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Abstract 

The manufacturing industry is now moving forward rapidly towards reconfigurability and reliability to meet the hard-to-

predict global business market, especially job-shop production. However, even if there is a properly planned schedule for 

production, and there is also a technique for scheduling in Reconfigurable Manufacturing System (RMS) but job-shop 

production will always come out with errors and disruption due to complex and uncertainty happening during the production 

process, hence fail to fulfil the due-date requirements. This study proposes a generic control strategy for piloting the 

implementation of a complex scheduling challenge in an RMS. This study is aimed to formulate an optimization-based 

algorithm with a simulation tool to reduce the throughput time of complex RMS, which can comply with complex product 

allocations and flexible routings of the system. The predictive-reactive strategy was investigated, in which Genetic Algorithm 

(GA) and dispatching rules were used for predictive scheduling and reactivity controls. The results showed that the proposed 

optimization-based algorithm had successfully reduced the throughput time of the system. In this case, the effectiveness and 

reliability of RMS are increased by combining the simulation with the optimization algorithm. 
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1. Introduction 

The contemporary market continues to drive all kinds 

of companies and businesses, particularly manufacturers, 

towards flexibility. The control of today's production 

systems is becoming more complex due to an increasing 

number of product variants, short-time delivery 

requirements and non-standardized production 

processes.[1], [2], [3]. The complexity and limitations of 

production processes cause the products throughput time 

has greatly increased and unable to achieve due date 

requirements [4]. Manufacturing sectors are forced to 

handle demand fluctuations, rapidly adopt new products 

and order changes to make sure that the products are 

finished within a specific time [5]. 

Reconfigurable Manufacturing Systems (RMS) are 

primarily designed for rapid change in their structure [6], 

to quickly adjust their production capacity and 

functionality, within a part family, in response to market 

changes [7]. Cost, product quality, and market reactivity 

are the three primary aims of any production system. 

Designing manufacturing systems with 

upgradable capacity and adaptable functionality enables 

responsiveness. The benefits of RMS are highlighted when 

compared to Dedicated Manufacturing Systems (DMS) & 

Flexible Manufacturing Systems (FMS) [8] from the 

standpoint of these objectives [6]. 

Reconfigurable Manufacturing Systems (RMS) has 

been quite common in recent research works, and most 

algorithms, dispatching rules, and strategies have already 

been developed. However, there is no clear framework or 

specific strategy developed to get these systems reliable 

and easy to control [9], [5]. The majority of studies in job 

scheduling concentrate on static scheduling constraints and 

do not consider dynamic factors [10]. Conventional 

approaches suggest a high approximation of real systems 

and are complex in the formulation; indeed, due to the 

complexity of a large number of variables and restrictions, 

most of the current algorithms do not give good results in a 

reasonable time [11], [12], [13], [14], [15].  

The predictive-reactive approach can adapt to rapid 

changes in the shop floor’s execution and provide a 

flexible schedule [16]. It is very difficult to perform 

optimization processes analytically during such 

complicated processes, hence simulation-based 

optimization is useful [17]. On the other hand, scheduling 

and controlling with simulation-based optimization can 

increase the performance and efficiency of the 

manufacturing systems, and provide an easy and fast 

evaluation of new layouts and schedules with direct 

production control [18], [19], [20], [21]. 

* Corresponding author e-mail: azrulazwan@utem.edu.my. 
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 Due to dynamic job shop scheduling problems being 

Non-deterministic Polynomial-time – hard (NP-hard) 

combinatorial optimization problems, heuristic methods 

are useful for solving these types of problems [10]. Hence, 

this research focused on modelling the simulation model 

for RMS that can provide versatility in system layout and 

product mix with flexible routing and production 

sequence. The optimization framework was developed 

based on the model schedule [22], [23]. In this research, 

the combination of simulation and optimization-based 

algorithms for scheduling the RMS under various 

optimization restrictions was studied. For the predictive 

part, the feasible schedule for the RMS flow shop was 

predicted and decided. Rule-based simulation and 

optimization are then implemented into the schedule: first, 

a rough schedule was determined using an optimization 

algorithm, and then rule-based simulation systems were 

used to refine the schedule to obtain the most optimal 

results. For the reactive phase, the schedule obtained was 

adjusted and validated by the real-life system.  

The application of GA with the dispatching rules can 

effectively optimize a manufacturing system providing 

engineers with the needed flexibility and control in the 

industry 4.0 context. The result obtained can be considered 

an important contribution to the research community in the 

field of industrial Engineering and smart manufacturing 

systems.  

2. Literature review 

Literature reviews for several papers regarding the 

different topics which are related to this study are 

summarized into two categories, which are state-of-the-art 

research and state-of-the-art implementation. All the 

summarized papers are research articles for the most recent 

five years from now (2016 – 2020) and are applied in the 

field of manufacturing.  

Among all these papers related to the simulation field, 

including the objectives, application of the simulation 

process and research results, it can be summarized that 

majority of the simulation process is carried out for 

experiments purposes in a simple production system 

without considering the dynamic aspects of the 

manufacturing systems. However, time becoming one of 

the most common objectives in research and simulations 

also proved to obtain satisfactory results in those 

experiments. 

Besides, some papers were studied on several methods 

to solve related manufacturing problems with evolutionary 

algorithms, together with the technique chosen, objectives 

functions, application, and future study. The majority of 

the study had shown that the genetic algorithm is the most 

popular technique used in the study, but not the basic 

Genetic Algorithm (GA). The GA is integrated with other 

heuristics or methods for experiment purposes. Moreover, 

the objectives functions are majority based on time, and 

suggestions for future studies are more to adapting the 

proposed algorithm or strategy in different situations or on 

different objectives. However, there is still a lack of 

research on the parameters for GA used in experiments on 

simulation optimization problems, and also a lack of 

studies focusing on RMS which included dynamic aspects 

and focus on complex routings and product mix. 

Besides, according to Doh et al. [19], previous research 

on the topic of flexible job shop scheduling can be divided 

into two categories: single process plans with only 

alternative machines and multiple process plans with both 

alternative operations and machines. The reconfigurable 

job-shop scheduling problem consider in this study has a 

significant difference compared to previous studies in 

terms of the system’s operational characteristics. Part of 

the difference includes, the number of transportation 

equipment is limited, the component input sequencing 

considered, and the material flow in the system is 

considered based on the flexible routing and the machines 

for a specific operation. 

2.1. State-of-the-art Research 

The papers that emphasized proposal, investigation, 

analysis and study of specific processes in manufacturing 

systems to establish facts and reach new conclusions are 

classified into this section. The papers are divided into 

different fields based on the research. 

