

Faculty of Information and Communication Technology

Sameer Abdulateef Hussien

Doctor of Philosophy

2022

ELLIPTICAL ULTRA-WIDEBAND ANTENNA SENSOR WITH MODIFIED TIME REVERSAL ALGORITHM FOR BREAST TUMOUR LOCALIZATION

SAMEER ABDULATEEF HUSSEIN

in fulfilment of the requirements for the Degree of Doctor of Philosophy Faculty of Information and Communication Technology

A thesis submitted

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2022

DECLARATION

I declare that this thesis entitled "Elliptical Ultra-Wideband Antenna Sensor with Modified Time Reversal Algorithm for Breast Tumour Localization" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I hereby declare that I have read this thesis and, in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

DEDICATION

To my beloved parents

ABSTRACT

Breast cancer is a serious health problem and the second leading cause of death around the globe. The skin around fatty tissues like the breast are the most common and fastest growing of all cancer types. Thus, ultra-wideband (UWB) antenna sensors are considered a promising instrument in microwave imaging tomography with the least destruction in the body's tissue. Several studies have recommended UWB antennas to acquire the target's characteristics and localize them. However, they showed some limitations in terms of bandwidth and resolution to even spending larger printing areas despite showing acceptable outcomes. In addition, the imaging algorithms are usually utilized to combine and sum all the received signals, create an image of the dielectric scatter (tumour) within the human organ, and remove the clutters and artifacts. However, the problem is how to apply and utilize an algorithm for microwave imaging to reconstruct the image of the target in a cluttered environment (like skin and breast) with the most possible artifact and clutter removal (not to mask the tumour response). Therefore, this thesis proposes a UWB antenna sensor with good directional beamwidth, high fidelity, high efficiency, and low group delay at the frequency range of 0-30 GHz. A novel weighted Time Reversal algorithm is introduced to improve the image quality along with removing the clutter in the imaging environment. The proposed elliptical patch antenna sensors loaded by stubs, slots, and truncated ground show complementary results for the imaging of breast skin as they achieve broad BW (>18 GHz), simple elliptical shape of the patch, miniaturized dimensions ($15 \times 15 \text{ mm2}$), and high fidelity (> 90 % hence low distortion). Notably, there is a good agreement shown between the simulation and measurement results of the proposed antenna. The imaging results show that the proposed algorithm obtained better results in terms of accurate localization, and better removal of image artifacts and clutter. It has shown the accuracy with more than 95 % detection of tumours in breast skin and can perform a hollow with a diameter of 3 mm in any location within the trunk. Besides, no significant discrepancy exists between the images using simulated and measured scattering indicates the system's ability to the detection of tumours in the breast skin.

PENDERIA ANTENA ULTRA-JALUR LEBAR ELIPS DENGAN ALGORITMA PEMBALIKAN MASA YANG DIUBAHSUAI UNTUK PENYETEMPATAN TUMOR PAYUDARA

