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ABSTRACT Systems requiring terahertz transmission and high sampling capabilities can be supported by 

sixth-generation (6G) technology with minimal latency and excellent service throughput. Regardless of the 

distributions of data and services, High-Performance Computing (HPC) enhances speed and provides 

diversified applications and functionality. The Confluence-Aided Process Organization Method (CAPOM) 

is suggested in this article to take advantage of process allocations while using an HPC paradigm. The process 

allocations and completions are scheduled based on prior and current system conditions to minimize waiting 

time based on the 6G qualities. This implies that state requirements for process allocation, distribution, and 

completion are carried out with the assistance of federated learning. The initial state allocations are based on 

the user/application request; in other allocations, the application's request for completion time and capacity 

for processing are considered. Offloading and shared processing are therefore combined to maximize resource 

deliveries. The federated learning states are checked post-completion times to mitigate the waiting duration 

of dense service demands. Indicators such as distribution ratios, latency, wait time, and processing rate are 

considered for the effectiveness of the proofs. The suggested CAPOM achieves an 8.67% higher processing 

rate, 9.09% reduced latency, 8.76% less wait time, and a 6.73% higher distribution ratio for the various 

capacities. 

INDEX TERMS 6G, Federated Learning, HPC, Process Allocation, Service Distribution. 

I. INTRODUCTION 

High-performance computing (HPC) is a progressive 

approach that supports providing better services or 

performance to users and systems by delivering high-quality 

solutions for the problems in the system or computer. HPC, 

also known as supercomputing, performs at high-quality 

computer performance [1]. In an aggregated computing 

process, better user performance is administered through 

precise allocations. HPC is widely used in designing new 

products and producing better products to avoid unwanted 

threats or errors [2]. HPC is also used in decision-making to 

test scenarios or problems and to provide improved solutions 

for product development on a computer. HPC systems often 

use clusters of networks to build a complete HPC system [3]. 

The cluster monitors and stores network data to process input 

and output from the processing unit and facilitates 

performing a particular task. HPC is most commonly used in 

a remote processing system to provide better service to users 

without compromising the quality of the service. Compared 

with other systems or processes, HPC is more reliable, 

efficient, easier to manage, and offers better scalability. HPC 

is used to solve large problems in engineering or computer 

fields and provides better solutions for the problems. HPC 

employs the graph-oriented programming (GOP) technique to 

understand the exact details used to solve the problems [4], [5]. 

6G refers to the sixth-generation wireless network, which 

provides a better communication process among users using a 

cellular data network. As a successor to 5G, 6G is widely used 

in communication systems [6]. 6G offers the fastest speed, 

which is vital for communication. It is much faster than 5G in 

transferring data from one user to another, providing a 

significantly improved user communication process [7]. 

Additionally, 6G enhances the quality of service (QoS) in 

wireless communication systems. By reducing the latency rate 

in the communication process and utilizing a high-frequency 

ratio, it sustains the capacity of the communication process 

[8]. HPC is utilized in 6G to enhance the system's performance 

by understanding the problems present in the networks. 
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Computing systems are mostly used in computers and devices, 

which help to provide better service to the users by identifying 

threats or problems and solving them by offering the best 

solutions. HPC resolves problems in the communication 

process and provides better service to the users by 

understanding the exact details of the networks [9], [10]. High-

performance computing (HPC) requires a large amount of data 

motion processes and computational systems to provide better 

solutions to the problems present in the network. 

 Machine learning (ML) algorithms are used in HPC to solve 

problems by providing a deep learning algorithm to 

understand the volumes of data or threats [11]. The ML 

approach utilizes more data to deliver better performance to 

the network or users. HPC is mostly used in many fields, 

such as the Internet of Medical Things (IoMT) and the 

Internet of Things (IoT), which aids in enhancing the total 

performance of the system by providing better QoS [12]. 

Within networks, HPC plays a significant role in identifying 

and solving problems arising from data management 

processes and unnecessary data transfer processes. ML-

assisted HPC is vital in many fields, including the 

computational screening process [13]. Computational 

screening is one of the main processes in HPC, aiming to 

provide better service and quality for the users. ML is also 

used in HPC to predict or identify the exact high performance 

while training the data available in the model. Furthermore, 

ML-assisted HPC is used to detect failures or failed 

processes, which may affect the system's overall 

performance. ML helps to find out the exact cause of failure 

and provides better solutions to the problems [14], [15]. 

However, existing systems suffer from high latency and offer 

minimum throughput when implementing 6G 

communication. The research difficulties are overcome by 

applying High Performance Computing functionalities 

(HPC), which speed up the process. During the analysis, the 

Confluence-Aided Process Organization Method (CAPOM) 

is suggested to improve the overall allocation with minimum 

latency. Then, the overall contribution of the work is listed 

as follows. 

• To improve the process allocation using the 

Confluence-Aided Process Organization model 

(CAPOM). 

• To design the system to reduce latency and 

maximize throughput values by utilizing, High-

Performance Computing (HPC) functions. 

• To evaluate the system's performance in terms of 

low latency and high service rate applications. 

The remainder of this paper shall be arranged in the 

following manner: Section II will introduce the related 

research. Section III describes the proposed confluence-aided 

process organization method. Processing capacity allocation 

and service distribution using federated learning for Low-

Latency and High-Service-Rate applications are motivated 

and described in Section IV, followed by related analysis and 

discussion in Section V. Finally, we summarize our 

conclusions in Section VI. 

 
II. RELATED WORKS 

 

Mavromoustakis et al. [16] proposed a new offload-aware 

recommendation scheme for the Internet of Things (IoT). This 

offload scheme enables every available service for users and 

improves performance by enhancing Qualities of Experience 

(QoE) and Quality of Service (QoS). It also provides a 

machine communication process by enabling the resources 

available in the recommendation scheme. Numerical 

outcomes demonstrate that the suggested scheme reduces the 

energy consumption rate of the system and provides a better 

user experience. Lin et al. [17] presented a machine 

communication process by enabling the resources available in 

the recommendation scheme. Numerical outcomes 

demonstrate that the suggested scheme decreases the energy 

consumption rate of the system and provides a better user 

experience. Yoon et al. [18] implemented a deep neural 

network (DNN)-based object detection offloading framework 

for mobile edge devices. The proposed method is mainly used 

to decide whether to issue offload or not to the particular 

process and create a proper data set for further processing. The 

proposed framework is used to identify the exact objects under 

process and increases the accuracy ratio in the detection 

process. Simulation outcomes illustrate that the recommended 

framework enhances the efficacy and efficiency of the object 

detection process. Xu et al. [19] suggested a blockchain-

enabled resource management process for the 6G 

communication process. The blockchain approach is widely 

used in many Internet of Everything (IoE) based systems and 

devices to enhance the total efficiency and performance of the 

device. The blockchain method provides a better integration 

process, which helps improve the monitoring and 

management process by utilizing the resources available in the 

database. The proposed blockchain-enabled method improves 

the overall effectiveness of the system. 

Yan et al. [20] discussed a deep Q-learning-based joint 

optimization approach to perform offloading tasks for mobile 

edge computing (MEC) systems. The proposed Q-learning 

approach reduces the complexity of the device and provides 

optimal solutions for the optimization process. It also reduces 

the latency rate while performing offloading tasks, which 

helps to improve the Quality of Service (QoS). Numerical 

outcomes demonstrate that the suggested technique improves 

the overall performance and system effectiveness and 

decreases the energy consumption ratio in the computation 

procedure. Khan et al. [21] proposed an efficient hybrid deep 

learning-enabled model for the congestion control process in 

5 G-based networks. Congestion control plays an important 

role in the 5G network, which provides better Quality of 

Service (QoS) to the users. The long short-term memory 

(LSTM) algorithm is used in the proposed deep learning-

enabled approach to improving the network's offloading 
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process. Compared with other existing approaches, the 

suggested technique enhances the accuracy ratio and decreases 

the time consumption ratio, enhancing the network's 

efficiency. Zhang et al. [22] deliberated an energy-efficient 

computation offloading scheme named Dynamic 

programming-based energy-saving offloading (DPESO) for 

task scheduling processes in an edge-computing system. The 

proposed method is based on the time-division multiple access 

methods mainly used in the scheduling process. DPESO is 

primarily utilized to decrease the latency rate in the 

computation process. Simulation outcomes demonstrate that 

the recommended DPESO technique increases the system's 

efficiency by decreasing the energy consumption rate. 