2.1.1. Simulation and Optimization 

 In the simulation research area, Mourtzis [24] had 

done a review focused on scholarly peer-reviewed journals 

that use modelling in manufacturing-related fields over 58 

years. The exponential growth in publications on the 

subject reveals the ever-increasing importance of 

simulation in manufacturing. To estimate the total amount 

of relevant work, a search in the Scopus database using the 

keywords (a) simulation in manufacturing and (b) 

simulation in the design and operation of manufacturing 

systems was conducted to get the exact quantity of the 

total related work. The first search yielded more than 

23,000 publications, while the second yielded more than 

10,000. As a result, simulation is an ever-increasing part of 

manufacturing that can help with a variety of issues.  

Figure 1 depicts the progression of research on this 

subject over time, with research findings classified from 

1970 until today. More precisely, the results of this study 

show that there has been a significant rise in simulation-

related publications over the last decade. Hence, there is 

still space for further research and development in this 

area. 

In recent 5 years from 2016 - 2021, several publications 

mentioned and emphasized the simulation tool analysis. 

Siderska [25] analysed a single nail production line by 

introducing the construction of a simulation model for 

production and logistic processes conditions using 

Tecnomatix Plant Simulation and successfully proved that 

Tecnomatix Plant Simulation is an effective IT tool for 

increasing the efficiency of the existing system, optimizing 

resource consumption, limiting stocks and shortening the 

production time. Yann et al. [26] aimed to optimize the 

production control system in product customization 

manufacturing environments by generating and tested on 

four models with different generic routings with a sample 

of data from an industrial case using the software Work in 

Progress Simulation (WIPSIM). The author concluded that 

the proposed models generated worthwhile generic 

routings and help manufacturers to make decisions based 

on their product customization-specific context. 
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Figure 1. Number of publications based on Scopus database score [19]. 

For using simulation for solving scheduling problems, 

Doh et al. [19] researched simulating the scheduling 

problem in a flexible job shop. The flexible job shop is 

equipped with a conventional job shop and a 

reconfigurable manufacturing cell, with the objectives, 

fixed on minimizing makespan, mean flow time and mean 

tardiness, and the best rule combinations were identified 

for each of the three performance measures. Nasiri et al. 

[15] developed a simulation-based real-time scheduling 

composite dispatching rule approach in open job shop 

scheduling to minimize the mean waiting time of jobs, 

resulting in the optimal composite dispatching rule 

dominating the known dispatching rules. Xiong et al. [27] 

had done a simulation-based analysis of dispatching rules 

for scheduling in a dynamic job shop with batch release to 

minimize the total tardiness and the percentage of tardy 

jobs. The four new proposed dispatching rules effectively 

minimise the tardiness of jobs and the relative performance 

of dispatching rules can be affected by some model 

parameters. Lin et al. [28] carried out experiments and 

comparisons of statistical tests for several search methods 

for Automated Guided Vehicle (AGV) and machines in 

Flexible Manufacturing Systems (FMS) to evaluate the 

performance of scheduling decisions by proposing a 

simulation-based optimization to address the simultaneous 

scheduling of vehicles and machines. The proposed 

method successfully enhanced solution quality and search 

efficiency. 

2.1.2. Algorithms and Heuristics 

 

The research involving the development of algorithm 

or heuristics were popular in these 5 years from 2016 – 

2021, and most of them used simulation to validate the 

algorithms. Few papers use the GA approach together with 

other techniques for investigation. Kundakci and Kulak 

[10] proposed a GA, a new Karmarkar-Karp (KK) 

heuristic and dispatching rules to approach solving job-

shop scheduling problems with dynamic events to 

minimize the makespan. The authors wish to apply to 

different environments and use different performance 

measures for further study. Deng et al. [29] conducted 

experiments and compared the proposed Bee Evolutionary 

Guiding Nondominated Sorting Genetic Algorithm II 

(BEG-NSGA-II) with benchmark problems to minimize 

the maximal completion time, the workload of the most 

loaded machine, and the total workload of all machines. 

However, this study did not concentrate on dynamic and 

real-time scheduling problems. Piroozfard et al. [30] had 

proposes an improved multi-objective evolutionary 

algorithm with GA for solving the newly extended bi-

objective problem with considerations of environmental 

objectives, which is to minimize the total carbon footprint 

and total late work criterion. In future, the author would 

like to consider other scheduling criteria, objectives and 

heuristics approach. Lin et al. [28] proposed a Local search 

Genetic Algorithm Optimal computing budget allocation 

(L-GAOCBA) algorithm to address the simultaneous 

scheduling of vehicles and machines in FMS to evaluate 

the performance of scheduling decisions including 

stochastic elements, such as vehicle congestion, deadlock, 

and uncertain processing time, and decided to consider 

multi-objectives in future. Zan et al. [31] proposed a new 

Pareto-based GA for solving the multi-objective 

scheduling problem of deadlock-prone Automated 

Manufacturing Systems (AMSs) with limited resource 

capacity, aimed to optimize makespan, mean of earliness 

and tardiness, and mean completion time. Sivarat and 

Apichat [32] develop the simulation-optimization 

approach using artificial neural networks and GA to 

support observational data-driven manufacturing capacity 

planning for Small and Medium-sized Enterprises (SMEs) 

by reducing the amount of work involved in the 

exploitation of the data.  

There were also some papers which used techniques 

other than GA, and the majority of the research was 

focused on time as an objective. Valledor et al. [33] 

proposed a rescheduling architecture for solving the 

problem based on a predictive-reactive strategy and a new 

method to calculate the reactive schedule in each 

rescheduling period to evaluate the dispatching rules for 

analysis of makespan, total weighted tardiness and 

stability. The result proved that the random rule provides 

better behaviour compared to other evaluated rules and a 

lower ratio of non-dominated solutions compared to 

Apparent Tardiness Cost (ATC) and First-in-first-out 
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(FIFO) rules, however, this approach could be tested in a 

dynamic system in future. Touzout and Benyoucef [34] 

aimed to reduce the total production cost, total completion 

time and maximum exploitation time by proposing and 

comparing three hybrid heuristics which are the Repetitive 

Single-Unit Process Plan (RSUPP) heuristic, Iterated 

Local Search on Single-Unit Process Plans heuristic 

(LSSUPP) and Archive-Based Iterated Local Search 

heuristic (ABILS) using the generated numerical results in 

RMS. The author would like to compare and analyse other 

local search-based metaheuristics with RMS. Zheng and 

Jin [35] proposed an improved Back and Forth Nudging 

algorithm (IBFN) to use in single-machine lot scheduling 

problems of indivisible jobs for minimizing the total 

completion time of jobs. However, the proposed algorithm 

required enhancements in future. Amir et al. [36] created a 

metamodel to replace the simulation experiments aimed at 

reducing the computation and test the proposed method on 

Stochastic Job Shop Scheduling Problem (SJSSP) by 

presenting a new Evolutionary Learning Based Simulation 

Optimization (ELBSO) method embedded within the 

Ordinal Optimization using Genetic Programming (GP). 