ABSTRAK

Kanser pavu dara merupakan masalah kesihatan yang serius dan merupakan penyebab utama kedua kematian di dunia. Kulit di sekitar tisu lemak seperti payu dara merupakan jenis kanser yang paling biasa dan yang tumbuh pantas antara semua jenis kanser. Oleh itu, sensor antena ultrajalur lebar (UWB) dianggap sebagai instrumen yang menggalakkan dalam tomografi pengimejan mikrogelombang dengan kemusnahan tisu badan terendah. Beberapa kajian telah mengesyorkan antena UWB bagi mendapatkan karakteristik sasaran dan menyetempatkan mereka. Walau bagaimanapun, mereka menunjukkan beberapa limitasi dari segi lebar jalur dan resolusi hingga membataskan kawasan pencetakan yang lebih besar walaupun menunjukkan hasil yang boleh terima. Di samping itu, algoritma pengimejan biasanya digunakan untuk menggabung dan menjumlahkan semua isyarat yang diterima, mewujudkan imej serakan dieletrik (tumor) dalam organ manusia, dan menyingkirkan selerakan dan artifak. Walau bagaimanapun, masalahnya ialah cara untuk mengaplikasi dan menggunakan algoritma bagi pengimejan mikrogelombang bagi membina semula imej sasaran dalam persekitaran yang berselerak (seperti kulit dan payu dara) dengan artifak yang paling wajar dan penyingkiran serakan (bukan untuk melindungi respon tumor). Oleh sebab itu, tesis ini mengesyorkan sensor antena UWB dengan lebar alur terarah yang baik, fideliti tinggi, keberkesanan tinggi, dan kelambatan kumpulan yang rendah pada julat kekerapan 0-30 GHz. Algoritma pembalikan masa berpemberat yang novel telah diperkenalkan bagi memperbaiki kualiti imej di samping menyingkirkan serakan dalam persekitaran pengimejan. Sensor antena tampal elips yang disyorkan yang sarat dengan stub, slot, dan kawasan terpangkas menunjukkan hasil komplementari bagi pengimejan kulit payu dara akibat mereka menerima BW lebar (>18 GHz), bentuk tampal elips yang mudah, dimensi mini (15 × 15 mm2), dan fideliti tinggi (> 90 % oleh itu pengherotan rendah). Yang ketaranya, terdapat hubungan baik yang ditunjukkan antara simulasi dan dapatan pengukuran bagi antena yang disyorkan. Dapatan pengimejan menunjukkan bahawa algoritma memperoleh dapatan yang lebih baik dari segi persetempatan yang tepat, dan penyingkiran artifak imej dan serakan yang lebih baik. Ia menunjukkan ketepatan dengan lebih daripada 95 % pengesanan tumor pada kulit payu dara dan dapat melaksanakan lompang dengan diameter 3 mm pada sebarang lokasi dalam badan. Di samping itu, tidak terdapat diskrepansi signifikan yang wujud antara imej yang menggunakan penyerakan yang disimulasi dan diukur serta memperlihatkan keupayaan sistem bagi mengesan tumor pada kulit pavu dara.

ACKNOWLEDGEMENTS

I owe much of the accomplishments of this doctoral degree to my family and friends, and to my supervisors, I also would like to thank the UTP university for such a wonderful help that allows me to use the laboratory facilities. I am grateful for my supervisors have given generous hours of their time to help and encourage me. At the risk of omitting names, I would like to attempt to acknowledge my friends who have journeyed with me these past four years. I share the achievements of this doctoral degree with all of you.

TABLE OF CONTENTS

DECLARATION			
DI	EDIC	ATION	
	SCLD		i
			1
	21721 21721		II
A		JWLEDGEMEN IS	
TA	ABLE	C OF CONTENTS	iv
LI	ST O	F TABLES	vii
LIST OF FIGURES			viii
LI	ST O	F ABBREVIATIONS	xiii
LI	ST O	F PUBLICATIONS	XV
CI	HAPT	TER	
1.	INI	RODUCTION	1
	1.1	Introduction	1
	1.2	Problem statement	3
	1.3	Research objectives	5
	1.4	Scope of research	6
	1.5	Research contributions	8
	1.6	Thesis organization	10
2.	LIT	ERATURE REVIEW	11
	2.1	Introduction	11
	2.2	Breast cancer and recent solutions	13
	2.3	Current strategies of tomography	15
		2.3.1 Microwave imaging (MI)	20
		2.3.1.1 Methods used in MI	21
	2.4	Antenna and their applications	26
		2.4.1 Microstrip antenna sensors	25
		2.4.1.1 Microstrip antenna sensor analysis	26
		2 4 1 2 TL model	26
		2.4.1.2 Rectangular and circular microstrin antenna	20
	25	Ultra-Wideband Antenna (UWB)	27
	2.5	2.5.1 State of art on recent LIWB antenna	37
	26	Antenna element arrays of antennas	50
	2.0	Antenna clement allays of antennas	50
		2.6.2 Cylindrical configuration of array elements	50
		2.6.2 Cylindrical configuration of array elements	50
		2.6.3 Electromagnetic fields in different dielectric materials	51
		2.6.4 Reflection and transmitted wave	51
	2.7	Phantom modelling	52
	2.8	Techniques of dielectric properties measurement	55
		2.8.1 Capacitor or parallel technique	55
		2.8.2 The contacting electrode technique	56
		2.8.3 Non-contacting electrode technique	56
		2.8.4 Free space technique	56
	2.9	Development of algorithm for microwave imaging	58
	2.10	9 Summary	67