Mukherjee et al. [23] proposed a layered message transfer 

framework for the social Internet of Things (IoT) utilizing a 

software-defined network (SDN). The proposed framework is 

widely used in IoT-based devices to transfer messages from 

one user to another without lagging or failure. SDN is used to 

improve the slices available in the optimization process. It is 

also used to manage user messages and generate a proper 

dataset for further use. Numerical outcomes illustrate that the 

suggested technique improves the Quality of Service (QoS) in 

social scenarios and increases the coverage area using the 

SDN approach. Naouri et al. [24] introduced a three-layered 

task offloading framework named DCC for mobile edge 

computing (MEC) systems. DCC stands for cloudlet layer, 

device layer, and cloud layer. DCC is used to perform 

offloading low-quality tasks and produce a proper 

communication process for the users by improving the 

efficiency of the computation process. A greedy task graph 

partition offloading algorithm is used in DCC to perform 

scheduling tasks for the optimization process. Simulation 

outcomes display that the suggested DCC framework 

enhances the total performance of the system by when 

compared with other techniques. Alqahtani et al. [25] 

proposed a proactive caching technique with offloading 

(PCTO) approach for mobile edge computing (MEC) systems 

by using the Machine learning approach. The deep recurrent 

learning algorithm is used in PCTO to improve the interval 

that occurs while providing user services. To perform 

offloading instances, certain data are trained using the PCTO 

scheme. Compared with other approaches, the suggested 

PCTO enhances the system's total performance by decreasing 

the failures in caching and offloading process. Chakrabarti et 

al. [26] presented a new offloading approach using a deep 

learning method for mobile augmented reality (MAR) 

applications. The proposed offloading approach uses a deep 

reinforcement algorithm (DRL) to improve energy constraints 

and offloading tasks and transfer data for further services. The 

proposed method is used to divide certain phases to perform 

offloading tasks with the help of the DRL approach. Computer 

vision algorithm is also used in MAR applications to perform 

computation processes without any energy consumption rate. 

Guo et al. [27] proposed a fairness-oriented computation 

offloading process for the cloud-assisted edge computing 

system. The suggested technique improves the offloading 

approach by performing certain data transmission strategies. 

The optimal cloud-edge strategy is used here to analyze the 

data to recognize the optimal offloading strategy available in 

the system. Numerical outcomes demonstrate that the 

suggested technique enhances the system's performance by 

decreasing the latency ratio of response time for mobile users. 

Shahidinejad et al. [28] introduced a context-aware multi-user 

offloading approach for mobile edge computing (MEC) 

systems. It is used in a multi-user system to collect contexts. 

The Federated learning (FL) algorithm uses the offloading 

approach to use distributed capabilities to enhance the 

system's total performance. Compared with other approaches, 

the recommended technique increases the efficiency and 

efficacy of the system by enhancing the accuracy ratio in the 

offloading progression and reducing the energy consumption 

ratio in the computation procedure. Chen et al. [29] introduced 

a decentralized computation offloading approach for multi-

user mobile edge computing (MEC) systems by using deep 

deterministic policy gradient (DDPG). The proposed DDPG is 

used to identify the offloading strategies and produce a proper 

dataset to improve the efficiency of the MEC users. Numerical 

outcomes display that the suggested DDPG approach 

enhances the users' total performance and quality of services. 

In their work, Ali et al. [30] proposed a new multi-task 

computation offloading approach using an allocation memory 

algorithm for device-to-device communication. A fit 

algorithm is also used to design tasks on multiple devices. The 

proposed method improves performance by performing 

proper offloading tasks. Compared with other techniques, the 

recommended approach enhances the Quality of Service 

(QoS) in cell scenarios and decreases the latency ratio in the 

computation progression. Similarly, Kathole et al. [31] applied 

an energy-aware blockchain model in 6G network IoE 

applications. This study uses the cyber twin-related UAV 6G 

network structure to respond to the user request by managing 

the communication resources. During this process, blockchain 

is applied to improve security while sharing resources in a 

cloud environment. Additionally, Chen et al. [32] 

recommended a User-Centric Resource Allocation in 6G from 

an economic perspective. This study provides the economic 

perspective of quality solutions for every user request. The 

quality of experience is provided according to the user's 

subjective values, and the users are prioritized to allocate the 

resources. Market rule and auction theory are integrated to 

improve resource allocation efficiency during the evaluation. 

Lastly, Alsulami et al. [33] introduced a federated deep 

learning approach to manage the resources and optimize the 

quality of services in 6G. Machine learning and cutting-edge 

technologies are widely applied for the resource allocation 

process in 5G, and the federated reinforcement learning 

approaches are incorporated with vehicle communication to 

improve the quality of services in 6G. Dong et al. [34] applied 

the United Framework of Integrated Sensing and 

Communications (ISAC) to improve the resource allocation 
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process in 6G. Every request's probability value is computed 

with the help of the Cramer-Rao Bound approach that 

identifies the resources QoS, location, and tracking is 

performed. The effective identification of resources 

maximizes resource allocation flexibility and efficiency. Guo 

et al. [35] introduced a federated reinforcement learning 

approach for allocating resources in device-to-device 

communication in 6G. The main intention of this study used 

to minimize power consumption and maximize the sum 

capacity by providing quality services to the user request. 

Sheng et al. [36] recommended a coverage enhancement 

process to allocate the resource by considering the resource 

configuration and constellation. This study uses the satellite-

terrestrial integrated network to analyze the user request and 

configurations to improve the overall resource allocation 

efficiency. In their work, Ashwin et al. [37] applied a hybrid 

quantum deep learning model to manage resources in 6G. The 

hybridized approach uses recurrent and convolutional neural 

networks to estimate resource distribution, configuration, and 

slice collection. From the estimated information, load 

balancing and error are computed using recurrent networks. 

This process helps to manage the QoS in resource allocation. 

In another study, Thantharate et al. [38] introduced an adaptive 

network slicing structure for resource management in 6G 

systems. This study employs transfer learning with a network 

slicing structure to predict the load, resulting in a 30% lower 

error rate and a maximizing the correlation coefficient by 6%. 

Moreover, Han et al. [39] recommended an equity, diversity, 

and inclusion (EDI)-based resource management process in 

6G applications. The EDI-based approach analyzes the user 

request regarding communication requirements and quality of 

services to improve communication by reducing the 

distribution variance. According to various research studies, 

6G networks use different frameworks and machine learning 

techniques to maximize resource allocation. However, a high-

performance computing procedure is required to support the 

user's high demands. This research objective is addressed by 

applying the Confluence-Aided Process Organization Method 

 
III. PROPOSED CONFLUENCE-AIDED PROCESS 

ORGANIZATION METHOD (CAPOM) 

The Sixth-generation (6G) aids terahertz applications 

communication with high-performance computing since 

becoming unmanageable due to the high sampling support of 

users with less latency and high service rates of the 6G-

assisted applications. Amid the challenges in this proposed 

work are increased rapidity and heterogeneous application 

support of the user data and service distributions of different 

latencies. The 6G applications spanning across various 

domains such as UAV network (Unmanned Aerial Vehicle), 

eHealth remote monitoring, smart city, UM-MIMO BS (Ultra 

Massive-MIMO Base Station), VLC (Visible Light 

Communication), sCell-UE (Small Cell User Equipment), 

BCI (Brain Computer Interface), and AI (Artificial 

Intelligence), etc., require diverse application services. 

Therefore, regardless of the data and service distributions of 

the heterogeneous applications, high sampling support with 

high service rates and less latency is an important 

consideration. The proposed framework of CAPOM mainly 

focuses on this consideration by leveraging the overall 

development of the process allocations and completions 

through system state management. In this manuscript, latency 

and service rates are administrable for the applications, and 

their processing with the available system states application. 

