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Abstract: The determination of the probe viewpoint forms an essential step in
automatic echocardiographic image analysis. However, classifying echocardio-
grams at the video level is complicated, and previous observations concluded that
the most significant challenge lies in distinguishing among the various adjacent
views. To this end, we propose an ECHO-Attention architecture consisting of
two parts. We first design an ECHO-ACTION block, which efficiently encodes
Spatio-temporal features, channel-wise features, and motion features. Then, we
can insert this block into existing ResNet architectures, combined with a self-
attention module to ensure its task-related focus, to form an effective ECHO-
Attention network. The experimental results are confirmed on a dataset of
2693 videos acquired from 267 patients that trained cardiologist has manually
labeled. Our methods provide a comparable classification performance (overall
accuracy of 94.81%) on the entire video sample and achieved significant improve-
ments on the classification of anatomically similar views (precision 88.65% and
81.70% for parasternal short-axis apical view and parasternal short-axis papillary
view on 30-frame clips, respectively).

Keywords: Artificial intelligence; attentionmechanism; classification; echocardiogram
views

1 Introduction

Echocardiography plays a vital role in diagnosing and treating cardiovascular diseases. It is the only
imaging method that allows real-time and dynamic observation of the heart and immediate detection of
various cardiac abnormalities [1]. However, accurate quantitative evaluation of cardiac structure has been
a problem due to the operators’ manipulation and the interpretation of echocardiography. For example,
there are considerable differences among operators, especially for poor-quality images [2]. It has been
proved that the differences between operators and within operators can be reduced with deep learning-
based methods. We usually humans subconsciously perform specific steps during each examination. The
first critical preprocessing stage is the mode or view classification. Automating this task provides two
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leading advantages. Initially, it can foster the organization, storage as well as retrieval of echo images. In the
second place, it dominates a key role in the evaluation of the following researches. For instance, measuring
the function of a specific valve needs the knowledge of the view beforehand for the reason that different
perspectives reveal different valves [3].

Several investigators reported excellent accuracy with utilizing neural network architectures for feature
extraction and classification. Representatives of conventional convolutional neural network architectures that
have been employed for cardiac view classification contain VGG (Visual Geometry Group), InceptionNet,
and ResNet. For example, Zhang et al. developed their previous VGG-like modeling in order to tell from
23 different echo views [4]. The codes and model weights for both works can be obtained via the
Internet. In the same way, Madani et al. employed a VGG-based model with the aim to recognize
15 different echo views. The final layer of VGG-16 carries out classification using the Softmax function
with the use of 15 nodes [5]. Another cardiac view classification architecture is created on the basis of
InceptionNet and put forward to tell from 7 B-mode views [6]. Instead of merely making the extraction
of deep characteristics from static images, Gao et al. integrated the output of temporal networks—takes as
input the acceleration image, generated by the application of optical flow twice—with that from the
spatial stream to classify echocardiogram videos [7]. Recently, we reported on our newly developed view
classification architecture driven by action video recognition using a brand-new echocardiogram dataset
of the Asian race. In this model, there were 5.7% mislabeled samples on the test set [8].

Current deep learning-based methods for view classification obtained satisfying performance in
comparison with the human inter-observer (overall accuracy: around 92%–98% for 7–23 cardiac views).
However, upon inspection of the misclassified samples from the literature above, we found that some
improvements are needed in the anatomically adjacent imaging planes—like parasternal short-axis views
—that are difficult even for experts to judge. Take the papillary muscle level of PSAX (Parasternal Short-
Axis) as an example, the left ventricle appears around, and the right ventricular cavity spears semilunar
similar to the mitral valve level. The distinctive papillary muscles can only be identified as round
structures that bulge into the left ventricular cavity. Furthermore, at the mitral valve level of PSAX, the
mitral leaflets are most clearly seen as open nearly to the entire cross-sectional area of the left ventricle in
diastole. But during the systole period, the left ventricular cavity gradually shrinks and becoming
challenging to observe the fish-mouth mitral valves.

According to the problems mentioned above and limitations, our study aimed to adopt the attention
mechanism for designing efficient neural networks. However, admittedly, no other research has applied
the attention mechanism to the complex problem of echocardiographic view classification.

We have previously reported preparing and annotating a large patient dataset, covering a range of
pathologies and including nine different echocardiographic views, which we used to evaluate our early
proposed CNN (convolutional neural network) architectures [8]. In this study, we still use this dataset to
design a customized network architecture for the task of echo view classification.