2.10 Summary

3.	ME	THODOLOGY	69
	3.1	Introduction	69
	3.2	Design of UWB antenna sensor	72
		3.2.1 Design of elliptical monopole antenna and time domain characteristics	73
		3.2.2 Fidelity factor	78
		3.2.3 Group delay	79
		3.2.4 Antenna sensor directivity, far-field and near field	80
		3.2.5 Antenna sensors' optimization	8
		3.2.5.1 Design A, Miniaturized proposed UWB elliptical patch antenna sensor	82
		3.2.5.2 Design B, Proposed UWB antenna sensor loaded with circular ring EBG structures	8
	3.3	Skin sample fabrication and dielectric measurement	92
		3.3.1 Measurement procedure	9.
	3.4	Focal points in breast and skin	9
	3.5	The antenna arrangement on the skin and breast	10
	3.6	Analyse of transmitted and received signals, and algorithm	10
		3.6.1 Delay of time during transmitting and receiving signals	10
		3.6.2 Enhanced algorithm	10
	3.7	Summary	11
4.	RES	SULT AND DISCUSSION	11
	4.1	Introduction	11
	4.2	The proposed antenna sensors design	11
		4.2.1 Antenna sensors simulated and measured results in time and frequency domain	11
		4.2.1.1 Design A; elliptical patch antenna sensor and optimization	11
		4.2.2 Design B; elliptical patch antenna sensor and with enhanced EBG	13
		4.2.2.1 Simulation and optimization in time and frequency domain	13
		4.2.3 experimental results	14
		4.2.4 Characteristics of the second antenna in time and frequency domain	14
		4.2.5 Antenna sensor B, integrated with breast phantom	15
	4.3	Skin and breast dielectric properties	16
	4.4	Image reconstruction in different considerations	16
		4.4.1 The image reconstruction tumour in breast skin	16
	4.5	Image reconstruction of the cylindrical breast sample with skin	16
		4.5.1 Image reconstruction using simulation information	16
		4.5.1.1 Effect of antenna sensor's numbers on the image reconstruction using simulation information	16
		4.5.1.2 Image reconstruction with a tumour of 3 mm diameter	17
		4.5.1.3 Image reconstruction of multi-targets	17
		4.5.1.4 Image reconstruction of larger sample	17
		4.5.2 Image reconstruction using measured information	17:
	4.6	Structural similarity index	170

v

	4.7 4.8	Comparison with past studies Summary	177 180
5.	CONCLUSION AND FUTURE WORKS		181
	5.1	Conclusion	182
	5.2	Recommendations Future work	184
RE	FER	ENCES	186

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Applied imaging techniques comparison	16
2.2	The advantages and faults of microwave imaging	18
2.3	The most common UWB antennas	36
2.4	Antenna comparisons used for medical imaging	52
2.5	Algorithm comparison among the recent similar algorithms	67
3.1	The defined dimensions of antenna	78
3.2	The dielectric constant of breast and skin	93
3.3	Materials used to fabricate skin	94
4.1	Antenna sensor final dimensions	111
4.2	The antenna sensor comparison with recent similar works and first proposed antenna	129
4.3	Optimized dimensions of antenna sensor's parameters	137
4.4	Comparison between the proposed antenna sensor and recent works (ant: antenna sensor, application: app)	148
4.5	SSIM comparison of the reconstructed images (pro: proposed method)	173
4.6	Performance comparison of the proposed antenna with recent studies	176