Fig. 1 illustrates the proposed method in a 6G platform. 
 

 

FIGURE 1. The proposed method is in 6G. 

 

The 6G platforms access their process and services through 

requests and responses using the 6G applications. The 

CAPOM model functions between the user and applications. 

In this method, process allocations and offloading/completion 

for the available system states and HPC is ease for succeeding 

service rate outcomes for the diverse applications and users 

(Fig. 1). Furthermore, the design goal of this model is to 

minimize the completion time to reduce the waiting latency of 

dense applications and to maximize the available system 

states. The proposed method functions in two forms: process 

allocation and process offloading/completion occur 

concurrently. The service allocation process varies for denser 

and non-denser service distributions to handle the diverse 

density of the users/applications. Then the notations utilized in 

this work is illustrated in Table 1. 

 

Table 1: Notation Description 

Notation Description 

𝜃𝑖 Process allocations 

𝑆𝑅𝑞  Service Request 

𝑆𝑅𝑠 , Service Response 

𝑡 Time 

𝑊𝑇𝑗  Waiting time 

𝑇𝑅𝑞  Request time 

𝑇𝑅𝑠 Response time 

CT Completion time 

𝜑𝑛 Offloading  

PT Processing time 

∁𝑚 Capacity  

𝝆𝑷𝒔  Probability of allocating process 

𝝆𝒇 First instance of process allocation  

𝒎 Stable probability  
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𝐴𝑜(𝛾) State allocation function 

𝛾 Waiting latency 

𝜑𝑛 Required sequence 

 

 The initial functions of the 6G platform service 

management technology is the main goal as stated in equation 

(1)” 

𝑚𝑎𝑥
𝑖∈𝑡

𝜃𝑛 ∀ 𝑆𝑅𝑞 = 𝑆𝑅𝑠  𝑎𝑛𝑑 𝑚𝑖𝑛𝑗∈𝑅𝑠
𝑊𝑇𝑗  ∀ 𝑟𝑞  (1) 

As per equation (1), the variables 𝜃𝑖 , 𝑆𝑅𝑞 , 𝑆𝑅𝑠 , 𝑡 denotes the 

process allocation of 𝑛𝑡ℎ service 𝑡, request, and responses, 

respectively. In the next consequence representation, the 

variables 𝑊𝑇𝑗, 𝑇𝑅𝑞, and 𝑇𝑅𝑠 and 𝐶𝑇 represent waiting time, 

request time, response time, and completion time, 

respectively. Here, the waiting time is computed as 𝑊𝑇𝑗 =
𝑇𝑅𝑞 − 𝑇𝑅𝑠;  min𝑖∈𝑡

𝜑𝑛 ∀ 𝑖 ∈ 𝑅𝑞. The next instance of minimizing 

the offloading/completion is denoted using the variable 

𝜑𝑛 ∀ 𝑖 ∈ 𝑅𝑞. If 𝐴 = {1,2, … , 𝐴} denotes the state of the 

user/application, then the number of services in the processing 

time (𝑃𝑇) is 𝑅𝑞 × 𝑡, whereas the 6G assisted application 

request is 𝐴 × 𝑅𝑞. In the following overall request of 𝐴 × 𝑅𝑞, 

 𝑅𝑞 × 𝑡 are the acceptable services for waiting. Process 

allocation and states offloading processes are reliable using 

latency and density of the upcoming request of the 6G 

applications. In this sequence, the distribution of state and 

remaining services is essential to identify the non-denser 

application in additional services. The demanding application 

is the capacity (∁𝑚) of the 𝑚 state applications, the remaining 

time needed for process completion/offloading is the using 

metrics for increasing services rate and distribution ratio. The 

process allocation of the states assigning for the existing 𝑚 is 

performable using federated learning. Then, depending upon 

the service distribution, the process allocation states are the 

increasing factor. For this implication, the process allocation, 

distribution, and completion is the prevailing sequence for 

deriving various conditions. The process allocation of services 

and the available states for allocation are necessary for the 

following section. 

CASE 1: Initial allocation of process 

SOLUTION 1: In this process allocation, the service 

distribution of 𝒕 × 𝑹𝒒 for all 𝒎 based on ∁𝒎 is the 

considering factor. The probability of allocating process 

(𝝆𝑷𝒔) in a consequence, the manner is given in equation (2) 

as 

𝜌𝑃 = ( 1 − 𝜌𝑓)
𝑛−1

 ∀  𝑛 ∈ 𝑡 (2) 

 In equation (2), variable 𝝆𝒇 represents the first instance of 

process allocation, which is computed by using the request 

𝑹𝒒 ∈ 𝒎 and 𝑹𝒒 ∈ 𝒕; 𝝆𝒇 = (𝟏 −
𝑹𝒒∈𝒎

𝑹𝒒∈𝒕
). The sequential 

service distribution follows the stable probability of 𝒎 such 

that there is no remaining process, and therefore, the 𝒆𝒕 is 

estimated as in the above equation (1). Hence, the allocation 

of processes (𝑷𝑨) for 𝝆𝑷𝒔 is as follows 

𝑃𝐴 (𝑚) =
1

|𝑅𝑠 − 𝑅𝑞 + 1|
 . (𝜌𝑃𝑠)𝑖

 , 𝑖𝑓 ∀ 𝑛 ∈ 𝑡 (3) 

Although, the process allocation for 𝑚 as in equation (3), is 

valid for both(𝐴 × 𝑅𝑞), (𝑡 × 𝑅𝑞) make certain waiting time 

service distributions. The gathering services of assigning 𝑡 to 

decrease the impact of the functions (𝐴 × 𝑅𝑞) > (𝑡 × 𝑅𝑞), 
the process allocation is illustrative using the data and service 

distributions. Hence, the planning-based conditions of  𝐴 > 𝑡 
and 𝜌𝑓 is less to satisfy the above-derived equation (1). The 

modified solution in this case 1 is the extending 𝜌𝑓 and 

therefore, the waiting time outputs in the waiting latency of 

dense application demands. 

CASE 2: Alternative process allocation 

SOLUTION 2: In this Alternative process allocation, the 

unstable condition of 𝑨 > 𝒕 is high, and therefore the service 

distribution and allocation of the process is an unchangeable 

time sequence. In Fig. 2, the alternative allocation process is 

illustrated. 

 

 

FIGURE 2. Alternative Allocation Process. 

 

The allocation is performed for the overflow condition 

identified using 𝑡/𝑇𝑑 wherein the available processes are 

verified for their sequences. The process sustainability is 

verified in the alternating sequence and first state allocation; 

hence, the allocations are prevented from overflowing. 

However, for the first allocation, if an overflow is experienced, 

then the allocations are alternating for precise resource 

distribution (Fig. 2). Along with the stable time of 𝑚, the 

denser application and remaining states are the considered 

processes. The probability of a sequential process of allocation 

(𝜌𝑃𝑛) is given as in equation (4) 

𝜌𝑃𝑛

=

𝜌𝑇𝑠 × 𝑃𝐴 (𝑚) × [(𝑅𝑠 − 𝑅𝑞)𝜌𝑓 − (
𝑅𝑠 − 𝑅𝑞
𝑚

)
𝑊𝑇
𝑇𝑅𝑞

] 𝐴𝑜(𝛾)

𝐴𝑜(𝛾) × 𝑚
 

(4) 

 In equation (4), 𝐴𝑜(𝛾) factor represents the state allocation 

function for 𝑡, request, and response are represented as the 

𝑅𝑞 , 𝑅𝑠and the waiting time is 𝑊𝑇. The sequential process 
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allocation is computed concerning the weight time of the 

services, which is defined as the  

𝐴𝑜(𝛾) =  ∫ 𝑊𝑇𝑡−1(1 −𝑊𝑇)𝑡−1 𝑑𝑡(𝑊𝑇)
𝑡

0
. The allocated 

resources belong to the process allocation  

that is defined as the  

𝐴𝑜(𝛾) ∈ 𝑃𝐴 (𝑚) = ∫ 𝑊𝑇𝑡−1.
𝜌𝑓

𝑇𝑅𝑞
(1 − 𝜌𝑃𝑠)

𝑡−1
 𝑑𝑡(𝑅𝑞)

𝑅𝑞
1

. 

