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ABSTRACT 

 

 

Sintered silver (Ag) is one of the most promising interconnect materials for high power 

electronics applications due to its ability to withstand high temperature exceeding 250 °C 

while in operation. In this thesis, the microstructural evolutions of spherical and flake types 

pressureless sintered Ag die attached material was characterized at different sintering 

temperatures. The interface between flake sintered Ag and copper (Cu) substrate was 

examined to understand the factor that affects its bonding quality. The flake sintered Ag was 

exposed to corrosive environment to study the effect of corrosion to its properties change. 

The microstructural characterization was performed by means of field emission scanning 

electron microscopy (FESEM), focused ion beam (FIB) and high resolution transmission 

electron microscopy (HRTEM). The elemental and chemical states analysis were performed 

via energy dispersive spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS) and time 

of flight secondary ion mass spectrometry (TOF-SIMS). The mechanical properties was 

conducted using dynamic microhardness tester and the electrical conductivity was measured 

using hall effect instrument. The result shows that the evolutions of spherical particles occur 

as the contact area is formed, followed by neck formation via atomic diffusions leading to 

the formation of solid Ag network. The flake particles shows self-produced nano particles 

that accelerates the sintering process and it has a higher tendency for particle diffusions due 

to larger surface area per thickness ratio. The improvement in conductivity was observed as 

compared with unsintered Ag particles. The flake Ag particle sintered at 300 °C shows an 

increase in elastic modulus and hardness as compared to unsintered Ag particle. The 

investigation at the interface between sintered Ag and Cu substrate shows an indication of 

interface diffusion after the sintering process. However, the growth of Cu oxide layer at Ag-

Cu interfaces induce negative effects due to the formation of voids and separations in 

between Cu and Cu oxide interface. Finally, the evidence of corroded sintered Ag joint was 

observed after exposure to the corrosive environment. The Cu oxide layer with delamination 

between Cu and Cu oxide interface initiate a weak point and further enhance the corrosion 

effect. The corrosion and delamination will result in product failure due to poor mechanical 

strength of the corroded joints. In conclusion, sintering temperature plays an important role 

in the microstructural change of sintered Ag joint. The knowledge gained from this study 

would be beneficial in the application of pressureless sintered Ag die attached material in 

semiconductor packaging process. 
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PENCIRIAN STRUKTURMIKRO BAHAN PELEKAT CIP PERAK DISINTER 

TANPA TEKANAN 

 

 

ABSTRAK 

 

 

Perak tersinter ialah salah satu bahan penghubung yang paling utama untuk aplikasi 

elektronik berkuasa tinggi kerana keupayaannya untuk menahan suhu tinggi melebihi 250 

°C semasa beroperasi. Dalam tesis ini, evolusi strukturmikro bahan pelekat cip perak 

disinter tanpa tekanan telah dicirikan pada suhu pensinteran yang berbeza. Permukaan 

antara kepingan perak tersinter dan substrat tembaga diperiksa untuk untuk memahami 

faktor yang mempengaruhi kualiti ikatannya. Kepingan perak tersinter kemudiannya 

didedahkan kepada persekitaran menghakis untuk mengkaji kesan ion mengakis terhadap 

perubahan sifatnya. Pencirian strukturmikro dilakukan dengan menggunakan mikroskop 

elektron pengimbas pelepasan medan (FESEM), pancaran ion fokus (FIB) dan mikroskop 

transmisi elektron beresolusi tinggi (HRTEM). Analisis keadaan unsur dan kimia dilakukan 

melalui kaedah spektroskopi penyebaran tenaga (EDS), spektroskopi fotoelektron sinar-x 

(XPS) dan masa penerbangan spektrometri jisim ion sekunder (TOF-SIMS). Sifat mekanik 

diuji dengan menggunakan penguji dinamik kekerasanmikro dan kekonduksian elektrik 

diukur dengan menggunakan instrumen kesan medan. Hasilnya menunjukkan bahawa 

evolusi zarah sfera berlaku apabila kawasan sentuhan terbentuk, diikuti dengan 

pembentukan leher melalui resapan atom yang membawa kepada pembentukan rangkaian 

perak yang padat. Zarah nano yang terhasil pada kepingan perak mempercepatkan proses 

pensinteran dan ia mempunyai kecenderungan yang lebih tinggi untuk resapan zarah 

disebabkan oleh luas permukaan yang lebih besar berbanding dengan partikel sfera. Nilai 

kekonduksian didapati meningkat berbanding dengan partikel perak yang tidak disinter. 

Kepingan perak yang disinter pada 300 °C menunjukkan peningkatan dalam modulus anjal 

dan kekerasan berbanding dengan kepingan perak yang tidak disinter. Penyiasatan pada 

permukaan perak tersinter dan substrat tembaga menunjukkan berlakunya resapan antara 

muka selepas proses pensinteran. Walau bagaimanapun, pertumbuhan lapisan tembaga 

oksida pada permukaan perak-tembaga mendorong kesan negatif akibat pembentukan 

lompang dan pemisahan di permukaan tembaga dan tembaga oksida. Akhirnya, bukti 

kakisan pada perak tersinter diperhatikan selepas terdedah kepada persekitaran yang 

menghakis. Pemisahan pada permukaan  tembaga dan tembaga oksida menghasilkan titik 

lemah dan meningkatkan lagi kesan kakisan. Kakisan dan pemisahan akan mengakibatkan 

kegagalan produk kerana kekuatan mekanikal menjadi lemah pada sendi yang terhakis. 

Kesimpulannya, suhu pensinteran memainkan peranan yang penting dalam perubahan 

strukturmikro perak tersinter. Pengetahuan yang diperolehi daripada kajian ini akan 

memberi manfaat dalam penggunaan bahan pelekat cip perak tersinter tanpa tekanan dalam 

proses pembungkusan semikonduktor. 
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