اونيۈم سيتي تيكنيكل مليسيا ملاك

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Research scopes (solid lines are in scope and dashed lines are out of scope)	7
2.1	Passive MI	23
2.2	Hybrid MI	24
2.3	Active MI	25
2.4	Different sections of microstrip antenna	26
2.5	Wide band antenna sensor over plat	32
2.6	Proposed antenna geometrical details: (a) 3-D view. (b) front view	39
2.7	Proposed Antenna (a) Fern inspired fractal AVA (b) Creation of	40
	Exponential tapering arm (c) Creation of fractal leaf.	
2.8	The z-shaped antenna	41
2.9	Geometric layout of antenna: (a) Topside view; (b) Backside view	43
2.10	(a) Spherical conformal bow-tie antenna, (b) simulation model of the	43
	spherical comornial bow-tic antenna array in none of the breast	
2 1 1	Manufactured antenna: (a) Ton view (b) Bottom view	44
2.11	(A) antenna back view (B) antenna front view	45
2.12	Fag-shaped antenna design	45
2.15	The proposed antenna design	46
2.14	(a) The front view b the back view	40
2.15	The designed antennas: (a) CAVA (Ant 0): (b) SSCAVA (Ant 1): (c)	47
2.10	MAVA (Ant 2) and (d) zoom-in of the ground plane	Ξ7
2 17	Imaging domain (a) Side view (b) Top view	48
2.17	The lavered structure of breast tissue	53
2.10	Different parts of a breast in cross-section view (Canadian Cancer	53 54
2.17	Society, 2021)	54
2.20	The sample's layers of dielectric	55
2.21	Contacting electrode method	56
2.22	Close look at the non-contacting system	57
2.23	Free space method	57
3.1	Project flowchart	69
3.2	Phase 1 flowchart	70
3.3	phase 2 flowchart	70
3.4	Flowchart of phases 3-5	71
3.5	The flowchart for designing the antenna	73
3.6	Microstrip patch antenna sensor	74
3.7	Transmission line	75
3.8	The general experimental set up of the Imaging system.	81
3.9	Proposed antenna sensor	82
3.10	Simulation setup of the array antenna sensors. (a) side view, (b) top	85
	view.	

3.11	The proposed antenna sensor design B (a: the front view of the antenna including the patch, stubs, and TL; b: the back view of the second antenna including the GND and integration of EBG structures:	86
	c: side view of the antenna)	
3.12	EBG structure	86
3.13	Antenna sensor array setup in a planar configuration	89
3.14	Antenna sensor system for sending and receiving signals	91
3.15	The dielectric properties measurement setup of skin	94
3.16	Calibration process before performing the dielectric measurement	94
3.17	Dielectric measurement setup procedures of the fabricated skin	95
3.18	Breast sample focal points and mesh cells	98
3.19	Procedure of DAS beamforming	99
3.20	The simulated and fabricated prototype of the antenna arrays on the skin located on the breast (A1-A9 are the arrays, A1 sends and the others receive)	100
3.21	The path signal travels between two adjacent antenna elements	101
3.22	Image reconstruction chart	107
3.23	Simulated prototype of the imaging device	108
3.24	Measurement setup	109
4.1	Simulated prototype of design A.	112
4.2	Simulated prototype of the design	113
4.3	Simulated prototype of the design	114
4.4	EBG cell simulated with periodic boundary	115
4.5	Simulated surface impedance of conventional and proposed EBG cells.	116
4.6	Simulated surface impedance of EBG cell.	116
4.7	SCD at 2.4 GHz, 3.9 GHz, 20 GHz, 25 GHz, and 30 GHz	117
4.8	Surface current distribution around the EBG structure at 2.4 GHz, 3.9 GHz, 20 GHz	117
4.9	Elliptical patch dimensions optimization (a, b)	118
4.10	L ₁ length optimization of design A.	119
4.11	L ₃ length optimization of design A.	119
4.12	Lg length optimization of design A.	120
4.13	W_p length optimization of design A.	121
4.14	Fabricated prototype of the antenna sensor design A.	122
4.15	Simulated and measurement result of the antenna sensor in air of design A	123
4.16	Measurement result of phantom skin and breast	123
4.17	Radiation pattern of the proposed antenna sensor throughout the frequency band	123
4.18	Simulation setup of the antenna sensors in a general part of the body	125
4.19	S-parameter result of the antenna sensor when they face skin, muscle, and bone	126
4.20	Transmission coefficient of the antenna sensor and five more arrays around it when they face the skin, muscle, and bone	127
4.21	The received signals (output) from the antenna.	127
4.22	Measured transmission coefficient	128
4.23	The fidelity result of the antenna sensor design A.	129
4.24	The group delay of design A	130