In light of the above, the following presents the leading contributions of the current work:

i) Inspired by the Spatio-temporal, Channel and Motion Excitation (ACTION) module proposed by
Wang et al., we design an ECHO-ACTION block that also works in a plug-and-play manner,
which can extract appropriate Spatio-temporal patterns, channel-wise features, and motion
information to identify the echocardiographic video class. In addition, we adopted a second
difference to learning further the motion information inside the network based on the feature level.

ii) The electrocardiogram records heart muscle activity, and differentiating features are most apparent
at certain moments. Therefore, our whole ECHO-Attention network employs a self-attention layer
after the feature extraction architecture to let the model focus on different phases of a cardiac cycle
when making the prediction of the view class. The self-attention module works by comparing
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every still image to every other frame in the clips, including itself, and reweighing the feature
extraction of each frame to include contextual relevance.

iii) We have demonstrated our proposed ECHO-ACTION module on two different backbones, i.e.,
ResNet-18 and ResNet-50, and conducted extensive experiments to demonstrate that the
proposed method surpasses some advanced neural architectures including CNN+BiLSTM (Bi-
directional Long Short-Term Memory) and SpatioTemporal-BiLSTM [8].

2 Attention Mechanism in Deep Learning

Attention mechanism has a substantial and far-reaching impact on deep learning, and it is widely used in
various fields. Based on the idea that we need to attend to a specific part of an extensive input (e.g., some
words in a sentence of regions in an image) when processing it, the attention mechanism became one of
the most powerful concepts. Each element composing the input may have different relevance to the task
we are solving: for instance, in machine translation, each word in the source sentence can be more or less
relevant for translating the next term; in image captioning, the background regions of an image can be
irrelevant to describe an object but crucial to characterize the landscape. To solve this problem, the
prevailing solution consists of using attention mechanisms by automatically learning the relevance of any
element of the input, i.e., by generating a set of weights (one per element of the input) and take them into
account while performing the proposed task.

2.1 Visual Attention Mechanism

Although attention mechanisms were first introduced in NLP (Neuro-Linguistic Programming) for
machine translation [9], previous work by Larochelle et al. [10] in Computer Vision had already proposed
an object recognition model that learns where to look from scratch using glimpses, inspired by the idea
that biological vision systems need to sequentially fixate relevant parts for a specified task because their
retina has a limited resolution that falls very quickly with eccentricity. Later, when the work by Mnih
et al. [11]—a novel neural network model capable of processing only a selected sequence of regions in
an image or video—outperformed state of the art in both static vision tasks (e.g., image classification)
and dynamic visual environments (e.g., object tracking), visual attention mechanisms gained popularity.

2.1.1 Hard and Soft
According to the related works mentioned previously, visual attention can be categorized into two

classes: hard and soft. Hard attention mechanisms rely on a controller to select the relevant parts of the
input, mechanisms like these are not differentiable end-to-end and, for that reason, cannot be trained with
the standard backpropagation algorithm. Instead, they require the use of reinforcement learning
techniques [12]. Although these models perform well on simple datasets, it has not been easy to use them
in real-world applications. To make training easier, soft attention mechanisms commonly used for natural
language tasks were introduced in tasks that also require vision (e.g., image captioning and visual
question answering). These mechanisms are fully differentiable: they can be plugged in neural networks
and trained end-to-end with a gradient backpropagation algorithm [13]. The basic soft-attention network
framework is shown in Fig. 1.

2.2 Classification of Video Using Visual Attention

Convolutional Neural Networks have proven to be extremely effective in image classification. The
classification of videos rather than images enhances a temporal dimension to the issue of image
classification. However, learning temporal dynamics remains a complicated issue. Previous time-series
modeling methods have employed LSTMs (Long Short Term Memory networks), optical flow, fused
networks as well as hand-crafted features to yield descriptors with both appearance and dynamics
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information encoded [14]. Recent work has shown that the advancement of effective attention architectures
in computer vision believes the stimulating prospect of finding models possess different and perhaps
complementary features to convolutional networks [15]. In this section, we review newly emerging
methods by using attention operations developed for video classification applications.

2.2.1 Non-local Neural Networks
This approach is inspired by non-local means operation, which was mostly designed for image

denoising. In addition, it also chooses distant pixels to make contributions to the filter response on the
basis of the similarity between the patches. By this self-attention design, it computes responses based on
long-range dependencies in the image space. Non-local neural networks demonstrated that the core
attention mechanism in Transformers could produce good results on video tasks. However, it is confined
to processing only short clips [16].