In this state allocation process, the unstable assigning services 

to the 𝑚 is a dense application issue. As mentioned above, the 

process allocation requires more waiting time completion 

time, thereby increasing the processing capacity. From the 

above-determined cases 1 and 2, the process allocation and 

completions of application demands based on 𝐴 > 𝑡 and 𝑚 

dense application and waiting time are the identifiable 

constraints. In particular, these constraints are noticed using 

federated learning to alleviate the problems through the 

learning process. The following session illustrates the 

processing capacity for the offloading/completion process to 

alleviate the defining problems. 
 

IV. OFFLOADING/COMPLETION USING PROCESS 
CAPACITY 

 

The definition of the processing capacity of the completion 

process is based on federated learning. The federated learning 

is one of the effective machine learning techniques that used 

to train the data for improving the system efficiency.  It aids 

application support with less latency and high service rates. 

The above-discussed case 1 and case 2 allocation processes 

are jointing with the resolving sequences using federated 

learning. The service distribution process depends on various 

metrics for identifying the dense application and waiting 

latencies during service distribution. Therefore, the conditions 

for service distribution differ, which follows the process 

through processing capacity. The processing capacity is 

prescribed for both case 1 and case 2 by computing the 𝑚 

available probability and allocation of states for planning time. 

The first state allocation (𝑆𝐴) relies on maximum processing 

capacity (𝑃𝑐) and 𝐴𝑜(𝛾) is estimated as 

𝐴𝑜(𝛾, 𝑃𝑐) = [𝑅𝑠 − (
𝑊𝑇

𝑇𝑅𝑞
) ×

1

𝑚
] − 𝑆𝐴 (𝑚) + 1 (5) 

 In equation (5), 𝐶𝑇 denotes the completion time of the 

allocation and the processing capacity depending allocation of 

the states for case 1, as in 𝜌𝑃𝑠  and state allocation (𝑚). Here, 

the m is computed as the 𝑚 =
∑ 𝑆𝑡𝑎𝑡𝑒 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 (𝑚)𝑖 − (𝜌𝑃𝑛)𝑖𝑖∈𝑡 . Now, the chances of 

performing alternative allocations sequentially are 

𝜌𝑃𝑠 (
𝑡

𝑇𝑑
) =

1

√2𝑚𝛾2
𝑒𝑥𝑝𝑒𝑟𝑠𝑠𝑖𝑜𝑛 [−

𝑅𝑞 − 𝜌𝑓 × 𝑅𝑠

𝛾
] (6) 

In equation (6), alternative resource allocation is computed 

with waiting latency𝛾, response, and request concerning m. 

Therefore, the waiting latency is estimated as 𝛾 = 𝑅𝑞 − 𝜌𝑓 ∗

𝑚. As per the above equation (6), the main goal is to exploit 

offloading jointly and shared processing 𝐴 and 𝑡 to increase 

the service distribution and reduce the waiting time and hence, 

the actual 𝑅𝑠 is computed as 

𝑅𝑠 = 𝑚𝑎𝑥 [
𝜌𝑃𝑠 × 𝑅𝑞

𝑆𝐴 (𝑚) − 𝜌𝑓 ∗ 𝑅𝑞
] (7) 

In equation (7), the difference is [1 −
𝜌𝑃𝑠

𝑆𝐴 (𝑚)−𝜌𝑓∗𝑅𝑞
] and this 

alternative allocation is the waiting time-dense application 

instances of 𝑅𝑞. The sharing 𝑅𝑞 is [𝑅𝑞 ∗ 𝐴𝑜(𝛾, 𝑃𝑐)] is the 𝜑𝑛 

requiring sequences, and therefore the waiting latency is 

demandingly increased. The ranges for increasing waiting 

latencies as per the above equation (6), the range is derived as 

𝑚𝑖𝑛 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑅𝑠 = 𝛾 = 𝑅𝑞 − 𝜌𝑓 ∗ 𝑚 and max possible is 

equating RHS of equations (2) and (6). the equating process is 

defined in equation (8). 

(1 − 𝜌𝑓)
𝑛−1

=
−𝑅𝑠 + 𝜌𝑓𝑅𝑞

√2𝜋𝛾2
∀𝑛 ∈ 𝑡

𝑅𝑠 = 𝜌𝑓𝑅𝑞 − (1 − 𝜌𝑓)
𝑛−1

√2𝜋𝛾2
} 

(8) 

In equation (8), the range of waiting latency denser 

applications is either of 𝑟𝑠 or 𝛾, in both above-derived cases, if 

𝜌𝑓 = 0, then 𝛾 = 𝑅𝑞 = 𝑅𝑠 is the maximum possible that is 

defined as 𝑅𝑠 = √2𝜋(𝑅𝑞)
2
(𝑚𝑖𝑛). and if 𝜌𝑓 = 1, 𝑅𝑠 = 𝑅𝑞 −

𝑚 𝑅𝑠⁄ = 𝑅𝑞 that is defined as 𝑅𝑠 = 𝑅𝑞(𝑚𝑎𝑥). Hence, they 

take the place of  𝑅𝑞 = 𝑅𝑠 is a feasible solution, and then, the 

waiting latency for all 𝑖 ∈ 𝑡 and 𝑗 ∈ 𝑅𝑠 in the above equation. 

Fig. 3 presents the offloading process illustration. 

 

 

FIGURE 3. Offloading Process Illustration. 

 

In the alternate allocation process, the 𝐴0 to  𝐴0(𝛾) 
Instances are used for identifying resource distribution. This is 

based on the actual capacity and the available intervals for 

preventing further waiting time. This is stabilized based on the 

allocation time and the sequence required for 𝑚. Contrarily, 

the allocations at 𝑡 are offloaded if the capacity exceeds the 

limit of the available resources (Fig. 3). The service 

distribution in this framework is all the existing 𝑚, where the 

allocation requests and responses are shared processing. 

Therefore, the waiting time is compact, as in the above 

equation (1). The offloading/completion ranges are (𝑅𝑞 −

𝜌𝑓 ∗ 𝑚) and √2𝜋𝛾(𝑅𝑞)
2
, which defines the process 

allocation and waiting time, along with completion time, for 

the sequence 𝑅𝑞. The completion process of (𝑅𝑞 − 𝜌𝑓 ∗ 𝑚) 

and √2𝜋𝛾(𝑅𝑞)
2
 from the existing 𝑡 ∈ 𝑅𝑞 is illustrated in the 

following. 
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The offloading/completion-based processing capacity 

(𝑅𝑞 , 𝑅𝑠) and (𝑅𝑠𝑡−1 , 𝑅𝑠𝑡) depend on the available 𝑡 from the 

responses. The probability of 𝜌𝑓  and 𝜌𝑃𝑠 and 𝜌𝑃𝑛 is the 

deciding factor for both offloading and response. The 

offloading of process capacity takes place in (𝑅𝑞 , 𝑅𝑠) and 

(𝑅𝑠𝑡−1 , 𝑅𝑠𝑡) is sharing based on 𝑇𝑑 for  𝐴𝑜(𝛾) is given as 

𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑚)

=

{
 
 

 
 

𝑚 − (𝑝𝑓 ∗ 𝑅𝑞)

𝑚 + (𝜌𝑃𝑠)𝑅𝑞
, ∀𝑅𝑠 = 𝑅𝑞

𝑚 − (𝑝𝑓 ∗ 𝑅𝑞)

𝑚 + (𝜌𝑃𝑠 + 𝜌𝑃𝑛 − 𝜌𝑓)𝑅𝑞
, ∀𝑅𝑠 < 𝑅𝑞

 
(9) 

From equation (9), the offloading sequences of  

(𝜌𝑃𝑠 + 𝜌𝑃𝑛 − 𝜌𝑓) is found using the allocation of states (𝑚). 