4.25	Near-filed radiation pattern of design A.	131
4.26	The elliptical patch's dimensions a, b (exp. $a=3.5, b=3$)	133
4.27	Transmission line length of design B.	134
4.28	Transmission line width of design B.	135
4.29	L3 optimization of design B.	136
4.30	L ₅ optimization of design B.	136
4.31	L_{t1} optimization of design B.	137
4.32	Optimization with different layers of design B with no short stubs	138
	(The antenna B is presented in 4.30).	
4.33	Antenna design B.	139
4.34	The simulated and measured of design B in air.	141
4.35	Radiation pattern of the antenna sensor at different frequencies	142
4.36	Nine antennas with cubic sample	144
4.37	The reflection and transmission coefficient of the antenna (a) sensor	145
	in air and skin (b)	
4.38	Reflection coefficient results in different thicknesses of skin.	146
4.39	The transmission coefficient results in different thicknesses of skin.	147
4.40	The receive signals at different arrays	148
4.41	Fidelity percentage of the antenna sensor design B.	149
4.42	Near-field radiation pattern	152
4.43	HEBW result	153
4.44	EFD result at different frequencies	154
4.45	Propagation and penetration in the skin (a) the antenna arrangement,	155
	(b) E-field, and (c) penetration, A1 is active	
4.46	The fabricated phantom	156
4.47	Transmission coefficient of arrays	156
4.48	The received signals (output) from different antenna	157
4.49	Simulated phantom of the breast, skin, and tumour	158
4.50	Fabricated sample of breast	158
4.51	The measurement setup	159
4.52	Calibration of the probe sensor before measurement	160
4.53	Dielectric measurement of fabricated skin	160
4.54	Dielectric properties of skin	161
4.55	Dielectric properties of the breast	162
4.56	Image reconstruction using 3 arrays (a: MWDAS, b: FDMAS, c: TR,	166
	d: improved TR)	
4.57	Image reconstruction using 6 arrays (a: MWDAS, b: FDMAS, c: TR,	167
	d: improved TR)	
4.58	Image reconstruction using 9 arrays (a: MWDAS, b: FDMAS, c: TR,	168
	d: improved TR)	
4.59	Image reconstruction of a smaller target with a 3mm diameter	169
4.60	Image reconstruction of two targets	170
4.61	Image reconstruction of three targets	171
4.62	The reconstructed image of larger breast sample 16 cm diameter	172
4.63	Measurement setup of the breast and the skin	173
4.64	The reconstructed image from the measured information	174