The author wanted to apply this improved method in 

solving existing production planning and scheduling 

problem. Gheisariha et al. [32] proposed an enhanced 

multi-objective algorithm which is the Enhanced Multi-

Objective Harmony Search (EMOHS) algorithm and a 

Gaussian mutation. [32] also designed a simulation-

optimization framework for implementing the rework 

process and compare the algorithm with the well-known 5 

types of algorithms for minimizing both maximum 

completion time and mean tardiness.  

2.2. State-of-the-art Implementation 

The papers that emphasized the realization of an 

application, execution of algorithms and model, are 

classified into this section. The papers are divided into 

different fields based on the papers. 

2.2.1. Simulation and Optimization 

 

The studies that were mainly based on the 

implementation of the simulation process into real industry 

cases were included by experimenting and analysing the 

results generated. Niehues et al. [14] proposed a WIP 

regulating method for production control for job-shop 

productions in the automotive industry to reduce the 

impacts of control activities on orders by experimenting 

with the production system. The results shown in the 

simulation model demonstrated the suitability and 

effectiveness of production control in manual job-shop 

production systems. Kuck et al. [38] proposed an adaptive 

simulation-based optimization approach for individual 

selection of dispatching rules in production control by 

conducting experiments on a scenario from the 

semiconductor industry which resulted in improved 

solution quality at the beginning of the optimization 

process (local optimum), but not very good in global 

optimum. Wang et al. [39] analysed a semiconductor 

packaging facility for enhancement of the sustainability of 

a factory simulation model by proposing five strategies, 

while the result proved that the three strategies proposed 

successfully reduced the requirement of money, time, and 

effort in building the factory simulation model. However, 

the sustainability of a simulation model is still uncertain 

for several years after it is built. Grabowik et al. [40] 

analysed a single-car manufacturing line to examine 

production efficiency based on a few proposed changes in 

system organization. The author declared that simulation is 

useful in checking different models of organizational 

solutions and following the long-term behaviour of the 

system simply and effectively. 

2.2.2. Algorithms and Heuristics 

 

There are only several papers that implemented the 

algorithms, especially GA into the real situation system. 

Niehues et al. [21] proposed a new approach in sequence 

scheduling for a job shop control system and verify its 

effectiveness through simulation with Tecnomatix Plant 

Simulation and MATLAB using GA. The author aimed to 

improve the adherence to delivery dates was fulfilled by 

improving due date compliance. Sobottka et al. [41] 

developed a hybrid simulation optimization module for use 

in a novel production optimization tool using GA in a food 

processing facility by considering the material flow and 

thermal-physical behaviour for the improvement of the 

energy efficiency of the production system.  Wang et al. 

[42] proposed a two-stage energy-saving optimization 

method for Flexible Job Shop Scheduling Problem 

(FJSSP) in the metal-production industry using GA and 

Particle Swarm Optimization (PSO) to reduce energy 

consumption and production cost. The author would like to 

integrate the proposed method with big data technology in 

future studies. 

All these studies concluded that in the literature, there 

is still a gap between the flexibility of the system and the 

complexity of the product mix and intelligence decision-

making in optimized results, considering the design 

complexity of the manufacturing system which can be 

implemented into the dynamic condition. Besides, the 

majority of the research is taking makespan or completion 

time as objectives. Hence, makespan become the most 

common performance measure to be studied among the 

others. This lead gave proper direction to the 

experimentation part of this research paper.  

3. Method 

To close the gap, an integration approach is proposed. 

The combination of simulation and optimization-based 

algorithms with the predictive-reactive approach for 

scheduling the RMS under various optimization 

restrictions was studied through experiments. For the 

predictive part, the feasible schedule for the RMS job shop 

is predicted and decided. Rule-based simulation and 

optimization are then implemented into the schedule: first, 

a rough schedule was determined using an optimization 

algorithm, and then rule-based simulation systems were 

used to refine the schedule to obtain the most optimal 

results. For the reactive phase, the schedule obtained is 

adjusted and validated by the MONTRAC monorail 

system. The results obtained from the experiments are 

compared and analysed to find out the effectiveness of the 

proposed method structure, algorithms and architecture. 
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3.1. Real System 

This research is using MONTRAC, manufactured by 

the company MONTRACTEC GmbH, Germany as an 

example. This system is a modular monorail system that 

allows the interlink of production processes between 

robots and workplaces more flexibly. Pioneering medical 

institutions and manufacturing firms in automobile, 

chemicals, household products, optics, food, medicinal and 

pharmaceutical markets using this system to increase their 

product throughput and reduce cycle times. In conjunction 

with this system, the MONTRAC shuttles are the main 

components of the MONTRAC system, which are 

intelligent single or twin-axle conveyors mounted with an 

onboard power supply. The shuttles are moving self-

centred on the monorail, fitted with state-of-the-art sensors 

that avoid possible collisions with barriers or other 

shuttles. Each shuttle is operated by an axle-located, 

maintenance-free, low-voltage engine. Shuttle velocity and 

stopping positions are defined by cams on the T-grooves 

along the track [43]. 

Figure 2 shows the schematic illustration of the 

MONTRAC system. The real system’s structure is 

modelled using Tecnomatix Plant Simulation V12 and 

consists of rails, buffers and workstations. Firstly, parts 

will be loaded into the system, transported by rail-guided 

vehicles and unloaded in buffers near workstations for 

further processing. After the specific process had been 

done at the workstation, the product will be loaded in 

another buffer and waiting for pick up by the rail-guided 

vehicles again to transport further. After the product had 

finished all the operations, the product will be unloaded at 

the final buffer for further processing. 

3.2. Computer Simulation Software 

The real system is modelled using computer simulation 

software which is Tecnomatix Plant Simulation V12 by 

Siemens. Tecnomatix Plant Simulation is an object-

oriented 3D program founded by German company 

Siemens PLM Software, the leading global supplier of 

software for Product Lifecycle Management (PLM) and 

Manufacturing Operations Management (MOM), which 

specifically designed for discrete production simulation 

process and modelling into a digital model. The models 

built in the Plant Simulation can be run by experiments 

and scenarios for analysis of causes and effects in the 

current production systems or the newly designed systems 

without disturbing the working process of production 

systems. Plant simulation is provided with well-developed 

analytical tools that promote the analysis of a system's 

bottlenecks, together with the illustration of diagrams and 

statistic configurations, and even can import 3D 

geometrical models from CAD systems, visualise the 

entire manufacturing system including workstations and 

transportations [25], [40]. 