Therefore, the available 𝑚 forces the rest of the responses for 

offloading/completion, the remaining states until the next 𝑒𝑡. 
This process is estimated as 

𝑚

𝑚+ 𝑅𝑞
=

1

(𝑅𝑠 − 𝑅𝑞 + 1)

𝑚 + 𝑅𝑞 = 𝑚𝑅𝑠 −𝑚𝑅𝑞 +𝑚

𝑅𝑠 =
(𝑚 + 1)𝑅𝑞

𝑚 }
 
 

 
 

 
(10a) 

The remaining state 𝑅𝑠 ∀ 𝑇 ∈ 𝑅𝑞 is as estimated using the 

above equation (10a), and therefore, the alternative allocations 

are essential for allocating the remaining 𝑅𝑞. 

𝑚 −
𝑅𝑞

𝑚+ 𝑅𝑞
=

1

(𝑅𝑠 − 𝑅𝑞 + 1)
, 𝑎𝑠 𝜌𝑓 = 0, 𝜌𝑃𝑠

= 𝜌𝑃𝑛 = 1 

(10b) 

In equation (10b), the alternative allocation process performed 

by considering the request and response is defined as  

𝑅𝑆 =
2𝑅𝑞+𝑚𝑅𝑞+𝑅𝑞

2

(𝑚−𝑅𝑞)
. It has been further defined as the  

𝑚𝑅𝑠 − 𝑅𝑞𝑅𝑠 = 𝑅𝑞 + 𝑅𝑞 + 𝑅𝑞
2 +𝑚𝑅𝑞. In this offloading 

condition, 𝑚 or (𝑚 −
𝑅𝑞

𝛾
) is the service distribution 

irrespective of the users and applications. In the alternative 

sequence of state allocation, minimizing the response is 

discussed to reduce dense application and waiting latency. Fig. 

4 presents the state representative for the offloading and 

completion process. 

 

FIGURE 4. State Representation—Completion/ Offloading. 

 

The states are determined using the alternating and resource 

distribution states estimated for 𝐴0(𝛾) and 𝑅𝑠. This is 

validated for 𝐴𝑙𝑙𝑜𝑐(𝑚) and 𝜌𝑠 such that the wait time is not 

increased further. The wait time-induced processes are 

offloaded for further allocation, whereas the response time-

induced requests are termed as completed. This process is 

independently based on the federated stated for which the 

different states are assessed (Fig. 4). The service distribution 

is the process that follows either of the 𝑅𝑠 as in the above 

equation. It varies for both the 𝑅𝑠 as the initial stage and no 

more 𝑚 whereas the alternative sequences of states 

reallocation as (𝑚 − 𝑅𝑞) is the retaining process. From the 

discussion mentioned above in the allocation of states for 

𝜑𝑛 ∈ 𝑅𝑠 =
(𝑚+1)𝑅𝑞

𝑚
 is reliable, and it does not require waiting 

time. The completion time (𝐶𝑇) of a t in this process allocation 

is the considering metric, and it differs for each m depending 

on the processing capacity (𝑃𝑐). This completion time (𝐶𝑇) 

using equation (11) for 𝑅𝑠 in equation (10b) 

𝐶𝑇 =

{
 
 

 
 

𝑃𝑐
𝐴𝑙𝑙𝑜𝑐(𝑚)

, ∀𝑅𝑠 = 𝑅𝑞  𝑜𝑟 𝑅𝑠 =
(𝑚 + 1)𝑅𝑞

𝑚
, 𝑖𝑓 𝑟𝑠 < 𝑟𝑞

𝑃𝑐
𝐴𝑙𝑙𝑜𝑐(𝑚)

+
𝐴𝑜(𝛾, 𝑇𝑑)(𝜌𝑃𝑠 + 𝜌𝑃𝑛 − 𝜌𝑓)

𝐴𝑙𝑙𝑜𝑐(𝑁)
, 𝑖𝑓 ∀𝑅𝑠 =

2𝑅𝑞 +𝑚𝑅𝑞 + 𝑅𝑞
2

(𝑁 − 𝑟𝑞)

 (11) 

As in equation (11), 𝐶𝑇 ∈ [𝑇𝑅𝑞 , 𝑇𝑅𝑠] and the final solution of 

𝐶𝑇 (i.e.) (𝐶𝑇 ∗ 𝑅𝑞) is the maximum 𝑒𝑡𝑛 and service rate is 

increased for handling (𝑚 − 𝑅𝑞) requests. Hence, the process 

allocation of all 𝑡 ∈ 𝑅𝑞 increases both 𝜑𝑛 and 𝑒𝑡𝑛  ∀ 𝑖 ∈ 𝑅𝑞. 

This sequential process allocation reduces the waiting 

latencies and completion time and increases the distribution 

ratio and processing rate. Fig. 5 presents the analysis of 

allocation/ instance and its type for different requests. 

 

 

FIGURE 5. Allocation/ Instance and its Type for Different Requests. 
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Fig. 5 presents the analysis of allocation/ instance and its 

type for different requests. The target is to achieve less wait 

time for process 𝑎𝑙𝑙𝑜𝑐(𝑚), wherein 𝜌𝑝𝑛 is required for 

distinguishing 𝑅𝑆. If the 𝑎𝑙𝑙𝑜𝑐(𝑚) is interrupted by 𝑅𝑡 as in 

equation (10a), then 𝐴𝑜(𝛾, 𝑃𝐶) relies on the next sequence. 

This results in offloading as required for 
𝑡

𝑇𝑑
. Contrarily the 

sequence is split as 𝜃𝑖  ∀ 𝑖 ∈ 𝑡 in 𝜌𝑃𝑆  and hence completion is 

achieved. Therefore, the allocations (less) experience a 

constant allocation regardless of the alternating sequences. 

This is common for varying processes observed in 𝑆𝑅𝑞  before 

(
𝑡

𝑇𝑑
). An analysis for waiting, completion times, and states are 

presented in Fig. 6 for different allocations/instances in  

Fig. 6. 

 

FIGURE 6. Waiting, Completion Times, and States for different 
Allocation/ Instances. 

 

In Fig. 6, the waiting, completion time, and the states 

observed for different allocations/instances are analyzed. The  

𝜌𝑃𝑛  is required to validate 𝐴𝑜(𝛾) under 𝑎𝑙𝑙𝑜𝑐(𝑚). This is 

divided using 𝛾 and 𝑅𝑠 states that retain 𝑡 alternating 

allocations without reducing 𝑅𝑠 validations. In contrast to the 

allocations, 𝜌𝑃𝑠  is required for 𝜌𝑓 identification and hence,  𝜌𝑓 

Induced allocations are completed with fewer time intervals. 

Therefore, the change in allocations is performed without 𝑅𝑆 

hindrance and, therefore, 𝜌𝑃𝑆 (
𝑡

𝑇𝑑
) is mandatory for reducing 

𝑊𝑇𝑗  ∀ 𝑗 ∈ 𝐶𝑇. Hence the 𝜌𝑓 is observed from the consecutive 

sequences without increasing waiting allocations. Fig. 7 

presents an analysis of completion time under different states. 

 

FIGURE 7. Completion Time under Different States. 

 

An analysis of completion time for different states and 

processes is represented in Fig. 7. As the processes are fewer, 

𝜌𝑓 ∈ 𝜌𝑃𝑆  such that wait time is less and hence 𝐶𝑇 is less. If 

𝐴𝑜(𝛾) is not satisfied under 𝜌𝑓, then 𝜌𝑃𝑆 (
𝑡

𝑇𝑑
) is verified for 

𝑎𝑙𝑙𝑜𝑐(𝑚) and hence (𝑅𝑡) is estimated. If it does not meet the 

𝑅_𝑠, then 𝜌𝑃𝑛  is validated where the wait time is high, hence 

the completion time. By deciding 𝐴(𝛾) or 𝐴(𝑃𝐶), the 

consecutive allocation is validated without an increase in 

completion time. 

