

Faculty of Electronic and Computer Engineering

Nur Syafiqah Nadiah Binti Mohd Alias

Master of Science in Electronic Engineering

NUMERICAL ANALYSIS AND SYNTHESIS OF ZnO NANORODS WITH VARIOUS DOPANT CONCENTRATIONS FOR ELECTRON TRANSPORT IMPROVEMENT IN SOLAR CELL APPLICATIONS

NUR SYAFIQAH NADIAH BINTI MOHD ALIAS

Faculty of Electronic and Computer Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2023

DECLARATION

I declare that this thesis entitled "Numerical Analysis and Synthesis of ZnO nanorods with various dopant concentrations for Electron Transport Improvement in Solar Cell Applications" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any

APPROVAL

I hereby declare that I have read this thesis and in my opinion, this thesis is sufficient in terms of scope and quality for the award of Master of Electronic Engineering.

DEDICATION

Writing this thesis has never been an easy task as many parties are involved. First of all, I would like to thank Allah for always being there for me and guiding me throughout this long, tough, and traumatic journey of my study.

I would like to express my earnest gratitude to my supervisor, Ts. Dr. Faiz Bin Arith, who have been overwhelmingly supportive throughout my current circumstances. His reviews, comments, support, and encouragement were really important, impressive and were immensely felt throughout.

To my beloved parents, Mohd Alias Bin Kamaruddin and Salmah Binti Baharuddin, who has always comforted me with love and care throughout my education journey. I wouldn't have completed this work without their support and belief in me obtaining and finishing my master's degree. I am also grateful to my only brother, Muhammad Syazwan Bin Mohd Alias, who is always there for me when I feel unwillingness and also helps me with proofreading my journal paper and thesis writing. Last but not least, I want to thank all of my friends for their support and doa's.

ABSTRACT

Dye-sensitized solar cell (DSSC) and Perovskite Solar Cell (PSC) are categorized as the third generation in solar cell technology. Both solar cells are known for its low production cost, simple preparation methodology, low toxicity, substrate flexibility and suitability for indoor use. In the previous two decades, PSC has shown a very encouraging rate of improvement in performance, rising from single digits to double digits rapidly. The Electron Transport Layer (ETL) plays an important role in PSC through charge extraction. TiO₂ material has been used as an ETL conventionally, but the process of further improving the performance of PSC-based TiO₂ ETL is nearly saturated and deadlocked. In theory, the ZnO material possesses an energy band gap value similar to the TiO₂ material, but with superior electron mobility. This clearly shows the potential of ZnO material to replace TiO₂ material acting as photoanode and ETL for DSSC and PSC, respectively. However, previous articles have reported that pure ZnO is still insufficient in improving the performance of solar cells. Herein, small amounts of Al and Ni dopants are added into the ZnO layers, believed to passivate the widely known Zn²⁺ lattice defect in the ZnO bulk layer. In addition, the structural features of ZnO nanorods also imply providing a higher surface aspect ratio allowing a greater charge carrier reaction mechanism. Initially, this work started with the simulation of complete DSSC and PSC utilizing the ZnO layer as the photoanode and ETL, respectively using SCAPS software. The Al and Ni dopant concentrations are varied in enhancing cell performance. Power conversion efficiency (PCE) as high as 3.96% and 3.9% were obtained using concentrations of 3 mol% and 4 mol% for ZnO:Al and ZnO:Ni photoanodes in DSSC, respectively. Meanwhile, PCE values of PSC reaching 17.6% and 17.58% were recorded from dopant concentration of 1 mol% for both ZnO:Al ETL and ZnO:Ni ETL, respectively. Compatibility with other layers was also studied, suggesting the use of Cu₂O as the HTL and Pb-free CH₃NH₃SnI₃ perovskite material as the absorber layer. It has been discovered that the combination of Al-doped ZnO ETL with Cu₂O HTL and CH₃NH₃SnI₃ absorber layer in PSC has successfully produced considerable PCE values as high as 27.72% and 21.18% for ZnO:Al ETL and ZnO:Ni ETL, respectively. Based on simulations and experimental evidence, the combination of a small amount of dopant into the ZnO layer with appropriate inorganic HTL and Pb-free perovskite layers is shown to be promising in enhancing the performance of the PSC. This study clearly has an impact in providing guidance to researchers and industry before the full fabrication process of solar cells is carried out.