LIST OF ABBREVIATIONS

APES	- Amplitude and Phase Estimation
BSR	- Basal Stem Rot
BW	- Bandwidth
СТ	- Computed Tomography
CST	Computer Simulation Technology
CMI	- Confocal Microwave Imaging
CPW	- Co-palanar Waveguide
CR-DAS	- Channel Ranked Delay-And-Sum
DA	- Information-adaptive
DAS	- Delay and Sum
DI	- Information-Independent
DMAS	- Delay Multiply and Sum
ECVT	- Electrical Capacitance Volume Tomography
EBG	Electromagnetic Band Gap
FCC	- Federal Communication Commission
FDAS	- Filtered Delay-And-Sum
FDTD	- Finite Difference Time- Domain
GND	- Ground
GPR	5- Ground Penetrating Radar
HRXCT	- High-Resolution X-Ray
ISM	- Industrial Scientific Medical
MSA	- Microstrip Slot Antenna
MW	- Microwave
MWT	- Microwave Tomography
OPT	U - V Oil Palm Trunk KAL MALAYSIA MELAKA
SCB	- Standard Capon Beamformer
SSIM	- Structural Similarity Index for Image
SUT	- Sample Under Test
TL	- Transmission
TR	- Time Reversal
UAV	- Unmanned Aerial Vehicles
US	- Ultrasonic
UWB	- Ultra-wide-band
VNA	- Vector Network Analyser
VSWR	- Voltage Standing Wave Ratio
WSN	- Wireless Sensor Network

LIST OF PUBLICATIONS

- Alani, Sameer, Zahriladha Zakaria, Tale Saeidi, Asmala Ahmad, Hussein Alsariera, Othman S. Al-Heety, and Sarmad Nozad Mahmood. 2021. 'Electronic Bandgap Miniaturized UWB Antenna for Near-Field Microwave Investigation of Skin'. *AIP Advances* 11(3).
- 2. Alani, Sameer, Zahriladha Zakaria, Tale Saeidi, Asmala Ahmad, Muhammad Ali Imran, and Qammer H. Abbasi. 2021. 'Microwave Imaging of Breast Skin Utilizing Elliptical Uwb Antenna and Reverse Problems Algorithm'. *Micromachines* 12(6).
- 3. Alani, Sameer, Zahriladha Zakaria, Tale Saiedi, Asmala Ahmad, Sarmad Nozad Mahmood, Mohammed Ayad Saad, Sami Abduljabbar Rashid, Mustafa Maad Hamdi, and Ma'ath Abdulla A. Arab. Albeyar. 2020. 'A Review on UWB Antenna Sensor for Wireless Body Area Networks'. *4th International Symposium on Multidisciplinary Studies and Innovative Technologies, ISMSIT 2020 Proceedings.*

CHAPTER 1

INTRODUCTION

1.1 Introduction

With nearly 3.5 million new cases and billions of dollars in care costs worldwide, skin cancer is the most prevalent and fastest growing of all cancer forms. Skin around fatty tissues like the breast are the most common and fastest growing of all cancer types. A dermatologist's visual examination is commonly used to diagnose it, but visual inspection is subjective and subject to error. Skin with insufficient melanin is vulnerable to sunburns as well as the sun's harmful ultra-violet rays. Besides, the skin on the breast was also interested to be examined, especially for women since they are also at risk of breast cancer. According to the researchers, the disorder needs early detection to detect specific signs that physicians and dermatologists may use to prevent it. It has been established that this condition is unpredictable (Abuzaghleh et al., 2015).

For skin lesions and tumour margin measurement, a variety of imaging techniques are being tested as diagnostic methods. With axial and lateral resolutions of 80 mm and 200 mm, respectively, and a penetration depth of 7 mm, high-frequency ultrasound (Jovanovic et al., 2012) can visualise tumour dimensions in vivo (Petrovský et al., 2000; Astner et al., 2008). However, since the technique lacks chemical precision and cannot distinguish between benign and malignant skin lesions, its utility may be limited (Fornage, 1995). When a tumour reaches more than 15 mm below the surface, magnetic resonance imaging may provide valuable information. Magnetic resonance microscopy measurements on human skin with axial and lateral resolutions of 19 μm and 78 μm, respectively. There has been a

confirmed penetration depth of 800 mm. However, the use of a whole-body imaging computer, high costs, device complexity, acquisition time, and patient claustrophobia make this procedure unsuitable for imaging skin cancer at the moment (Bushberget al., 1994).