2.2.2 LSTMs with Attention
Sharma et al. put forward a soft-attention-based model for action recognition in videos, learning which

parts in the frames are related to the task at hand and lays stronger emphasis on them as well as categorizes
videos after taking a few glimpses [14]. However, the soft-attention models proposed using weighted
averages are even computationally costly since they expect all the features to conduct dynamic pooling.

2.2.3 Video Transformer Network
Neimark et al. propose Video Transformer Network (VTN) that first obtain frame-wise features using 2D

CNN and apply a Transformer encoder (Longformer) on top to learn temporal relationships. Longformer is
an attractive choice to process sequences with an arbitrary length n due to its complexity, making VTN
particularly suitable for modeling long videos where interactions between entities are spread throughout

Figure 1: The basic soft-attention network structure

1200 IASC, 2022, vol.33, no.2



the video length. The classification token [CLS] is passed through a fully connected layer to recognize
actions or events [17].

2.2.4 Action-net
Spatial-temporal, channel-wise, and motion patterns are regarded as three complementary and crucial

types of information for video recognition. Therefore, Wang et al. introduced a novel ACTION module
composing of the following three paths, respectively, Spatio-Temporal Excitation (STE) path, Channel
Excitation (CE) path, and Motion Excitation (ME) path. The experiments on action recognition datasets
with various backbones show competitive performance [18].

3 Approach

The current section presents technical details for our proposed network architecture. Firstly we describe
an ECHO-ACTION block that utilizes multipath excitation for Spatio-temporal features, channel-wise
features, and motion features of the cardiac cycle activity. This block can be inserted into existing ResNet
architecture (here we demonstrate on ResNet-18 and ResNet-50) to form our ECHO-Attention model.
Afterward, a self-attention module is added after the feature extraction to ensure the model focuses on
task-related time steps.

3.1 Spatio-Temporal Module and Channel Module

The Spatio-Temporal module (STM) and Channel module (CM), as both shown in Fig. 2, are designed
very similarly to Spatio-Temporal Excitation (STE) and Channel Excitation (CE) in ACTION-Net [18]. The
main difference is that our input tensor is 4D, i.e., (N × T, C, H, W). For STM, it generates a Spatio-temporal
mask M used for element-wise multiplying the input X across all channels. The final output can be
interpreted as Eq. (1). For CM, another channel mask M is obtained, and its output is formulated as the
same as in Eq. (1) using the newly generated mask.

Y ¼ X þ X �M (1)

3.2 Motion Module

Our Motion module (MM) is inspired by Motion Excitation (ME) previously [18], which aims to
calculate feature-level temporal differences. However, unlike previous work that proposed a block form
extracting only adjacent frame motions, we use the MM to integrate further with the second difference to
generate a stronger motion information.

As illustrated in Fig. 3, firstly, the motion information is modeled by the two successive frames. Then,
we adopt the squeeze strategy by using 1 × 1 2D convolutional layers and batch normalization, referred to as
Eqs. (2) and (3).

Xr ¼ K1 � X (2)

Xb ¼ batchnorm Xrð Þ (3)

where K1 is a 1� 1 2D convolutional layer, and we squeeze the number of channels by a scale ratio of 16 in
this work.

Given the feature Xb, we processed splitting along the time direction to get Xb = [Xb 1ð Þ, … , Xb tð Þ], and
meanwhile, the motion feature Xb is modeled the following operations, represented as the Eqs. (4) and (5).

Xc ¼ K � Xb (4)

Xc ¼ Xc 1ð Þ; . . . ;Xc tð Þ½ � (5)
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Figure 2: (a) Spatio-temporal module (STM), (b) Channel module (CM)

The first difference of motion information takes place following, which can be formulated as Eq. (6).
According to the temporal dimension, the motion feature is then concatenated to each other, and zero is
padded to the first element. The Xd is then processed by spatial average pooling, and the feature output
and the mask can finally be achieved similarly as in Eq. (1).

Xd ¼ Xc t þ 1ð Þ � Xb tð Þ (6)

In order to obtain a more powerful motion information generator, we decided to apply the second
difference method. To calculate the second difference, the given motion feature Xd is reshaped and fed to
a 2D convolutional layer with kernel size 3� 3 to get Xe. We then select 2 consecutive feature values on
the time domain and process subtraction to get the second difference values, which can be represented as
the Eq. (7), followed by zero-padding to the first two elements, average spatial pooling, 1� 1 2D
convolutional layer, and sigmoid to get attention map, as described before for the first difference method.