ANALISIS BERANGKA DAN SINTESIS ZNO NANOROD DENGAN PELBAGAI KEPEKATAN BAHAN DOP UNTUK PENAMBAHBAIKAN PENGANGKUTAN ELEKTRON DALAM APLIKASI SEL SURIA

ABSTRAK

Sel Suria Disensitasi Pewarna (DSSC) dan Sel Suria Perovskite (PSC) dikategorikan sebagai generasi ketiga dalam teknologi sel suria. Kedua-dua jenis sel suria ini terkenal dengan kos pengeluarannya yang rendah, metodologi penyediaan yang mudah, ketoksikan yang rendah, fleksibiliti subtrat dan kesesuaian untuk kegunaan dalaman. Dalam dua dekad sebelum ini, PSC telah menunjukkan kadar peningkatan prestasi yang amat memberangsangkan, meningkat daripada satu digit kepada dua digit dengan pantas. Lapisan Pengangkutan Elektron (ETL) memainkan peranan penting dalam PSC melalui pengekstrakan cas. Bahan TiO2 telah digunakan sebagai ETL secara konvensional, namun proses meningkatkan lagi prestasi PSC berasaskan TiO₂ ETL hampir tepu dan buntu. Secara teori, bahan ZnO memiliki nilai julat tenaga yang serupa dengan bahan TiO₂, namun dengan mobiliti elektron yang jauh lebih baik. Ini jelas menunjukkan potensi bahan ZnO untuk menggantikan bahan TiO₂ yang bertindak sebagai fotoanod dan ETL untuk DSSC dan PSC. Walau bagaimanapun, artikel sebelum ini telah melaporkan bahawa ZnO tulen masih tidak mencukupi dalam meningkatkan prestasi sel suria. Di sini, sejumlah kecil dopan Al dan Ni ditambah ke dalam lapisan ZnO, dipercayai memasifkan kecacatan kekisi Zn²⁺ yang diketahui secara umum dalam lapisan pukal ZnO. Di samping itu, ciri-ciri struktur nanorod ZnO juga menyifatkan dalam menyediakan nisbah aspek permukaan yang lebih tinggi yang membolehkan mekanisme tindak balas pembawa cas yang unggul. Pada mulanya, kerja ini bermula dengan simulasi DSSC dan PSC lengkap menggunakan lapisan ZnO sebagai fotoanod dan ETL, menggunakan perisian SCAPS. Kepekatan dopan Al dan Ni adalah berbeza-beza dalam meningkatkan prestasi sel. Kecekapan penukaran kuasa (PCE) setinggi 3.96% dan 3.9% diperoleh menggunakan kepekatan 3 mol% dan 4 mol% untuk fotoanod ZnO:Al dan ZnO:Ni dalam DSSC. Sementara itu, nilai PCE daripada PSC mencecah nilai 17.6% dan 17.58% direkodkan daripada kepekatan 1 mol% untuk kedua-dua ZnO:Al ETL dan ZnO:Ni ETL. Keserasian dengan lapisan lain juga dikaji, mencadangkan penggunaan Cu₂O sebagai HTL dan bahan Pb-bebas CH₃NH₃SnI₃ sebagai lapisan penyerap. Gabungan Al-didop ZnO ETL dengan lapisan penyerap Cu₂O HTL dan CH₃NH₃SnI₃ dalam PSC telah didapati berjaya menghasilkan PCE yang besar setinggi 27.72% dan 21.18% untuk ZnO:Al ETL dan ZnO:Ni ETL. Berdasarkan simulasi dan bukti eksperimen, gabungan sejumlah kecil dopan ke dalam lapisan ZnO dengan lapisan perovskite bebas Pb dan HTL bukan organik yang sesuai telah menunjukkan prestasi yang menjanjikan dalam PSC. Kajian ini jelas memberikan impak dalam memberi panduan kepada para penyelidik dan pihak industri sebelum proses fabrikasi penuh sel suria dijalankan.

ACKNOWLEDGMENTS

It is with immense gratitude that I would like to acknowledge the support and help of my supervisor, Ts. Dr. Faiz Bin Arith from the Faculty of Computer and Electronic Engineering, Universiti Teknikal Malaysia Melaka (UTeM). The successful completion of my task would not have been possible without his constant encouragement and guidance throughout the whole period of my research work.

I am also indebted and like to express my greatest gratitude to the technicians from the Faculty of Mechanical Engineering, Mr. Mohamad Nazir Bin Masrom, who operates the SEM machine and performed SEM characterization, Mr. Hairulhisham Bin Rosnan, from the Faculty of Manufacturing Engineering, who handles XRD machine and Mr. Mohd Wahyudi Bin Md Hussain from Faculty Electrical Engineering, who guided me in using UV-Vis spectroscopy and shared knowledge about UV-Vis spectroscopy.