 

Job Shop Scheduling Problem 

 

In this study, the job shop scheduling problem is 

described as a set of n jobs, Ji where i = 1, 2, . . ., n which 

are going to operate on a set of m machines, Mk where k = 

1, 2, . . ., m. Every single job contains a set of operations, 

each of which needs to be processed during an 

uninterrupted period of a given length on a given machine. 

Operation of the ith job on the kth machine will be denoted 

by Oik. There are several constraints and assumptions set 

on jobs and machines as follows [44], [45], [1]. 

1. The job release dates are time T = 0. 

2. All the machines are available at time T = 0. 

3. The number of machines and jobs is finite and constant 

in time (with respect to their characteristics). 

4. The machine breakdowns and the setup times are 

statistically included in the processing times. 

5. Each machine can process only one operation at a time 

and each job can be processed by only one machine at a 

time. 

6. Once a job begins processing, it cannot be interrupted 

until it is completed, and no precedence constraints 

exist among jobs. 

7. The due dates are specified. 

8. The time to put the parts on or to take them off the 

material handling vehicles is negligible. 

 
Figure 2. Schematic MONTRAC monorail material handling system 
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3.2.1. Scheduling Procedure 

Before the scheduling process starts, there are some 

parameters required to be decided, such as the objective 

functions. The selection of objective function is decided by 

the industry itself, while in this study, the results will be 

reported for the objectives of minimizing the makespan 

denoted by Cmax which is defined as the time when the 

last job leaves the system: 

Cmax = max (C1, C2, …, Cmax)                           (1) 

where Ci is the completion time of the job, Ji.  

Besides objective functions, the initial data and some 

related settings are required to be provided in the model, 

including the schedules of the workstations, speed of 

transporters, the number of parts to be entered into the 

system etc. The schedules provided then undergo process 

simulation, together with the application of optimization 

methods including priority dispatching rules and GA to 

obtain an optimized solution.  

The reconfigurable job shop considered in this study 

has both operations and routing flexibilities, which can be 

interpreted in the form of a multiple-process plan, for 

example, each component can be processed through 

alternative machines, and each component can be 

transported through alternative routes. The scheduling 

problem contained three decision variables: (a) selection of 

operation machines for each part; (b) sequencing of parts 

to be entered into the RMS, and (c) routing of the parts 

transported to each machine. These three decisions are 

made at the same time by combining operation machine 

selection rules, input sequencing rules and part sequencing 

rules with genetic algorithm. The rules combination 

performances will be tested through simulation 

experiments, where the dispatching rules that are 

considered in this study as recommended by Zeestraten 

[46] are shown in Table 1. 

After achieving a suitable schedule, the simulation is 

run with the logging option activated to obtain logs that are 

used to control the real system. The logs obtained contains 

information including the start and stop of processing time 

at every station, all transportation activities, and the 

sequence of products and paths for every part. During the 

control stage of the real system, rescheduling requests 

might be triggered due to disturbances such as station 

failure, planned maintenance or sudden changes in order. 

Therefore, the reactive loop represents the transfer of 

system status information to the model and the reactivation 

of the scheduling procedure with new inputs. The 

scheduling procedure is illustrated in Figure 3. 

Table 1. The dispatching rules that have been considered for 

optimization purposes in the model. 

Dispatching rule Explanation 

Earliest Due Date (EDD) Select the job that has the earliest 

due date first. 

First Come First Served 

(FCFS) 

Select the operation that is 

available first. 

Shortest Processing Time 

(SPT) 

Select the job that has the shortest 

processing time of the first process. 

Longest Processing Time 

(LPT) 

Select the job that has the longest 

processing time of the first process. 

Fewest Operations Remaining 

(FOPR) 

Select the job that has the smallest 

number of successive operations. 

Most Operations Remaining 

(MOPR) 

Select the job that has the largest 

number of successive operations. 

Shortest Remaining 

Processing Time (SRPT) 

Select the job that has the shortest 

sum of processing times 

Longest Remaining 

Processing Time (LRPT) 

Select the operation that has the 

longest sum of processing times. 

 

 

Figure 3: Algorithm of scheduling procedure. 
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3.3. Construction of Feasible Schedule 

A schedule defines the execution sequence of all 

operations for all jobs on machines [47]. Before the 

simulation process begins, several feasible schedules are 

required as primary input data for the construction of the 

simulation model. In this study, these feasible schedules 

are built with a predictive approach, which included the 

process plan for every type of product, the time schedule 

that specified the durations of every operation, the 

workstation’s plan that indicated which type of process to 

be operated and also the due date schedule together with 

the quantity required for the customers. 

3.3.1. Process Plan 

A process schedule is constructed for the process 

sequence required to be done for each product type as 

illustrated in Table 2.  

There is a total of 10 types of product types and each of 

the product types has different process sequences. In this 

study, a maximum of 5 processes for each product type 

will be considered, but the simulation model is built to fit a 

maximum of 9 processes for each product type to reach the 

dynamic aspects of market requirements.  

The sequence of each product type can also be decided 

whether or not to follow the sequences during the 

operations. In this case, the schedule had been set to follow 

the partial order, where the product that set to keep the 

process sequence for all product types except product Type 

_6, Type_7 and Type_8, which means that these product 

types can proceed to any operations first depends on the 

system. 

Table 2. The process plan for every product type. 

Name Keep 

Sequence 

1st 

Process 

2nd 

Process 

3rd 

Process 

4th 

Process 

5th 

Process 

Type_1 true Proc_1 Proc_3 Proc_4   

Type_2 true Proc_2 Proc_5 Proc_1 Proc_4  

Type_3 true Proc_5 Proc_2 Proc_4 Proc_3  

Type_4 true Proc_3 Proc_4 Proc_5 Proc_1 Proc_2 

Type_5 true Proc_2 Proc_4 Proc_3 Proc_1  

Type_6 false Proc_2 Proc_3 Proc_4   

Type_7 false Proc_1 Proc_4 Proc_5   

Type_8 false Proc_2 Proc_4    

Type_9 true Proc_5 Proc_3 Proc_1   

Type_10 true Proc_2 Proc_3 Proc_5   

3.3.2. Workplace Operation Time Schedule 

There is a total of 4 workplaces or stations to be 

included in the system in this study, which are given the 

names H1, H2, H3 and H4. Each workstation has a 

specific operation time schedule that indicates different 

operations with different processing times. Each 

workstation is also fixed with a different type of process, 

and in this study, the maximum amount of operation to be 

done in a specific workstation is fixed with 2 types of 

operations. Table 3 shows the time needed for every 

operation (Proc_1, Proc_2, Proc_3, Proc_4) based on the 

product type (Type_ 1 to Type_10), and also the 

workstations that are eligible to carry out the specific 

process. 