 

 
V. DISCUSSION 

 

The suggested technique's performance is examined using 

MATLAB experiments, considering 70 users sharing a 

common 6G resource. The service demands are processed and 

met using 9 service providers capable of handling 20 

processes. A total of 140 processes are considered for 

validating the performance. If an active process is offloaded 

after 240ms of wait time; hence, a new allocation is preferred. 

This setup considers the metrics of distribution ratio, latency, 

waiting time, and processing rate for analysis. The methods 

CAMUO [28], ACDRA [17], and PCTO [25] are considered 

in this analysis. 

A. DISTRIBUTION RATIO 
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FIGURE 8. Distribution Ratio Analysis. 

 

The distribution ratio is high in the suggested technique is 

great compared to the other factors (Refer to Fig. 8). In this 

framework, 𝜃𝑖 , 𝑆𝑅𝑞  and 𝑆𝑅𝑠 are the allocation of the process for 

identifying 𝐶𝑇. If case 1 occurs for improving 𝑅𝑠 based on 

𝜑𝑛 ∀ 𝑖 ∈ 𝑅𝑞 [as in equation (1)], then 𝐴 × 𝑅𝑞 and 𝑅𝑞 × 𝑡 are 

acceptable states is computed. Based on this implication, 𝐴 is 

determined. The Utmost 𝜌𝑓 due to 𝜌𝑃𝑠  and 𝜌𝑃𝑛  dense 

applications are considered. This consideration requires high 

service distributions, preventing multiple 𝐴𝑜(𝛾) process 

allocation and modifications. Hence, the 

offloading/completion to the user or application is 

administered as derived in equation (5) with 𝑊𝑇 

consideration. The first state allocation is performed; in the 

alternative allocations are estimated for which the  

[(𝑅𝑠 − 𝑅𝑞) 𝜌𝑓 − (
𝑅𝑠−𝑅𝑞

𝑚
) 
𝑊𝑇

𝑇𝑅𝑞
]  is alone validated. In this 

condition, the change in processing capacity in 
−𝑅𝑠+𝜌𝑓𝑅𝑞

√2𝜋𝛾2
 and 

its existing sequence 𝐴 > 𝑡 are mutually shared processing. 

This process helps in preventing additional waiting latency, as 

mentioned above. Therefore, for the 𝐴 > 𝑡, the 𝜃𝑖 validation, 

improving the existing state, the distribution ratio under 

discrete sequences is high. Based on the multiple allocations, 

𝑚 is estimated that combine 𝑡 such that 
𝑊𝑇

𝑇𝑅𝑞
  is presented. In 

the proposed framework, the processing relies on (𝑅𝑠 −

𝑅𝑞)𝜌𝑓 and hence the 𝛾 change waiting latencies are 

considerably less. 

 

 

B. LATENCY 

 

 

FIGURE 9. Latency Analysis. 

 

 

The proposed framework process waits for latency and 

completion time as it does not provide sequential process 

allocation for 6G-assisted applications. The alternative 

allocations are the demands and high sampling support 
(𝑚+1)𝑅𝑞

𝑚
 performed for 𝜑𝑛 ∈ 𝑅𝑠 in different 𝜑. This impact is 

addressed using the dense application 𝐴𝑜(𝛾) demands, 

preventing computation failures. The two different cases  
𝐴 × 𝑅𝑞 and 𝑅𝑞 × 𝑡 are analyzed without augmenting the 

service distributions. Similarly, the (𝑚 + 1) based state 

allocation requires 𝜑𝑛 and 𝑅𝑠 computation for occupying 

additional process allocation. The processing capacity 

sequence from 𝑅𝑠𝑡 to 𝑅𝑠𝑡−1  be performed for different 

(𝑅𝑠 − 𝑅𝑞)𝜌𝑓 validations, preventing extra service necessities. 

The 𝛾 performed service distributions, and 𝐴 > 𝑡 described 

demands are detached for further alternative process 

allocations, averting completion time and waiting latency. 

This proposed framework performs further process allocations 

and service distributions based on (𝑅𝑞 , 𝑅𝑠) for which a 

processing capacity 𝜌𝑓𝑅𝑞 is given. This is common for 𝜃𝑖, 𝑆𝑅𝑞  

and  𝑆𝑅𝑠  for which the framework attains less latency, as 

offered in Fig. 9. 

C. WAITING TIME 
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FIGURE 10. Waiting Time Analysis. 

 

The proposed framework needs less waiting time compared 

to the other factors. There are two prime cases for less waiting 

time in the suggested framework. First, the process allocation 

instance based on (𝑅𝑞 , 𝑅𝑠) and (𝑅𝑠𝑡−1 , 𝑅𝑠𝑡) is perceived as 

determining additional process allocation 𝜃𝑖. This service 

distribution augments the waiting time regardless of discrete 
(𝑚+1)𝑅𝑞

𝑚
 preventing 𝐴𝑜(𝛾) waiting latencies. In the 

contradictory process allocation, 2𝑅𝑞 +𝑚𝑅𝑞 + 𝑅𝑞
2 being the 

next reason identified for alternate process allocation. For the 

above-discussed cases, the waiting time is great due to  

𝜑𝑛 ∈ 𝑅𝑠 and prolonged 𝑚. To decrease this completion time 

factor, (𝑅𝑞 , 𝑅𝑠) to (𝑅𝑠𝑡−1 , 𝑅𝑠𝑡) under discrete 𝛾 and 𝐴 is 

repeatedly processed for the accessible state's allocation. The 

allocation of the process is modeled based on the discrete 

scenario. The proposed framework distinguishes the process 

capacity equation (3) from equations (10) and (11) for a 

sequence of allocations. The validation process limits the need 

for completion time, preventing extra time. Therefore, the 

waiting time for various users/applications and service 

distributions is reduced for high-performance computing, as 

illustrated in Fig. 10. 

D. PROCESSING RATE 

 

 

 

FIGURE 11. Processing Rate Analysis. 

 

This proposed framework achieves a high processing rate 

for various process allocations and service distributions (Refer 

to Fig. 11). The waiting latency is alleviated based on 
1

|𝑅𝑠−𝑅𝑞+1|
 

conditions for leveraging process allocation through high-

performance computing. The 𝑇𝑅𝑠  and 𝐶𝑇 based allocation of 

the process using previous and current system states 

performance 
𝑚−(𝜌𝑓∗𝑅𝑞)

𝑚+(𝜌𝑃𝑠)𝑅𝑞
  in identifying the waiting latency in 

(𝑅𝑞 , 𝑅𝑠) to (𝑅𝑠𝑡−1 , 𝑅𝑠𝑡) instances. Further, the 
2𝑅𝑞+𝑚𝑅𝑞+𝑅𝑞

2

(𝑚−𝑅𝑞)
 is 

performed for increasing the processing rate beyond the 

prolonged 𝐴 > 𝑡 and hence the 𝐴𝑜(𝛾) is increased. In the 

different allocation of states, the 𝑊𝑇 is performed for 

detecting waiting time in 𝐴 as in equation (8). Therefore, 

(𝑅𝑞 , 𝑅𝑠) to (𝑅𝑠𝑡−1 , 𝑅𝑠𝑡) be modified depending on 𝐴 > 𝑡; this 

process allocation has to satisfy two distinct cases for retaining 

the processing rate. First state (𝑅𝑞 , 𝑅𝑠) in both 𝑆𝑅𝑞 and  𝑆𝑅𝑠  

such that 𝐴𝑜(𝛾) is retained. As per the retained case 𝑚, 𝑅𝑞 is 

functioned based on [−𝑅𝑠 + 𝜌𝑓𝑅𝑞] and therefore, the 𝐴 > 𝑡 

is satisfied. If this condition is satisfied, processing capacity is 

increased to reduce the waiting latencies. In the alternative 

process allocations, (𝑅𝑠𝑡−1 , 𝑅𝑠𝑡) The process allocation and 

offloading based on service distributions are defined. In this 

proposed scheme, the defined 𝛾 is aided for 𝑚 and 𝑅𝑞 

validation for improving the process allocation. This leads to 

further alternative process allocation in the assisted 

applications and 𝑡. Tables 2 and 3 provide the comparative 

analysis summary for the above discussion. 
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TABLE 2 