Optical coherence tomography (OCT) and confocal microscopy are two near-infrared (NIR) imaging techniques (wavelength range 0.7-2 m). Both provide information on the structure of the tissue at a deeper level. With a penetration depth of less than 1 mm, OCT can visualise architectural improvements in tissue at spatial resolutions of 10 m. It's difficult to tell the difference between inflammatory and non-inflammatory. Confocal microscopy is a high-resolution, real-time imaging technique that can see cellular and nuclear detail in vivo with lateral and axial resolutions of 1-2 and 3-5 m, respectively, and a penetration depth of 250-300 m (Yu et al., 2002). The current narrow field of view (250250 m) prohibits macroscopic representation of tumour margins, but a larger field of view can be achieved by tiling individual frames into a mosaic (Apostolović-Stojanović et al., 2013). Backscattered photons are used in NIR techniques to create images. As a result, low penetration due to signal loss after a few hundred microns is a major limitation of these techniques. At longer wavelengths, light scattering by tissue is less of a problem.

As a result, UWB antenna sensors can be considered a promising Microwave Imaging tool. To achieve a good detection of the tumourous parts of the skin, especially on the breast with a high resolution and high speed in the analysis, a microwave system is helpful (Lassau et al., 1997; Lieber et al., 2008). Therefore, a new UWB antenna sensor with high performances such as wide BW, high gain, and fidelity is designed.

1.2 Problem statement

Breast tumour is a disease that is unpredictable and can be characterized in each step of the disease development of lesion, Among all different disease identification techniques

for tumours in the human body. Besides, it affects the tomography (tomography as a general statement that can be consisted of microwave and radar imaging) outcomes of another cancerous part of the body like breast cancer. Several techniques were applied to reconstruct an image of the tumorous cells. They utilized methods like High-frequency ultrasound, Magnetic resonance imaging, and Near-infrared (NIR) like OCT and CM. Each of them showed some drawbacks that made the researchers seek an alternative. For example, the ultrasound strategies don't have chemical specificity and are not able to distinguish between kind and harmful skin injuries (Fornage, 1995; Petrovský et al., 2000); bulky, complex, more time handling (Bushberget al., 1994) and not pertinent to imaging (Kuranov et al., 2002). Other techniques were carried out to detect the tumours such as MRI, HFUS, TPI, and any others. However, these methods could not completely be trusted since they showed limitations like low resolution and penetration, more expensive, low sensitivity, and slow acquisition (Garbe and Eigentler, 2007; Moulin-Romsee et al., 2008; Xing et al., 2011; Knieling et al., 2018). Therefore, Microwave imaging has been proposed as a possible solution, especially for imaging cancerous cells in the human body. MI technique has been chosen due to its advantages such as being non-invasive, more accurate, giving full information of the material under test, etc (Tale et al, 2019).

Microwave imaging comprises antenna sensors to send and receive signals and then it can differentiate the dielectric alterations and the delays to localize the targets. The most promising sensor utilized for these purposes is (UWB) antennas which help to localize the target by applying their broad bandwidth. Moreover, it should be tried to design a UWB antenna offering high performance in terms of bandwidth, radiation efficiency, fidelity factor, and miniaturized profile. The main challenge in applying UWB antenna sensors for imaging purposes is how to send and receive the backscattered signal with a minimum level of distortion and noise in signals. High-level distortion and high group delay are serious problems in microwave imaging (Meaney et al., 2012; Zeng et al., 2013; Ahadi et al., 2021). Thus, signal fidelity should be calculated when signal distortion is a critical problem. Fidelity is considered as the magnitude of cross-correlation when it reaches its maximum between the transmitted and received pulses. The received signal plays an important rule in the variations of delay in signal and its amplitude caused by the dispersed signal by the tumour is used in microwave imaging to detect a tumour in the breast. It is very important when the antenna sensor sends and accepts the pulse and does not alter the form of the pulse when it transmits or receives signals.