Xf ¼ Xe t þ 1ð Þ � Xe tð Þ (7)
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3.3 ECHO-ACTION Block

The overall ECHO-ACTION module takes the element-wise addition of three excited features generated
by STM, CM, and MM, respectively (see ECHO-ACTION block in Fig. 4). By doing this, the output of the
ECHO-ACTION block can perceive information from a Spatio-temporal perspective, channel
interdependencies, and motion. Therefore, multi-type information in videos can be activated through this
hybrid attention mechanism. Due to the fact that the ECHO-ACTION block proposed in this study is
consistent with the ordinary residual block, it is not difficult for us to incorporate it into any current
ResNet architecture in order to construct our new network. The following section will focus on the
general architecture of the ECHO-Attention network.

Figure 3: Motion module (MM)
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3.4 Architecture

Our proposed ECHO-Attention network architecture for ResNet-50 is shown in Fig. 5, and it mainly
consists of two parts. The echo frames as input first pass through the ResNet-50 backbone together with
the ECHO-ACTION block, wherein the ECHO-ACTION block is inserted at the beginning of each
residual block. And it does not require any modification for the original components in the block. This
partial framework is used to generate the multi-type information by effectively adopting multipath excitation.

A multi-head self-attention mechanism is then adopted to make the network discover the feature vectors
that should receive more attention. Here the self-attention sublayers employ 8 attention heads. The results
from each head are concatenated to form the sublayer output, and a parameterized linear transformation is
applied [19].

The last encoding part maps the input video frame to a tensor with dimension (N × 30, 512), which are
treated as an input sequence that each attention head operates on. The input x ¼ x1; . . . ; x30ð Þ of 30 elements
in which xi is a 512-D vector is used to compute a new sequence z ¼ z1; . . . ; z30ð Þ of the same length in
which zi is also a 512-D vector.

Each output element, zi, is computed as a weighted sum of linearly transformed input elements,
shown in Eq. (8).

zi ¼
X30
j¼1

aij xjW
V

� �
(8)

Each weight coefficient, aij; is computed using a SoftMax function as Eq. (9).

aij ¼
exp eij

� �
P30

k¼1 exp eikð Þ (9)

And eij is computed using a compatibility function that compares two input elements, shown
in Eq. (10).

eij ¼
xiWQ
� �

xjWK
� �T
ffiffiffiffi
dz

p (10)

A scaled dot product was chosen for the compatibility function, which enables efficient computation. In
addition, linear transformation of the inputs adds sufficient expressive power [20]. WQ, WK , WV are
parameter matrices. The above parameter matrices have special per layer and attention head.

Figure 4: ECHO-ACTION block
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Each element of the obtained new sequence z ¼ z1; . . . ; z30ð Þ is finally mapped to a fully connected
layer of ten nodes, corresponding to ten probabilities for each processed image. The arithmetic mean of
categories determines the final predicted label over these 30 consecutive frames.

Figure 5: ECHO-Attention for ResNet-50 architecture
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4 Experiments

Pytorch was utilized to implement the models. For the computationally intensive stage of video analysis,
a GPU (Graphics Processing Unit) server equipped with two NVIDIA A100 with 40 GB of memory was
rented. Additionally, each GPU has a mini-batch of 4 video clips. Here, a detailed description of
experimental implementation is provided.

4.1 Datasets Introduction

In this section, a brief account of the patient dataset used is provided. Our study discusses two main
imaging windows during a standard echocardiographic examination: the parasternal and apical windows.
First, the parasternal and apical windows can be acquired with the patient positioned in the left lateral
decubitus position, considering that the patient is capable of assuming this position. Then a sequential
series of images are obtained in each window and used to assess the cardiac functions from different
perspectives. Here we aimed at including subclasses of given echocardiographic views, which are
outlined in Fig. 6. In general, the more numerous the view classes, the more complex the task of
differentiating the views for the deep learning model.