Table 3. The workplace operation time schedule for every product type. 

 H1 H2 H3 H4 

Proc_1 (s) Proc_1 (s) Proc_2 (s) Proc_3 (s) Proc_5 (s) Proc_4 (s) Proc_5 s) 

Type_1 1200 1200 - 1800 - 420 - 

Type_2 1500 1500 900 - 240 600 240 

Type_3 - - 660 510 420 735 420 

Type_4 180 180 120 300 210 135 210 

Type_5 1830 1830 1200 915 - 495 - 

Type_6 - - 600 720 - 1200 - 

Type_7 600 600 - - 600 900 600 

Type_8 - - 840 - - 1500 - 

Type_9 1080 1080 - 480 1200 - 1200 

Type_10 - - 2100 660 600 - 600 
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3.3.3. Due Date Schedule 

Different product has different quantity and due date to 

meet customers’ requirements, therefore due date schedule 

is constructed with the desired amount of product and the 

due date as well, as shown in Table 4.  

Table 4: The due date schedule for every product type. 

Product Name Qty (unit) Due Date (date, time) 

Type_1 5 01.12.21, 13:10 

Type_2 10 01.12.21, 11:35 

Type_3 12 02.12.21, 10:55 

Type_4 4 01.12.21, 14:55 

Type_5 8 02.12.21, 16:15 

Type_6 10 01.12.21, 11:40 

Type_7 3 01.12.21, 09:40 

Type_8 6 01.12.21, 20:40 

Type_9 15 02.12.21, 11:40 

Type_10 2 01.12.21, 18:40 

The due date is written in the format of the date 

(dd.mm.yy), then followed by the time. All the products 

have to be finished before the due date with the specific 

amounts, for example, Type_1 product is required to 

produce 5 quantities before the 1st of December 2021, 

1.10 pm. 

3.4. Construction of Simulation Model 

The simulation model is built to represent the real 

system, including the position of the buffers and 

workstations. There is a total of 11 buffers, 6 rail-guided 

vehicles and 4 workstations included. The model is built 

with high flexibility where the layout and the position of 

buffers and workstations can be modified or added easily. 

The construction of a simulation model is mainly divided 

into two categories, one is for controlling the simulation 

process of the model and the other one is for the 

preparation of necessary input data for the simulation 

process. 

3.4.1. Path Generations 

The most important methods in this model are the path 

generations method, which indicated the generations of the 

products’ paths along the whole system. Every path 

generated consists of a sequence of objects including 

tracks, buffers and workstations, which implies the process 

plan and allocation. This method written aimed to obtain 

all the information regarding all the possible transportation 

routes for every single job and product type intelligently 

without needing to enter the information manually into the 

settings for the optimization process. This method also 

acted as preparation for the process of population 

initialization and evaluation required for the GA. All the 

output generated from this method is stored in a table 

named “PathsTable”. 

The path generations are started with product type by 

generating a sequence of processes with the permutation 

method. After that, for every sequence of processes, a 

sequence of workstations is created. The concept of 

generations of all these outputs is by checking every 

station table to ensure whether the specific stations provide 

the process. After all possible station sequences are 

generated, then search for paths beings. The method 

follows the tracks from one station to the next station until 

all possible ways are discovered. The application of 

complexity level is also included in this method by 

eliminating long paths and keeping the shorter paths. 

3.4.1.1. Permutation 

Especially when a product is not necessary to strictly 

follow the process plan, possible sequences of processes 

are generated through this method. This method is 

programmed to receive a string of characters and return a 

list of permuted strings. The algorithm of this method is 

illustrated in Figure 4 by taking characters 1, 2, 3, and 4 as 

an example. 

 
Figure 4. Permutation algorithm illustration. 

The algorithm of permutation started with the last 

character selected which is 4. Then, the preceding 

character 3 is inserted into every available position, which 

is before and after 4. This resulted in two strings as shown 

in stages 1, that is 34 and 43. After this stage, the same 

procedure continues with inserting the next character into 

every string. Taking the first string 34 as an example, 

character 2 is inserted before, between and after characters 

3 and 4 respectively, thus the result obtained are 234, 324 

and 342. The action is performed until the first character is 

inserted into all strings. The total number of obtained 

permuted strings is N! where N is the number of 

characters. For this given example, the total number of 

obtained permuted strings is 24. 

3.5. GA Setup and Control 

In this study, GA is used to find the optimum solution 

by choosing one of the paths for each instance of a 

product, combining all products in different sequences and 

running simulations to assess their objective function 

values. The GA in this model is run by an object named 

“GAV12V” which is a frame that contains a lot of methods 

and other objects that are used to control the GA 

optimization process. GAWizard provided some settings 

or options related to the GA process for the user to choose 

and enter manually, and most of these settings are 

transferred with a method named “SetGA” between the 

user interface dialogue and the wizard.  

The GA process run by GAWizard which is a user 

interface created by the author in the simulation software 

program and is divided into a few steps, which involved 
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the definition of chromosomes in the initial population, the 

selection of parent’s chromosomes, and the generation of 

offspring chromosomes. The process of GA will be 

terminated when there is no improvement in the fitness 

value of the best individual during N generations. The 

termination of the GA process will also be triggered when 

the set time limit had reached. 

3.5.1. Initialization of the Population of Chromosomes 

The GA is started by defining chromosomes, each 

chromosome stands for one entity with its respective work 

order number. Every chromosome encodes with a 

sequence of operations. In the generation of the initial 

population, each chromosome is initialized by following 

the entity arrangement in “Release_List” where the entities 

are generated in random sequences. Table 5 shows the 

example of chromosome representation for a population of 

chromosomes generated at random.   

There are a total of 75 entities to be processed, 

therefore the chromosomes generated for each generation 

and each individual will be a total of 75 chromosomes. 

The generation of chromosome populations are depending 

on the size of the generations and the number of 

generations. For example, if the generation size is set to 

10, then 10 genes or 10 individuals will be generated with 

75 chromosomes with random path variants and random 

entity sequences. If the number of generations is set to 5, 

then the 10 genes and individuals generated with the 75 

chromosomes will be created until 5 generations. During a 

generation process, the genetic operator’s processes will be 

performed on chromosomes to obtain better solutions. 

