157
Figure 6.44 Patient response about maintenance cost	157
Figure 6.45 Patient response about the speed of result in one day	158
Figure 6.46 Patient response about the speed of result known directly via the	
cellphone	159
Figure 6.47 Final version of TMSFI framework	164

LIST OF SYMBOLS AND ABBREVIATIONS

μV	Microvolt
AASM	American Academy of Sleep Medicine
BMI	Body Mass Index
BQ	Berlin Questionnaire
CPAP	Continuous Positive Airway Pressure
EEG	Electroencephalography
ESS	Epworth Sleepiness Scale
Fp	Frontal parietal
HENS	Hospital Enterprise Network and Systems
Hz	Hertz
ICSD	International Classification of Sleep Disorder
IoT	Internet of Things
ISI	Insomnia Severity Index
ITU	International Telecommunication Union
NREM	Non-Rapid Eye Movement
OFFSA	Offline-First Sleep Assessment
OPMA	On-Premises Monitoring and Alert
OSA	Obstructive Sleep Apnea
PSG	Polysomnography
PSQI	Pittsburgh Sleep Quality Index
REM	Rapid Eye Movement
SWA	Slow Wave Activity
TMSFI	Telemonitoring System for Insomnia

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
APPENDIX A	Medical Personnel Questionnaire for existing device.	197
APPENDIX B	Patient Questionnaire for new developed device.	199
APPENDIX C	Medical Personnel Questionnaire for new developed device.	202

LIST OF PUBLICATIONS

Journal with Impact Factor

Azman, N., Ghani, M. K. A., Wicaksono, S., R., Kurniawan, B., and Repi, V. V. R. 2020. Insomnia analysis based on internet of things using electrocardiography and electromyography. *Telecommunication, Computing, Electronics and Control,* 18. Pp. 1406-1415. (Scopus indexed, Q3, IF=1.8 (2020))

Azman, N., Ghani, M. K. A., Wicaksono, S., R., and Salahuddin, L. 2019. The development of IoT tele-insomnia framework to monitor sleep disorder. *International Journal of Advanced Trends in Computer Science and Engineering*, 8. Pp. 2832-2839. (Scopus indexed, Q4, IF=1.2 (2019))

Conference Proceedings

Azman, N., Ghani, M. K. A., Satria, M. H., and Mukaram, M. Z, 2018. October. Development of embedded system for centralized insomnia system. In 2018 5th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI) (pp. 451-455). IEEE.

CHAPTER 1

INTRODUCTION

1.1 Background

Insomnia is the inability of an individual to have a proper quality of sleep, which will create a relaxed state of the body and a fresh state of the mind. Insomnia is defined as the quality of sleep and the situation which determines our feelings towards the outcome of the quality of sleep attained; however, it is not measured by the duration of our sleep and the condition of whether we could get sleepy easily (Ohayon, 2002). Although insomnia is categorised as a symptom or a type of health disorder, it is often considered as a comorbid condition that is related to one specific medical state or other mental disorders (Akyar & Akdemir, 2014). Based on the research conducted by Murali et al., (2003) insomnia can create a risk of hypertension, which is around 350 per cent bigger than the normal people who rarely have this health issue. It is also a factor that causes an individual to have diabetes and expose him or her to suffer from anxiety and depression (Murali et al., 2003).

On the other hand, the research investigated by Prasetyo et al., (2018) shows that the prevalence of insomnia symptoms experienced by governmental officers in Jakarta is around 50%. It consists of 44,2% indicating the mild symptoms of insomnia and 5,8% for the medium level of insomnia. 30% of the factors causing this prevalence in adults involve the difference of working hours, stress on work, work burden, the total office hours in a week, and mental or emotional disturbance. The prevalence of insomnia can be in different levels or forms since it depends on the companies or offices, which have different jobs, work stress, work environment, or work pattern, showing the correlation between complications at work and the quality of sleep.