Figure 6: Inclusion of 9 different anatomical echocardiographic views: apical two-chamber (A2C), apical
three-chamber (A3C), apical four-chamber (A4C), apical five-chamber (A5C), parasternal long-axis
(PLAX), parasternal short-axis aortic valve focused (PSAX-AV), parasternal short-axis apical focused
(PSAX-AP), parasternal short-axis mitral valve focused (PSAX-MV), and parasternal short-axis papillary
focused (PSAX-MID); A class of “others” is also investigated for other cardiac aspects
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All the involved datasets were acquired and de-identified, with waived consent in accordance with the
Institutional Review Board (IRB) at a private hospital in Malaysia. The acquisition of the images was
conducted by experienced echocardiographers and, based on the standard regulations and guidelines with
the use of ultrasound equipment from Philips manufacturer. Only studies with whole patient demographic
data and without intravenous contrast administration were covered.

In DICOM (Digital Imaging and Communications in Medicine) format, random echocardiogram studies
of 267 patients and their associated video loops, together 2693, were extracted from the current hospital’s
echocardiogram database. Videos considered to show no identifiable echocardiographic features or which
depicted more than one view were excluded. Among these, 2443 (90.7%) videos with the following
classes are selected and annotated manually by a board-certified echocardiographer, finally categorized
into nine different folders: PLAX, PSAX-AV, PSAX-MV, PSAX-AP, PSAX-MID, A4C, A5C, A3C, and
A2C, and along with the “OTHERS” to put the remaining 250 videos because usually, a comprehensive
study comprises more required views and measurements, such as Suprasternal (SSN) and Subcostal (SC).
The relative distribution of echo view classes labeled by expert cardiologists is displayed in Fig. 7.

4.2 Preprocessing

Each DICOM-formatted echocardiogram video comes with a set of interfering visual features and is less
relevant for view identification, such as class labels, patient digital identifiers, study duration, etc. Therefore,
we employed field of view segmentation proposed in our previous work [8] as preprocessing to localize
relevant visual features and also simplify the classification task.

4.3 Implementation Details

Fig. 8 depicts the overview of the training procedure for this study. After prior processing, the dataset
was randomly divided into training, validation, and testing sub-datasets in a 2.5:1:1 ratio. Each sub-datasets
contained clips from separate patient studies to maintain sample independence. Then each complete sample
video is cut into several 30-frame short clips with an interval of 5 frames, and the datasets descriptions are
given in Tab. 1.

Figure 7: Distribution of numbers of video samples in a given class
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All the 30-frame echocardiographic segments are converted to consecutive 30 frames for the following
training processing. The original resolution of each frame is 600 × 800. Meanwhile, a series of data
argumentation strategies—a random crop with a scale of 0.75 to 1, rotations of up to 20 degrees, and
horizontal/vertical flips—are applied. Each cropped frame was finally resized to 299 × 299, which was
used for training the model. Thus, the input fed to the model is of the size 8 × 30 × 3 × 299 × 299, in
which 8 is the batch size.

Our proposed network is trained in the following three phases: 1) Pre-training the ResNet-50 model with
the echocardiographic sample dataset for 20 epochs; 2) Pre-training the ResNet-50 backbone and the ECHO-
ACTION block for 10 epochs. In this stage, the weights saved from the last step were applied as the
initialization for the ResNet-50 part; 3) Training the parameters of the entire network for 10 epochs. Like
stage 2, we save the weights learned before, and the dropout of probability 0.3 was added to the self-
attention module. The learning rates of these three stages were set to 1e�3, 1e�4, and 1e�5 separately, and
an ADAM (Adaptive Momentum Estimation) optimizer with ReduceLROnPlateau scheduler was used.

It is crucial to illustrate the loss function we used for stage 3 mentioned above. Let li be the loss obtained
for each sample, and the computation is shown as Eq. (11).

Figure 8: The training procedure for this study

Table 1: The overview of the datasets of 30-frame

PLAX PSAX-AV PSAX-MV PSAX-AP PSAX-MID A5C A4C A3C A2C OTHERS

Train 2310 2110 2081 2155 2244 1883 1942 1937 1877 2008

Valid 922 827 913 889 836 776 755 694 739 846

Test 949 792 796 810 835 674 694 663 687 925
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li ¼ CrossEntropy ðPredi; LabeliÞ (11)

Thus, the loss for all the samples in one minibatch is Eq. (12).

L ¼ l1; l2; l3; � � � ; lnf g (12)

where n is the batch size.

Then we sorted the loss set in descending order, and we get Eq. (13).

L0 ¼ l1
0
; l2

0
; l3

0
; � � � ; ln 0

n o
(13)

We need to find K that satisfying both Eqs. (14) and (15).