Table 5: Example of a population of chromosome representation 

based on product type and work order number. 

Chromosome 1 2 3 4 5 6 7 8 9 10 

Work order number 

(Entity) 

10 51 26 67 29 55 43 28 3 56 

Part Type 2 7 3 9 4 8 6 4 1 8 

3.5.2. Selection 

Before the genetic operators are performed, GA will 

authorize a population composed of a large number of 

individuals to evolve under specified selection rules to a 

state that maximizes the fitness value. The fitness of an 

algorithm is a measure of how effectively it has learned to 

anticipate outputs from inputs. A fitness evaluation aims to 

provide information to the learning algorithm on which 

individuals should be allowed to multiply and reproduce 

and which should be eliminated from the population [48]. 

In this case, the process of selection is done by Roulette 

Wheel selection to select the parents. According to Kofjač 

and Kljajić [49], the Roulette Wheel selection method is 

the most common method used in GA selection. The 

Roulette Wheel selection is depending on the fitness 

values assigned to the chromosomes by fitness functions, 

while the fitness value is used to relate the possibility of 

selection with each chromosome. The probability of being 

selected is denoted as: 

𝐏𝐢 =
𝐟𝐢

∑ 𝐟𝐣
𝐧
𝐣=𝟏

 (2) 

where fi is the fitness of an individual i in the 

population, n is the number of individuals in the 

population and j is the job. 

In GAWizard, the parent selection settings can be 

chosen either deterministic or random. If the option 

“deterministic” is chosen, then the parents will be selected 

randomly according to their fitness values with roulette 

wheel selection, and individuals with good fitness values 

will be used more often as parents for creating the next 

generation. However, individuals with bad fitness values 

also have a chance to be used as parents. While for the 

“random” option, the fitness values are not used and all 

individuals are having the same likelihood to be used as 

parents.  

In this model, the option deterministic is chosen and the 

fitness value is to be set as minimized since the objective 

function is to minimize the makespan. After a specific 

number of individuals had been generated based on the 

generation size, GA will calculate the fitness value for all 

the individuals, and the individuals with the best fitness 

value will be selected as parents for further processes. 

3.5.3. Crossover 

The crossover mechanism is a random process with a 

probability of crossover and is used to create a new 

generation of a pair of children's chromosomes from a pair 

of parent chromosomes via the crossover operation. The 

crossover operator's average probability ranged between 

0.6 and 1.0 [50]. In this model, the crossover processes are 

done randomly between 75 entities in every generation. 

There are two types of crossover processes generated by 

GAWizard, which are order crossover (OX) and partially 

matched crossover (PMX). OX crossover preserves the 

relative position or neighbour relation of the items of the 

solution to each other, while PMX crossover stresses the 

absolute position of the objects. The crossover algorithm 

for OX crossover and PMX crossover is illustrated in 

Figures 5 and 6 respectively. 

 
Figure 5.  Example of OX crossover between two parents and two children. 
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For OX crossover, two parents and two offspring are 

considered as an example. Firstly, the genes (1 5 6) are 

copied from Parent 1 to Child 1 and located outside the 

crossover section following Parent 1’s sequences, while 

genes (5 6 1) are duplicated from Parent 2 to Child 2 with 

the same order and location. The gene position inside the 

crossover section for both Child 1 and Child 2 will remain 

empty. The missing genes gap in both children is filled by 

duplicating the genes from the crossover section from both 

parents in opposite manner, which means that the genes (2 

3 4) from Parent 1 will be duplicated to place in the 

crossover section in Child 2, while the genes (4 2 3) from 

Parent 2 will be duplicated to locate in crossover section in 

Child 1. 

For PMX crossover, the first step is the same as in OX 

crossover where the genes outside the crossover section in 

both parents will be copied and placed in both children to 

the gene’s original position and sequence. However, the 

genes in the crossover section in both parents will not be 

duplicated to the children in the opposite manner and 

followed the sequences during the process. To produce a 

feasible schedule, the gap in each child must be filled with 

the missing genes by taking in order each valid gene from 

the parent. For example, the genes (2 3 4) in Parent 1 are 

used to fill the crossover section gap in Child 1 while the 

genes (4 2 3) in Parent 2 are used to fill the crossover 

section gap in Child 2 but the sequences are different from 

the original sequences of the genes in parent’s generation.  

3.5.4. Mutation 

After the crossover process is done, the mutation 

process will follow. The mutation process is crucial to the 

GA’s success because it diversifies the search directions 

and prevents convergence to local optima. This process 

has only involved some offspring randomly. The size is 

decided by the probability of mutation which the value is 

typically between 0.0015 and 0.03 [48]. The mutation rate 

is calculated as: 

𝐏𝐦 = 𝟏 −
𝐟𝐛𝐞𝐬𝐭

𝐟𝐜𝐡𝐢𝐥𝐝

 (3) 

where fbest is the fitness function value of the 

chromosome that has yielded the best result, while fchild is 

the fitness function value of the child that requires 

mutation. The chromosome with the fitness value closer to 

the fbest would have a lower pm than the one with a fitness 

value closer to the worst value [49]. 

In this model, the mutation operations are done 

randomly between 75 entities in every generation. The 

mutation process is taking part in the allocation task by 

swapping the locations of genes that were chosen 

randomly to produce a feasible solution, or by determining 

a value from the allocation set or chosen from the defined 

interval randomly and then allocated to the selected gene 

in sequence task. The mutation algorithm for the mutation 

process is illustrated in Figure 7. 

 

 

Figure 6:  Example of PMX crossover for two parents and two children. 

 

Figure 7: Example of EX mutation in a parent and a child. 
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4. Results and Discussion 

The experiments were conducted with a 2.3 GHz Intel 

Core i3 processor and 6GB RAM and the heuristics were 

implemented together with GA using SimTalk which is the 

programming language used in Tecnomatix Plant 

Simulation. Due to the lack of benchmarks in the literature 

related to process plan generation in a reconfigurable 

manufacturing environment, the experiments are 

performed with randomly generated instances using GA 

for the reactive scheduling situation.  

The parameters used for analysis and comparison 

purposes are the number of generations and the generation 

size, which refer to the parameters in the previous study of 

Gibbs et al. [50] as follows: generation size = 6, 10, 25 and 

number of generations = 5, 10. Besides, the makespan, 

release control with various path generator complexity 

levels and dispatching rules are being compared. The 

parameters and conditions included in the experiments are 

summarized as shown in Table 6. 