Sleep disturbance is related to the mental, physical, and social health (Roth et al., 2011), the declining standard of life quality (Kyle et al., 2010), the rising number of accidents and absence at work (Shahly et al., 2012), even the most extreme is a fatal injury at work (Laugsand et al., 2013) and suicides, which is caused by a long and heavy state of depression (Ribeiro et al., 2012). All of these are stimulated by chronic insomnia, which has occurred for a long time. The effects of insomnia on an economic situation are also moderately critical, including the loss of productivity and the expensive medical costs for health treatment. Based on the study conducted in Canada, it has spent a total cost of 191.2 million Canadian dollars for the immediate treatment related to the health consultations for insomnia; the transport cost for the consultations, which is around 36.6 million Canadian dollars; prescribed medicines involving 16.5 million Canadian dollars; free products helping the insomnia treatment, which are around 1.8 million Canadian dollars; and also alcohol used for sleep stimulation, which needs 339.8 million Canadian dollars. There is also another cost, which is not immediately connected to the treatment of insomnia, and it needs 970.6 million Canadian dollars in a year. Finally, the financial loss created by the low productivity because of insomnia has been estimated at 6.6 million Canadian dollars (Daley et al., 2009; Garland et al., 2018).

However, insomnia cases are often neglected. Only a few people seek consultation or remedy for their problems related to insomnia from the health service providers, although the effects of sleep disturbance caused by insomnia have significant impacts on themselves, other people, and the public.

The diagnosis of insomnia is usually based on the subjective and objective information collected from a patient who complains of insomnia (L. Zhang & Zhao, 2007).

The objective insomnia measurement is conducted by using Polysomnography (PSG) as a tool for recording the sleeping process of a patient in a whole night. Polysomnography (PSG) is recognised as a qualified tool with a reputation as the golden standard, and it has a function to identify a great number of sleep disturbances (Thorpy, 2012). Nevertheless, the data analysis and evaluation of PSG take time, need high cost, involve a complicated process of using the tool and evaluating the data. These complications do not prevail only to the experts, who treat insomnia, but also to the patients. The limited facilities of testing the sleep disturbances caused by insomnia, which are available only in big cities, give impacts on the patients of insomnia in these cities, who gave an additional time burden to the patients who live far away from the cities and do not have access to the facilities. The need of having a trip to the cities which have the facilities will take time and produce an additional cost besides the cost of taking the sleep examination by using the facilities.

1.2 Research Motivation

It is essential to have a new approach in conducting an early detection and analysis on the sleep disturbances caused by insomnia, which are effective for saving the budget and time for the patients. The detection and analysis must be conducted remotely between the patients and the medical team so that the patients do not need to spend their time travelling to the cities where the facilities for testing the insomnia case are available. The new approach will increase the availability of the services for sleep examination in the cities which do not have the facilities, and it can reduce the costs and time spent by the patients. This innovation will minimise the expenses and time to have a trip from the cities where the patients are originally from to the cities which have hospitals or clinics supported with the qualified facilities for testing sleep disturbances.

1.3 Research Problem

Insomnia is the problem of general health in medicine and psychiatry. Sleep disturbances are often underestimated and not considered serious. The situations create mental and physical disturbances for those who suffer from insomnia. One research conducted by Kidwai and Syed has shown the surprising increase of insomnia patients in the developing countries in which 16.6 per cent of respondents are from Ghana, Tanzania, India, Bangladesh, Vietnam, and Indonesia, and they suffer from insomnia as well as other sleep disturbances (Kidwai & Ahmed, 2013).

The prevalence of those who suffer chronic insomnia has risen significantly in urban cities. The urban lifestyle and the social-economic demands are some causes of the rise of patients with chronic insomnia (Liu and Liu, 2005; Xiang et al., 2008; Asghari et al., 2012; Zailinawati et al., 2012). The prevalence creates an indirect impact on the social and economic factors in a country, where around 60 per cent of the people in the developing countries live in the cities.

As an individual, the patients with chronic insomnia can influence their quality of life and the comorbid situations of their health (Daley et al., 2009; Kyle et al., 2010). The research conducted by Vgontzas et.al., (2009) has shown that the patients with chronic insomnia will have an increased risk for hypertension, reaching around 350 per cent higher than those who have normal sleep hours (Vgontzas et al., 2009). Insomnia is also a factor that can trigger the risks of diabetes, anxiety, depression of a patient. All of these, then, will influence their performance rhythm at work and their social life.

Polysomnography is a tool with a gold standard to measure sleep disturbances collected from the data involving the factors which cause the disturbances. However, because of the routine of clinical evaluation, polysomnography is not practical and limited to be used in certain places (Kushida et al., 2005). There is another device commonly used