Xk
i¼1

l
0
i �

1

2

Xn
i¼1

l
0
i (14)

Xk�1

i¼1

l
0
i <

1

2

Xn
i¼1

l
0
i (15)

The backpropagation algorithm updates the neural network’s weights by minimizing the loss
function Eq. (16).

Loss ¼
Xk
i¼1

l
0
i (16)

4.4 Classification Evaluation Metrics

Performance metrics are used to evaluate and for checking the quality of performance by the algorithms.
Accuracy is considered to be one of the most widely applied performance metrics in classification.
Classification accuracy denotes the number of instances (such as images or pixels) that are properly
categorized by the total number of instances in the dataset ( TP þ TNð Þ= TP þ TN þ FP þ FNð Þ), in
which TP, TN, FP, and FN stand for true positive, true negative, false positive, and false negative,
respectively. Classification metrics are derived from the confusion matrix, revealing the number of correct
and incorrect classifications when compared with the ground truth labels. In addition, this study also
calculates precision (TP= TP þ FPð Þ) and recalls (TP= TP þ FNð Þ) on the basis of the confusion matrix.

5 Results and Discussions

The current section compares our approach with the state-of-the-art action recognition architectures,
including CNN+BiLSTM and SpatioTemporal-BiLSTM. As illustrated in Tab. 2, the ECHO-Attention
model consistently outperforms these two baseline models. The results of the baseline method CNN
+BiLSTM remain comparatively low because it only contains the component that is able to model the
Spatio-temporal information. Whereas for the SpatioTemporal-BiLSTM, the optical flow employed only
denotes the motion features between the neighboring frames. As a result, this flow stream is short of the
capability of capturing the long-range temporal relationship. By further employing a second difference
operation to the part of the Motion Module, the ECHO-ACTION block takes additional motion modeling
to the network, which significantly improves the ECHO-Attention network compared to both baselines.
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It is also noting that Tab. 2 demonstrates classification performance for the ECHO-Attention model
employing two backbones, i.e., ResNet-18 and ResNet-50. It can be noticed that ResNet-50 outperforms
ResNet-18 regarding the accuracy for the ECHO-Attention architecture, which indicates that ResNet-
50 benefits mainly from the ECHO-ACTION block.

Furthermore, we investigate the design of our ECHO-Attention network (ResNet-50) concerning the
classification accuracy performance on the entire echo videos. First, the complete testing video sample is
split into several 30-frame videos. Then, the individual testing short clip is predicted by our proposed
models and classified by referring to the most possible view. Finally, the plurality voting of multiple 30-
frame videos generated from the entire video is used to classify the test videos.

The superiority of the ECHO-Attention on the entire echo video is also quite impressive. From Tab. 3, it
can be noticed that the overall accuracy of the ECHO-Attention network is improved by 0.51% and 1.01%
compared to Xception+BiLSTM and SpatioTemporal-BiLSTM, which have been conducted in our last
project and shown to be effective [8].

The confusion matrix, precision values, and recall values of the ECHO-Attention network for ResNet-
18 together with ResNet-50, evaluated on the datasets of 30-frame segments, are provided in Fig. 9 and
Tab. 4. As a result, echo views with distinct characteristics are more accessible for the model to
distinguish. For instance, the parasternal long-axis view seems to have higher correct identification rates,
and the network is confused only on four occasions between PLAX and PSAX-MV.

According to the literature review, previous studies found that errors occur predominantly clustered
between particular views, denoting anatomically adjacent imaging planes. The PSAX-MID view proves
to be the hardest one to detect, as the classifier usually is confused between this view with other
parasternal short-axis views, such as PSAX-AP. The reason for these views the model found most
challenging to differentiate correctly is that distinctive features are merely partly in view or only in view
during part of the cardiac cycle. Interestingly, these views are similar in appearance to human eyes, even
for cardiologist experts.