Table 6: The parameters involved in the experiment. 

Parameter / Condition Values 

Maximum number of MUs 18 

Number of transporters 6 

Transporter speed (m/s) 0.226 

Intersection transfer time (s) 0.2 

Transporter load/ unload time (s) 5 

Keep process sequence Selective 

Use buffer after workplace Yes 

Pick up on the way to buffer Yes 

Pick up after unloading Yes 

Release control Default, Option 1, Option 2, 

Option 3 

Path generator complexity level Level 1, Level 2, Level 3 

Number of generations 5, 10 

Generation size 6, 10, 25 

Observations per individual 1 

4.1. Makespan 

The main objective of this study is to reduce the 

makespan of the overall process of a reconfigurable 

manufacturing system, thus the system was run without 

using GA first to obtain the initial makespan for every type 

of dispatching rules, then with GA and for a different 

number of generations and different generation sizes. For 

both the default and first option (Op1) release control 

option during the generation of the initial makespan, the 

system resulted in block condition, while the second and 

third options (Op2 and Op3) with three levels of path 

generators generated the results. 

4.1.1. Number of Generations 

 

The experiment was run with fix generation size which 

is 6 with a different number of generations which is 5 and 

10 respectively. Figure 8 shows the makespan for every 

type of dispatching rule to a different number of 

generations with a generation size of 6 for the reactive 

scheduling situation. The initial makespan for the situation 

resulted in the longest duration, while for both the number 

of generations of 5 and 10 it resulted in a shorter 

makespan. However, for the reactive scheduling situation, 

the difference between both generation numbers 5 and 10 

is larger. The percentage of reduction in makespan is 

calculated and tabulated in Table 7. 

The percentage of reduction in makespan for reactive 

scheduling cases is successfully reduced by more than 

15% except for the reactive scheduling case of generation 

number 5. However, generation number 10 for the reactive 

scheduling case had successfully proven to have a 

percentage of reduction of more than 15%. It can be 

concluded that the highest percentage reduction of 38% for 

the reactive scheduling case. The combination of GA and 

dispatching rules in finding the optimized schedule of 

solutions for reconfigurable manufacturing systems is 

effective even in the small number of generations, also 

higher generation numbers denoted to better results. 

 
Figure 8.  Makespan for rescheduling for the number of generations = 5 and 10 with generation size = 6. 
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4.1.2. Generation Size 

The experiment was then run with a fixed number of 

generations which is 5 with different generation sizes 

which are 6, 10 and 25 respectively. 

Figure 9 show the makespan for every type of 

dispatching rule regarding different generation sizes with a 

generation number of 5 for reactive scheduling situation. 

The initial makespan for this situation resulted in the 

longest duration, while the other generation sizes resulted 

in a shorter makespan compared to the initial results. 

However, for the reactive scheduling situation, the 

difference between all three types of generation sizes is 

more consistent. The percentage of reduction in makespan 

based on these situations is calculated and tabulated in 

Table 8. 

Table 7: The percentage reduction in makespan for reactive scheduling compared with initial makespan for the number of generations = 5 

and 10 with generation size = 6. 

Reactive Schedule 
Makespan (Hour) 

EDD SPRT LRPT SPT LPT FOPR MOPR 

Initial 3199.043 3155.293 3159.888 3134.600 3128.705 3107.003 3104.078 

GenNum5 2935.663 2931.593 2914.122 2894.285 2889.378 2873.448 2867.085 

% Reduction 8.233 7.090 7.778 7.667 7.649 7.517 7.635 

 
Initial 3199.043 3155.293 3159.888 3134.600 3128.705 3107.003 3104.078 

GenNum10 1974.555 1969.215 1950.927 1937.278 1930.105 1928.515 1902.098 

% Reduction 38.277 37.590 38.260 38.197 38.310 37.930 38.723 

 

 

Figure 9.  Makespan for reactive scheduling for generation size = 6, 20 and 25 with a number of generations = 5. 

Table 8. The percentage reduction in makespan for reactive-scheduling compared with initial makespan for generation size = 6, 10 and 25 

with generation number = 5. 

Reactive Schedule 
Makespan (Hour) 

EDD SPRT LRPT SPT LPT FOPR MOPR 

Initial 3199.043 3155.293 3159.888 3134.600 3128.705 3107.003 3104.078 

GenSize6 2935.663 2931.593 2914.122 2894.285 2889.378 2873.448 2867.085 

% 

Reduction 8.233 7.090 7.778 7.667 7.649 7.517 7.635 

 Initial 3199.043 3155.293 3159.888 3134.600 3128.705 3107.003 3104.078 

GenSize10 2703.058 2694.205 2682.417 2671.153 2658.500 2650.988 2628.122 

% 
Reduction 15.504 14.613 15.110 14.785 15.029 14.677 15.333 

 Initial 3199.043 3155.293 3159.888 3134.600 3128.705 3107.003 3104.078 

GenSize25 2369.228 2347.748 2318.100 2291.793 2259.630 2227.118 2201.882 

% 

Reduction 25.939 25.593 26.640 26.887 27.777 28.319 29.065 
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Based on Table 8, the percentage of reduction in 

makespan reactive scheduling cases is successfully 

reduced by more than 15% except for rescheduling cases 

of generation size = 6. However, other generation sizes = 

10 and 25 for reactive scheduling cases had successfully 

proven to have a percentage of reduction of more than 

15%. Again, it can be concluded that, with the highest 

percentage reduction of 29% for reactive scheduling cases, 

the combination of GA and dispatching rules in finding the 

optimized schedule of solutions for reconfigurable 

manufacturing systems is effective even in small 

generation size, while higher generation size contributed to 

better results. 

4.2. Dispatching Rules 

Bajpai and Kumar [51] stated that combining other 

approaches with GA can improve effectiveness and 

efficiency. Hence, the dispatching rules were experimented 

with GA to identify the results and comparisons of the 

performances. The performance of the dispatching rules 

was compared by using the fitness values obtained after 

each GA run. The fitness value is derived from Rastrigin’s 

function which is defined by Bajpai and Kumar [51] as: 

𝐑𝐚𝐬(𝐱) = 𝟐𝟎 + 𝐱𝟏
𝟐 + 𝐱𝟐

𝟐 − 𝟏𝟎(𝐜𝐨𝐬 𝟐𝛑𝐱𝟏 +
𝐜𝐨𝐬 𝟐𝛑𝐱𝟐)           

(4) 

Where x1 & x2 represent the values of independent 

variables 

Since the objective function is set to be a shorter 

makespan, hence the direction of optimization is set to be 

minimum. Therefore, for this study, the smaller the fitness 

value indicated the better result. The fitness function value 

for all dispatching rules was tested with a different number 

of generations and different generation sizes as well. 

