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ABSTRACT

Manufacturing industry is now moving forward rapidly towards reconfigurability and
reliability to meet the hard-to-predict global business market, especially job-shop
production. However, even there is a proper planned schedule for production, and there is
also technique for scheduling in Reconfigurable Manufacturing System (RMS) but job-
shop production will always come out with errors and disruption due to complex and
uncertainty happening during the production process, hence fail to fulfill the due-date
requirements. This study proposes a generic control strategy for piloting the
implementation of a complex scheduling challenge in a RMS. This study is aimed to
formulate an optimization-based algorithm with simulation tool to reduce the throughput
time of complex RMS, which can comply with complex product allocations and flexible
routings of the system. Predictive-reactive strategy was investigated, in which Genetic
Algorithm (GA) and dispatching rules were used for predictive scheduling and reactivity
controls. This research also provided some results in combining the rule-based simulation
with optimization: first, a feasible schedule was computed and then fine-tuned with the
rule-based simulation system, then tested with RMS which is the reactive part. Simulation
experiments were run using different parameters to analyze the performance of the
proposed algorithm with the system. The results showed that the proposed optimization-
based algorithm had successfully reduce the throughput time of the system. In this case, the
effectiveness and reliability of RMS is increase by combining the simulation with the
optimization algorithm.
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ALGORITMA SIMULASI BERASASKAN PENGOPTIMUMAN UNTUK RAMALAN-
BERTINDAKBALAS PENJADUALAN BENGKEL-KERJA BAGI KONFIGURASI

SEMULA SISTEM PEMBUATAN

ABSTRAK

Industri pembuatan sedang menuju ke arah factor konfigurasi semula dan
kebolehpercayaan untuk mencapai pasaran perniagaan secara global yang sukar
diramalkan, terutamanya pengeluaran secara kerja bengkel. Walaupun jadual
pengeluaran telah pun dirancang dan juga teknik penjadualan bagi system pembuatan
konfigurasi semula telah dilaksanakan, namun terdapat juga masalah and gangguan yang
disebabkan oleh kerumitan dan ketidakpastian dalam process pengeluaran, oleh itu
sentiasa melebihi tempoh masa yang dituntukan. Kajian ini mencadangkan strategi
kawalan generik untuk merintis pelaksanaan cabaran penjadualan kompleks dalam RMS.
Kajian ini bertujuan untuk merumuskan algoritma berasaskan pengoptimuman dengan
alat simulasi untuk mengurangkan masa pemprosesan RMS kompleks, dan boleh mematuhi
peruntukan produk yang kompleks dan penghalaan yang fleksibel. Strategi ramalan-reaktif
telah dianaliskan, di mana Algoritma Genetik (GA) dan peraturan penghantaran
digunakan untuk penjadualan ramalan dan kawalan kereaktifan. Penyelidikan ini juga
memberikan keputusan dalam menggabungkan simulasi berasaskan peraturan dengan
pengoptimuman: yang pertama, jadual yang boleh dilaksanakan telah dikira dan
kemudian diperhalusi dengan sistem simulasi berasaskan peraturan, kemudian diuji
dengan RMS yang merupakan bahagian reaktif. Eksperimen simulasi dijalankan
menggunakan parameter yang berbeza untuk menganalisis prestasi algoritma yang
dicadangkan. Keputusan menunjukkan bahawa algoritma berasaskan pengoptimuman
yang dicadangkan telah berjaya mengurangkan masa pemprosesan sistem. Dalam kes ini,
keberkesanan dan kebolehpercayaan RMS meningkat dengan menggabungkan simulasi
dengan algoritma pengoptimuman.
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CHAPTER 1

INTRODUCTION

1.1 Background

The contemporary market continues to drive all kinds of companies and businesses,

particularly manufacturers, towards flexibility. However, the random input orders and non-

standardized manufacturing methods, along with the growing number of goods and

variations causes current manufacturing systems to become more complex (Asadzadeh,

2015; Niehues et al., 2015; Allahverdi et al., 2018). The complexity and limitations of

manufacturing processes causes the products throughput time has greatly increase and

unable to achieve due date requirements (Scholz-Reiter et al., 2015). Manufacturing

sectors are forced to handle demand fluctuations, rapidly adopt new products and order

changes to make sure that the products are finished a within specific time (Angkiriwang et

al., 2014).

The first moving assembly line which invented by Henry Ford was installed at the

Ford Highland Park plant in Michigan, the origin of notable inventions in manufacturing.

The Ford Windsor Engine Plant was designed and built in 1998–2000, which contains total

of 120 CNC machines which are arranged in a reconfigurable system architecture that

consists of 20 stages (6 machines per stage). Ford Motor Co. called this system as Flexible,

Reconfigurable Manufacturing System, where flexible is referred to the CNC machines in

this system can produce multiple product variants. Koren (2014) is the first who researched

on Reconfigurable Manufacturing System (RMS), and have proved that RMS is useful in

this situation. RMS can imbibe newer technologies in the production process and an
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optimally designed RMS has the capacity of DMS and functionality of FMS built into one

single system as shown in Figure 1.1 as below (Singh et al., 2017).

Figure 1.1 RMS dual functionality of dedicated manufacturing system and flexible
manufacturing system (Koren et.al., 2017).

RMS is quite common in recent research works, and most algorithms, dispatching

rules, and strategies have already been developed with RMS, but majority of studies in job

scheduling concentrate on static scheduling constraints and not consider dynamic factors

(Kundakci and Kulak, 2016). Conventional approaches suggest a high approximation of

real systems and are complex in formulation; indeed, due to the complexity of the large

number of variables and restrictions, most of the current algorithms do not give good result

in a reasonable time (Nehzati, 2012; Choi and Xirouchakis, 2015; Wan and Yan, 2015;

Niehues et al., 2016; Nasiri et al., 2017).

According to research, the predictive-reactive approach can adapted to rapid

changes of shop floor’s execution and provide a flexible schedule (Tang and Wang, 2008).

While since it is very difficult to perform optimization process analytically during such

complicated processes, simulation-based optimization is also useful in this scenario

(Korytkowski et al., 2013). On the other hand, scheduling and controlling with simulation-
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based optimization can increase the performance and efficiency of the output

manufacturing systems, provide easy and fast evaluation of new layouts and schedules

with direct production control (Fera et al., 2013; Doh et al., 2016; Leusin et al., 2018;

Niehues et al., 2018b).

Due to dynamic job-shop scheduling problems are NP-hard combinatorial

optimization problems, heuristic methods are useful for solving these types of problems

(Kundakci and Kulak, 2016). Hence, this research focuses on modelling the simulation

model for RMS that can provide versatility in system layout and product mix with flexible

routing and production sequence, which is especially useful during the mass customization

process in manufacturing industry.

The combination of simulation and optimization-based algorithm with the

predictive-reactive approach for scheduling of the RMS under various optimization

restrictions were studied through experiments. For the predictive part, the feasible schedule

for RMS job-shop is predicted and decided. Rule-based simulation and optimization is then

implemented into the schedule: first, a rough schedule was determined using optimization

algorithm, then rule-based simulation systems were used to refine the schedule to obtain

the most optimal results. For the reactive phase, the schedule obtained is adjusted and

validated by MONTRAC monorail system. The results obtained from the experiments is

compared and analysed to find out the effectivity of the proposed method structure,

algorithms and architecture.

1.2 Problem Statement

The RMS are getting more complex and facing more challenges due to the new

evolution of market demands, causing the processing time for a product has increased and

the products cannot complete on schedule, especially in job-shop productions (Allahverdi
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