Table 2: Table demonstrating the overall accuracy for each of the networks on the datasets of 30-frame

ResNet-18 ResNet-50

CNN+BiLSTM 91.74% 91.83%

SpatioTemporal-BiLSTM 92.19% 92.12%

ECHO-Attention 93.25% 93.85%

Table 3: Classification accuracy on entire videos

Architectures Overall accuracy

Xception+BiLSTM 94.30%

SpatioTemporal-BiLSTM (Xception) 93.80%

Resnet50+BiLSTM 93.13%

SpatioTemporal-BiLSTM (Resnet50) 93.13%

ECHO-Attention (ResNet-50) 94.81%

1210 IASC, 2022, vol.33, no.2



According to Section 3.4, the self-attention module is supplemented to our ECHO-Attention network in
order to guarantee its concentration on task-related time steps. It allows the individual frame along the time
direction to interact with each other, so the frames with the view-defining structures can be most weighted
and contributed mainly to the view classification. The attention weights for predicting different cardiac views
are obtained by focusing on different phases of a cardiac cycle throughout the attention layer. As listed in
Tabs. 4 and 5, Our ECHO-Attention network significantly decreases similar views’ misclassification
compared with other successful architectures. We report higher precision and recall values of PSAX-MID
and PSAX-AP, gaining 7.67% and 9.32% precision improvement, respectively, compared with
SpatioTemporal-BiLSTM (ResNet-50).

This is also evident in Tab. 6 and Fig. 10, which display the precision, recall, and confusion matrix of the
ECHO-Attention network (ResNet-50) testing on the datasets of entire videos. Noticeably, the results also
demonstrate the importance of motion modeling for echocardiographic datasets and the attention
corresponding to the images showing the most view-defining structures.

Figure 9: Confusion matrices for echo view classification. The ECHO-Attention network (ResNet-50) was
evaluated on the datasets of 30-frame segments
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Table 4: Precision and recall results using ECHO-Attention network (ResNet-50) on the datasets of 30-frame
segments

Views Precision Views Recall

A2C 94.36% A2C 99.85%

A3C 96.57% A3C 97.59%

A4C 96.14% A4C 96.97%

A5C 97.16% A5C 96.59%

OTHERS 96.07% OTHERS 89.95%

PLAX 99.68% PLAX 99.58%

PSAX-AP 88.65% PSAX-AP 80.99%

PSAX-AV 98.37% PSAX-AV 98.86%

PSAX-MID 81.70% PSAX-MID 82.87%

PSAX-MV 90.48% PSAX-MV 97.86%

Table 5: Precision and recall results using SpatioTemporal-BiLSTM (ResNet-50) on the datasets of 30-frame
segments

Views Precision Views Recall

A2C 91.86% A2C 98.54%

A3C 99.08% A3C 97.29%

A4C 94.88% A4C 98.85%

A5C 99.19% A5C 90.65%

OTHERS 95.66% OTHERS 92.86%

PLAX 100% PLAX 99.37%

PSAX-AP 79.33% PSAX-AP 79.14%

PSAX-AV 97.64% PSAX-AV 99.12%

PSAX-MID 74.03% PSAX-MID 77.49%

PSAX-MV 92.61% PSAX-MV 89.70%

Table 6: Precision and recall results using ECHO-Attention network (ResNet-50) on the datasets of entire
videos

Views Precision Views Recall

A2C 96.67% A2C 100%

A3C 98.21% A3C 98.21%

A4C 98.31% A4C 98.31%

A5C 98.31% A5C 98.31%

OTHERS 96.30% OTHERS 91.23%

PLAX 100% PLAX 100%
(Continued)
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6 Conclusions

To conclude, there exists significant interest in AI (Artificial Intelligence) systems that can support a
cardiologist in diagnosing echocardiograms. In the meanwhile, automatic echo view classification is the
first step. In this study, we presented a simple and effective architecture called ECHO-Attention, which is

Table 6 (continued)

Views Precision Views Recall

PSAX-AP 90.38% PSAX-AP 78.33%

PSAX-AV 98.28% PSAX-AV 98.28%

PSAX-MID 79.69% PSAX-MID 85.00%

PSAX-MV 92.06% PSAX-MV 100%

Figure 10: Confusion matrices for echo view classification. The ECHO-Attention network (ResNet-50) was
evaluated on the datasets of entire videos
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used for the automated identification of 9 different anatomical echocardiographic views (in addition to a class
of “others”) in a dataset of 2693 videos acquired from 267 patients. We first target designing an ECHO-
ACTION block that utilizes multipath excitation for Spatio-temporal features, channel-wise features, and
motion features. Any ResNet architecture could leverage this proposed block. Also, the afterward self-
attention module helps the network focus on most corresponding and related segments and gives a better
prediction. According to the obtained results, the method proposed in this study (ECHO-Attention
network for ResNet-50) can achieve comparable classification performance. Such a model can thus be
used for real-time detection of the classic echo view.
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