4.2.1. Number of Generations 

The experiment was run with fix generation size which 

is 6 with a different number of generations which is 5 and 

10 respectively for the reactive scheduling conditions. The 

results are illustrated in Figure 10. As a result, for the 

reactive scheduling, the generation number = 10 resulted 

in a lower value of fitness compared to the generation 

number = 5 for all dispatching rules. The dispatching rules 

LRPT with the number of generations = 10 resulted in the 

smallest value of fitness function, which is 6906506.463 

while dispatching rules SRPT resulted in the highest value 

of fitness function in generation number = 5.  

Conclusively, higher generations number resulted in 

better results, however, there are no great differences in a 

better result for any dispatching rules to be selected. 

4.2.2. Generation Size 

 

The experiment was then run with a fixed number of 

generations which is 5 with different generation size which 

is 6, 10 and 25 respectively. Based on Figure 11, there is 

an obvious difference between each generation size, while 

the dispatching rules MOPR indicated the lowest fitness 

value with generation size = 25. 

 
Figure 10: The best fitness value in terms of dispatching rules of the reactive scheduling for the number of generations = 5 and 10 with 

generation size = 6. 

 
Figure 11: The best fitness value in terms of dispatching rules of the reactive scheduling for generation sizes = 6, 10 and 25 with the 

number of generations = 5. 
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For the experiments in terms of dispatching rules 

regarding different generation sizes and numbers, the 

results indicated that the dispatching rules to be selected 

are mainly depending on the objective functions. For the 

objective function makespan, there are no big differences. 

4.3. Improvement Rate 

There are durations when the experiments are running, 

and those readings are classified as optimization time, 

which indicated how long a specific experiment needs to 

run until the result was obtained. For stochastic simulation, 

the individuals should be evaluated by several simulation 

runs. However, due to limited time issues, the observation 

per individual is set to only 1. In Tecnomatix Plant 

Simulation, when the GA Wizard executes, it will 

calculate the number of simulations to be run based on the 

formula below and run the simulation:  

𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐬𝐢𝐦𝐮𝐥𝐚𝐭𝐢𝐨𝐧 𝐫𝐮𝐧𝐬 

= 𝐎𝐢 × (𝐆𝐒 + 𝟐 × 𝐆𝐒 × (𝐆𝐍 − 𝟏))                     
   (5)          

where Oi = Observations per individual, GS = 

Generation Size, GN = Number of Generations. 

Hence, the larger the number of generations or 

generation size, the larger the number of simulations runs, 

therefore resulting in longer optimization time. 

4.3.1. Number of Generations 

To analyse the relationship of improvement rate with 

the generation size, a formula is used to calculate the rate 

from the data generated from the experiment as follows: 

𝑹𝒂𝒕𝒆 =
𝑩𝒆𝒔𝒕 𝒇𝒊𝒕𝒏𝒆𝒔𝒔 𝒗𝒂𝒍𝒖𝒆

𝑶𝒑𝒕𝒊𝒎𝒊𝒛𝒂𝒕𝒊𝒐𝒏 𝒕𝒊𝒎𝒆
                              (6) 

The experiment was run with the fixed number of 

generations = 5 and varied generation sizes = 6, 10 and 25. 

Table 9 shows the results from the calculation of the 

formula (6) for the reactive scheduling conditions with 

different dispatching rules. 

Table 9. The improvement rate for the reactive scheduling of 

dispatching rules with the number of generations = 5 and 

generation sizes = 6,10 and 25. 

 

Gen Size 6 Gen Size 10 Gen Size 25 

Reactive 

Scheduling 

Reactive 

Scheduling 

Reactive 

Scheduling 

EDD 17830.482 10755.993 3444.372 

SRPT 19668.227 10477.326 3518.048 

LRPT 19115.259 9735.380 3378.730 

SPT 20799.089 10367.003 3344.148 

LPT 17140.189 10125.550 3306.326 

FOPR 18432.581 10539.054 3378.890 

MOP

R 17802.480 14580.917 3488.352 

The data from Table 9 were generated into Figure 12 

for analysis. From Figure 12, firstly the improvement rate 

for generation size = 6 is the highest for the situation, and 

when the generation sizes increase, then the improvement 

rate decrease linearly for the reactive scheduling case. 

Results show that the performances are getting better when 

the generation size is larger. 

 
 

Figure 12. The improvement rate for reactive scheduling with the generation number = 5 and varied generation sizes. 
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5. Conclusion 

This study is to analyze several aspects of combining 

simulation and optimization-based algorithms for job-shop 

scheduling of reconfigurable manufacturing systems with a 

predictive-reactive approach using priority dispatching 

rules and GA. A predicted feasible schedule will be first 

determined and tested from a developed model where the 

reconfigurable production system in real-life is taken as a 

reference and case study. The simulations were run with 

GA together with dispatching rules, together with different 

conditions and settings of the reconfigurable 

manufacturing system to identify the results in a different 

environment.  

The parameters such as the number of generations and 

generation size have also been analyzed to identify the 

effect towards the results, however, due to limited time, 

only some parameters were tested based on the previous 

study in the literature. The result showed that the model 

built had demonstrated good efficiency and the ability to 

find an effective schedule in a specified period and the 

algorithm can tackle the complicated scheduling issue 

successfully and in lesser time.  

The results obtained from this simulation run with GA 

using Tecnomatix Plant Simulation included the 

makespan, the best fitness value, the optimization running 

time, the best parameter of the allocation of the products, 

the best sequences of the products, the evolution and 

performance of the fitness value during the generations, 

the details included the children and parents’ genetics data 

and so on. However, the performance and schedule 

optimization degree cannot be compared to other 

scheduling methods, because this model only provided the 

optimization possibility using GA and dispatching rules. 

The series of optimization runs do not provide an adequate 

collection of data to conclude the recommendations for the 

best selection of GA options and dispatching rules of the 

reconfigurable manufacturing system. Overall, the model 

proved the efficacy of integrating simulation and 

optimization with a genetic algorithm, providing engineers 

with the needed flexibility and control. 

Conclusively, although various methods and algorithms 

have been created in the literature, only a few comparisons 

have been made. Other research suggests that the proposed 

approaches perform well under certain assumptions, but 

not so well or even poorly under others. Part of future 

works to be carried out will involve benchmark problems 

of a certain type of production system operation must be 

established with specific test objective functions. 

Reasonable comparisons between different approaches 

may also be made to validate the effectiveness of the 

suggested solutions more precisely. 
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