COMPARATIVE ANALYSIS FOR PROCESSES 

Metrics CAMUO ACDRA PCTO CAPOM 

Distribution Ratio 81.75 85.42 89.75 92.143 

Latency (ms) 959.76 750.65 539.61 374.606 

Wait time (ms) 338.41 286.67 212.11 119.179 
Processing Rate 0.8592 0.9005 0.9401 0.9735 

 

Inference: The proposed method maximizes the distribution 

ratio and processing rate by 6.5% and 7.36%, respectively. In 

order, it reduces the latency and waits time by 8.34% and 

9.55% 

 
TABLE 3 

COMPARATIVE ANALYSIS OF CAPACITY 

Metrics CAMUO ACDRA PCTO CAPOM 

Distribution Ratio 81.69 86.53 90.13 92.847 

Latency (ms) 963.03 746.84 558.32 343.377 
Wait time (ms) 344.14 274.56 187.91 127.586 

Processing Rate 0.878 0.9085 0.9388 0.9518 

 

Inference: The proposed CAPOM achieves a 6.73% high 

distribution ratio, 9.09% less latency, 8.76% less wait time, 

and 8.67% high processing rate. 

 
VI. CONCLUSION 

 

A confluence-aided process organization method using 

high-performance computing in 6G service processing is 

presented in this article. The service demand to resource 

allocation process consists of two states: completion and 

offloading to identify backlogs. The admitted and offloaded 

processes are independently classified based on first and 

alternating sequences. Based on the waiting time and 

allocation probability, the states are updated to improve 

service distribution. For ease of processing and allocation, the 

resource capacity and its corresponding completion time are 

accounted for, which modifies the current state. Based on 

classified independent states, the allocations and processing 

are performed, reducing the latency for multi-process 

distributions. The proposed CAPOM achieves a 6.73% higher 

distribution ratio for various capacities, a 9.09% reduction in 

latency, an 8.76% reduction in wait time, and an 8.67% higher 

processing rate. 

 

ACKNOWLEDGEMENT 

The authors would like to thank the Centre for Research and 

Innovation Management (CRIM) at Universiti Teknikal 

Malaysia Melaka (UTeM) for their support in this research. 

 

REFERENCES 

 
[1] J. Cao, W. Feng, N. Ge, and J. Lu, "Delay 

Characterization of Mobile-Edge Computing for 6G 

Time-Sensitive Services," IEEE Internet of Things 

Journal, vol. 8, no. 5, pp. 3758-3773, 2020. 

[2] D. Spatharakis, I. Dimolitsas, D. Dechouniotis, G. 
Papathanail, I. Fotoglou, P. Papadimitriou, and S. 

Papavassiliou, "A scalable edge computing architecture 

enabling smart offloading for location based services," 

Pervasive and Mobile Computing, vol. 67, p. 101217, 

2020. 

[3] M. Idrees, M. M. Maqbool, M. K. Bhatti, M. M. U. 
Rahman, R. Hafiz, and M. Shafique, "An approximate-

computing empowered green 6G downlink," Physical 

Communication, vol. 49, p. 101444, 2021. 
[4] K. Wang, X. Wang, and X. Liu, "A High Reliable 

Computing Offloading Strategy Using Deep 

Reinforcement Learning for IoVs in Edge Computing," 
Journal of Grid Computing, vol. 19, no. 2, pp. 1-15, 2021. 

[5] L. Zhang, S. Zhuge, Y. Wang, H. Xu, and E. Sun, 

"Energy-Delay Tradeoff for Virtual Machine Placement 
in Virtualized Multi-Access Edge Computing: A Two-

Sided Matching Approach," Pervasive and Mobile 

Computing, vol. 67, p. 101217, 2021. 
[6] T. K. Rodrigues, J. Liu, and N. Kato, "Application of 

cybertwin for offloading in mobile multiaccess edge 

computing for 6G networks," IEEE Internet of Things 
Journal, vol. 8, no. 22, pp. 16231-16242, 2021. 

[7] Z. Zhou, M. Shojafar, J. Abawajy, and A. K. Bashir, 

"IADE: An Improved Differential Evolution Algorithm 
to Preserve Sustainability in a 6G Network," IEEE 

Transactions on Green Communications and Networking, 

vol. 5, no. 4, pp. 1747-1760, 2021. 
[8] T. R. Raddo, S. Rommel, B. Cimoli, C. Vagionas, D. 

Perez-Galacho, E. Pikasis, et al., "Transition technologies 
towards 6G networks," EURASIP Journal on Wireless 

Communications and Networking, vol. 2021, no. 1, pp. 1-

22, 2021. 
[9] Y. Wei, M. Peng, and Y. Liu, "Intent-based networks for 

6G: Insights and challenges," Digital Communications 

and Networks, vol. 6, no. 3, pp. 270-280, 2020. 
[10] H. Li, F. Fang, and Z. Ding, "Joint resource allocation for 

hybrid NOMA-assisted MEC in 6G networks," Digital 

Communications and Networks, vol. 6, no. 3, pp. 241-
252, 2020. 

[11] T. K. Rodrigues, K. Suto, and N. Kato, "Edge cloud 

server deployment with transmission power control 
through machine learning for 6G internet of things," 

IEEE Transactions on Emerging Topics in Computing, 

vol. 7, no. 4, pp. 648-657, 2019. 
[12] A. Shakarami, A. Shahidinejad, and M. Ghobaei-Arani, 

"An autonomous computation offloading strategy in 

Mobile Edge Computing: A deep learning-based hybrid 
approach," Journal of Network and Computer 

Applications, vol. 178, p. 102974, 2021. 

[13] S. Tang, W. Zhou, L. Chen, L. Lai, J. Xia, and L. Fan, 
"Battery-constrained federated edge learning in UAV-

enabled IoT for B5G/6G networks," Physical 

Communication, p. 101381, 2021. 
[14] A. Mekrache, A. Bradai, E. Moulay, and S. Dawaliby, 

"Deep reinforcement learning techniques for vehicular 

networks: recent advances and future trends towards 6G," 
Vehicular Communications, p. 100398, 2021. 

[15] J. Wang and Y. Zhang, "Using cloud computing platform 

of 6G IoT in e-commerce personalized recommendation," 
International Journal of System Assurance Engineering 

and Management, pp. 1-13, 2021. 

[16] C. X. Mavromoustakis, G. Mastorakis, and J. M. Batalla, 
"A mobile edge computing model enabling efficient 

computation offload-aware energy conservation," IEEE 

Access, vol. 7, pp. 102295-102303, 2019. 
[17] K. Lin, Y. Li, Q. Zhang, and G. Fortino, "AI-Driven 

Collaborative Resource Allocation for Task Execution in 

6G-Enabled Massive IoT," IEEE Internet of Things 
Journal, vol. 8, no. 7, pp. 5264-5273, 2021. 

[18] G. Yoon, G. Y. Kim, H. Yoo, S. C. Kim, and R. Kim, 

"Implementing Practical DNN-Based Object Detection 
Offloading Decision for Maximizing Detection 

Performance of Mobile Edge Devices," IEEE Access, 

vol. 9, pp. 140199-140211, 2021. 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3310808

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

 

[19] H. Xu, P. V. Klaine, O. Onireti, B. Cao, M. Imran, and L. 

Zhang, "Blockchain-enabled resource management and 

sharing for 6G communications," Digital 
Communications and Networks, vol. 6, no. 3, pp. 261-

269, 2020. 

[20] P. Yan and S. Choudhury, "Deep Q-learning enabled joint 
optimization of mobile edge computing multi-level task 

offloading," Computer Communications, vol. 180, pp. 

271-283, 2021. 
[21] S. Khan, A. Hussain, S. Nazir, F. Khan, A. Oad, and M. 

D. Alshehri, "Efficient and reliable hybrid deep learning-

enabled model for congestion control in 5G/6G 
networks," Computer Communications, vol. 182, pp. 31-

40, 2022. 