In addition to that, achieving broad working bandwidth while keeping the dimensions of the antenna sensor small is another serious challenge; for instance, recent designs of UWB antenna sensors for imaging purposes offered a larger size, narrow bandwidth, and low performances (Kaur, 2016; Sarjoghian et al., 2020).

The imaging algorithms are usually utilized to mix and construct the sample under test such as human organs and remove the clutters and artifacts. The problem is how to apply and utilize an algorithm for microwave imaging to reconstruct the image of the target in a cluttered environment (like skin and breast) with the most possible artifact and clutter removal (not to mask the tumour response). It is usually done by calculating the delay of the received signals when they are received by adjacent arrays of the transmitter. Several algorithms have been applied for microwave imaging showing some drawbacks and benefits. For instance, the delay and sum algorithm and its derivatives like improved delay and sum (Byrne et al., 2010; Elahi, 2018), Conventional Time Reversal algorithms (Fink, 1992; Kosmas and Rappaport, 2005; Lerosey et al., 2005; Kosmas and Rappaport, 2006; Chen et al., 2007; Sajjadieh and Asif, 2011; Mukherjee et al., 2018) detected the target with limitations in resolution and accuracy in localization of the target. Therefore, in this study, we will investigate a new antenna sensor to offer broader bandwidth, high radiation efficiency, directive gain, high fidelity factor, and miniaturized profile. Since the previous works had large sizes, it is tried to design an antenna that takes a small printing area; more antennas can be thus integrated and used for imaging purposes so as more scattering and accuracy (when the antenna is small more arrays can be used to more scattering and more accuracy in detection of the tumour). For instance, Islam, M.T., et al 2019, designed an antenna with a bigger size and narrower bandwidth. Furthermore, it is integrated with a robust and improved algorithm to exhibit better resolution and accuracy of the image/ tumour

tissue/ object.

1.3 Research objectives

This thesis aims to develop a microwave device for the detection of cancerous cells in the model (phantom) of human skin. To achieve this, the objectives of this thesis include:

- To design and optimize a UWB antenna sensor with good directional beam width, high fidelity, high efficiency, and low group delay at the frequency range of 0-30 GHz.
- 2. To develop and improve an algorithm of time reversal to construct the image of the skin and tumours with high resolution.
- To evaluate the antenna sensor through measurement in the laboratory to verify and localize the tumour cells in the skin.

1.4 Scope of research

Figure 1.1 shows the scope of the study as solid lines are the parts that are included in our research and those with dashed lines are not. A new UWB antenna is designed for an imaging application. This thesis starts with Microwave imaging, in microwave imaging, a UWB is required. During the antenna design, A technique is required to improve the antenna performance like getting wider bandwidth. Thus, a circular ring electronic bandgap (EBG) structure has been used in the antenna design. This EBG structure is utilized to prevent some undesired operating modes

After choosing the antenna sensor shape and type it's designed and fabricated, an antenna using the concept and specifications of a stack patch antenna, wide slot, and monopole antenna with some loadings are utilized for the proposed antenna. Meanwhile, the skin and breast material are fabricated and then dielectric characteristics of the material under test are performed using the open-ended sensor contacted to a coaxial cable. In this research, only the semi-spherical arrangement of the antenna is considered. However, the planar arrangement is used just to show is the antenna works or not. After meeting the UWB antenna sensor requirements in terms of S-parameters, and radiation characteristics, the time domain considerations are performed. The time-domain characterization is to get the received signals in time so they can be used later. Afterward, signal processing and image reconstruction are performed. The passive algorithm like TR is used not the active ones like MIST. It should be mentioned that the tests and results have not been tested on any human sample, it is for future works and the next level of study.

Figure 1.1: Research scopes (solid lines are in scope and dashed lines are out of scope)