[22] Y. Zhang and J. Fu, "Energy-efficient computation 
offloading strategy with tasks scheduling in edge 

computing," Wireless Networks, vol. 27, no. 1, pp. 609-

620, 2021. 
[23] A. Mukherjee, N. Dey, A. Mondal, D. De, and R. G. 

Crespo, "iSocialDrone: QoS aware MQTT middleware 

for social internet of drone things in 6G-SDN slice," Soft 
Computing, pp. 1-17, 2021. 

[24] A. Naouri, H. Wu, N. A. Nouri, S. Dhelim, and H. Ning, 

"A Novel Framework for Mobile-Edge Computing by 
Optimizing Task Offloading," IEEE Internet of Things 

Journal, vol. 8, no. 16, pp. 13065-13076, 2021. 
[25] F. Alqahtani, M. Al-Maitah, and O. Elshakankiry, "A 

proactive caching and offloading technique using 

machine learning for mobile edge computing users," 
Computer Communications, vol. 181, pp. 224-235, 2022. 

[26] K. Chakrabarti, "Deep learning based offloading for 

mobile augmented reality application in 6G," Computers 
& Electrical Engineering, vol. 95, p. 107381, 2021. 

[27] K. Guo and R. Zhang, "Fairness-oriented computation 

offloading for cloud-assisted edge computing," Future 
Generation Computer Systems, vol. 128, pp. 132-141, 

2022. 

[28] A. Shahidinejad, F. Farahbakhsh, M. Ghobaei-Arani, M. 
H. Malik, and T. Anwar, "Context-Aware Multi-User 

Offloading in Mobile Edge Computing: A Federated 

Learning-Based Approach," Journal of Grid Computing, 
vol. 19, no. 2, pp. 1-23, 2021. 

[29] Z. Chen and X. Wang, "Decentralized computation 

offloading for multi-user mobile edge computing: A deep 
reinforcement learning approach," EURASIP Journal on 

Wireless Communications and Networking, vol. 2020, 

no. 1, pp. 1-21, 2020. 
[30] E. B. Ali, S. Kishk, and E. H. Abdelhay, "Multi-device 

Multi-Task Computation Offloading in Device to Device 

Communication," Wireless Personal Communications, 
pp. 1-14, 2021. 

[31] A. B. Kathole, J. Katti, D. Dhabliya, V. Deshpande, A. S. 

Rajawat, S. B. Goyal, M. S. Raboaca, T. C. Mihaltan, C. 
Verma, and G. Suciu, "Energy-Aware UAV Based on 

Blockchain Model Using IoE Application in 6G 

Network-Driven Cybertwin," Energies, vol. 15, no. 21, p. 
8304, 2022. 

[32] J. Chen, B. Qian, Y. Xu, H. Zhou, and X. S. Shen, 

"Towards user-centric resource allocation for 6G: An 
economic perspective," IEEE Network, 2022. 

[33] H. Alsulami, S. H. Serbaya, E. H. Abualsauod, A. M. 

Othman, A. Rizwan, and A. Jalali, "A federated deep 
learning empowered resource management method to 

optimize 5G and 6G quality of services (QoS)," Wireless 

Communications and Mobile Computing, 2022. 
[34] F. Dong, F. Liu, Y. Cui, W. Wang, K. Han, and Z. Wang, 

"Sensing as a service in 6G perceptive networks: A 

unified framework for ISAC resource allocation," IEEE 
Transactions on Wireless Communications, 2022. 

[35] Q. Guo, F. Tang, and N. Kato, "Federated Reinforcement 

Learning-Based Resource Allocation in D2D-Enabled 
6G," IEEE Network, 2022. 

[36] M. Sheng, D. Zhou, W. Bai, J. Liu, H. Li, Y. Shi, and J. 

Li, "Coverage enhancement for 6G satellite-terrestrial 

integrated networks: performance metrics, constellation 
configuration and resource allocation," Science China 

Information Sciences, vol. 66, no. 3, p. 130303, 2023. 

[37] M. Ashwin, A. S. Alqahtani, A. Mubarakali, and B. 
Sivakumar, "Efficient resource management in 6G 

communication networks using hybrid quantum deep 

learning model," Computers and Electrical Engineering, 
vol. 106, p. 108565, 2023. 

[38] A. Thantharate and C. Beard, "ADAPTIVE6G: Adaptive 

Resource Management for Network Slicing Architectures 
in Current 5G and Future 6G Systems," Journal of 

Network and Systems Management, vol. 31, no. 1, pp. 9, 

2023. 
[39] W. Han, X. Wang, and J. Mei, "EDI-Driven Multi-

Dimensional Resource Allocation for Inclusive 6G 

Communications," IEEE Networking Letters, 2023. 

 

 

JAMIL ABEDALRAHIM JAMIL 
ALSAYAYDEH (Member, IEEE) received a 

degree in computer engineering from Zaporizhzhia 

National Technical University, Ukraine, in 2009, an 
M.S. degree in computer systems and networks 

from Zaporizhzhia National Technical University, 

Ukraine, in 2010 and Ph.D in Engineering Sciences 
with a specialization in Automation of Control 

Processes from National Mining University, 

Ukraine, in 2014. He is currently a Senior Lecturer 
at the Department of Electronics and Computer 

Engineering Technology, Faculty of Engineering Technology Electrical and 

Electronic, Universiti Teknikal Malaysia Melaka (UTeM) since 2015. He is 
a research member at Center for Advanced Computing Technology, his 

research interests are formal methods, simulation, Internet of Things, 

Computing Technology, Artificial Intelligence and Machine Learning: 
Computer Architecture, Algorithms, and Applications, where he is the 

author/co-author of over 40 research publications which cited by over 88 

documents. He supervised undergraduate and postgraduate students and he 
is a reviewing member of various reputed journals. Currently he actively 

publishes research articles, received grants from the government and private 

sectors, universities and international collaboration. He is also as a Member 
of Board of Engineers Malaysia (BEM). He can be contacted at email: 

jamil@utem.edu.my. 

 

IRIANTO receive the PhD degree in Applied and 
Computational Statistics from Universiti Putra 

Malaysia, in April 2021. Since graduation from 

his master degree in 2009 he started to teach at 
several universities in Indonesia. From 2012 to 

2021, he was a lecturer at Faculty of Engineering 

Technology, Universiti Teknikal Malaysia 
Melaka. In 2021 he was Assistant Professor at 

American International University, Kuwait. And 

Since 2022 he is an Assistant professor at Rabdan 
Academy and Zayed Military University, UAE. 

His research interest is applied mathematics, and 

Multivariate Statistical Process Control. He can be 

contacted at email: iharny@ra.ac.ae.  

 

 
 

 

 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3310808

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

 

 
SAFARUDIN GAZALI HERAWAN is a 

currently a Senior Lecturer at the Bina Nusantara 

University, Jakarta, Indonesia. His current 
research interest includes automotive engineering, 

renewable energy and heat recovery technologies, 

where he is the author/co-author of over 80 
research publications which cited by over 290 

documents. He can be contacted at email: 

safarudin.gazali@binus.edu. 
 

 

 
 

 

 

 

 

 
AHMED JAMAL ABDULLAH AL-GBURI 
received his M.Eng and Ph.D. degrees in 

Electronics and Computer Engineering 
(Telecommunication systems) from Universiti 

Teknikal Malaysia Melaka (UTeM), Malaysia, in 

2017 and 2021, respectively. He is currently a 
senior lecturer at the Faculty of Electrical and 

Electronic Engineering Technology (FTKEE). He 

was also a Postdoctoral Fellow from December 
2021 to March 2023 with the Microwave research 

group (MRG) at the Faculty of Electronics and 

Computer Engineering, UTeM. He has authored 
and co-authored several journals and proceedings. His research interests 

include Microwave sensors, Metasurfaces, UWB antennas, array antennas, 

and miniaturized antennas for UWB and 5G applications. He has received 
the Best Paper Award from the IEEE Community and won a number of gold, 

silver, and bronze medals in international and local competitions. He can be 

contacted at email: ahmedjamal@utem.edu.my. 
 

 

 

 

 

 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3310808

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/