Most importantly, I would like to express my heartfelt gratitude to my parents, Mohd Alias Kamaruddin and Salmah Baharuddin and to my only brother, Muhammad Syazwan Mohd Alias for their encouragement, moral support, and prayer in completing this research. Lastly, many thanks to the people who supported me to accomplish this study; and though their names do not appear here, I am grateful to them for their very invaluable support. May Allah Bless You All!

ÜNIVERSITI TEKNIKAL MALAYSIA MELAKA

TABLE OF CONTENTS

DECLARATION	
DEDICATION	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	ix
LIST OF APPENDICES	xiii
LIST OF ABBREVIATIONS	xiv
LIST OF SYMBOLS	xviii
LIST OF PUBLICATIONS	XX

1.	INTR	RODUCTION	1
	1.1	Introduction	1
	1.2	Background Study	1
	1.3	Statement of the Purpose	3
	1.4	Problem Statement	3
	1.5	Objectives	5
	1.6	Scope of the Research	6
	1.7	Thesis Outline	6
2.	LITE	RATURE REVIEW	8
	2.1	اونىۋىرىسىتى تىكنىكل ملەIntroduction	8
	2.2	Solar Cells	9
	2.3	2.2.1 Summarization Structure of Solar Cell Classifications of Solar Cell Technology Generations	11 12
		2.3.1 First-Generation Solar Cells	13
		2.3.2 Second-Generation Solar Cells	14
		2.3.3 Third-Generation Solar Cells	15
	2.4	Hybrid Solar cells	18
	2.5	Dye-Sensitized Solar Cell (DSSC)	18
		2.5.1 Construction and Working Principle of a DSSC	19
		2.5.2 Summarization of DSSC Performance with Different	25
		Photoanode and Electrolyte Pairs using Fabrication	
		Methods or SCAPS Simulation	
	2.6	Perovskite Solar Cell (PSC)	26
		2.6.1 Fundamental Operation of Perovskite Solar Cell	27
		2.6.2 Summarization of PSC performance with different ETL	30
		and HTL pairs using fabrication methods or SCAPS	
		simulation	32
	2.7	Effect of Aluminium Doping and Nickel Doping on Nano- Structural ZnO Thin Films	36
	2.8	Summary of Optimum Parameters from Previous Researcher	

3. METHODOLOGY

4.

5.

3.1	Flow Chart of the Research	38	
3.2	Introduction to SCAPS		
3.3	Dye-Sensitized Solar Cell (DSSC) Simulation		
3.4	Perovskite Solar Cell (PSC) Simulation	47	
	3.4.1 Al and Ni Dopant Concentration Dependence in ZnO ETL-based PSC	49	
	3.4.2 Different Types of HTLs in ZnO:Al and ZnO:Ni-based ETL in PSC	49	
	3.4.3 Different Types of Absorber Layers in ZnO:Al and ZnO:Ni-based ETL in PSC	51	
3.5	Equipment and Materials used in Fabrication	53	
3.6	Synthesis of Al-doped ZnO Nanorods ETL	56	
	3.6.1 Resistivity Measurement and ITO Labelling	56	
	3.6.2 Cleaning the Substrate	57	
	3.6.3 Preparation of Pure ZnO Nanorods and Al-doped ZnO Nanorods	58	
RES	SULTS AND DISCUSSION IN SCAPS SIMULATION	67	
4 1		60	
4.1	SCAPS Simulation of ZnO:Al and ZnO:Ni as Photoanode Layer	68	
	11 DSSC	60	
	4.1.1 Effects on Inickness	08	
	4.1.2 Effects on Doping Density (ND)	70	
	4.1.5 Effects in Different Working Temperatures	/1	
1.2	4.1.4 Effects on Defect Density	13 75	
4.2	4.2.1 Effects on Thickness	75 75	
	4.2.1 Effects on Doping Density (Np)	ני דד	
	4.2.2 Effects in Different Working Temperatures	78	
	4.2.5 Effects on Defect Density	80	
43	Compatibility of Various HTL in ZnO: Al and ZnO: Ni-based PSC	82	
7.5	by SCAPS Simulation Software	02	
	4.3.1 Effects on Thickness	82	
	4.3.2 Effects on Acceptor Doping Density (N_A)	84	
	4.3.3 Effects on Temperature	85	
	4.3.4 Effects on Defect Density	87	
4.4	Different Types of Absorber Layers in ZnO:Al and ZnO:Ni-based	88	
	in PSC		
4.5	Summarization of the simulation results	94	
RES	SULTS AND DISCUSSION IN FABRICATION	96	
5.1	Structural Characterization	97	
	5.1.1 Results and Analysis under Scanning Electron	97	
	Microscopy (SEM)		
	5.1.2 Results and analysis under XRD	99	
5.2	Optical Characterization	100	
	5.2.1 Results and Analysis under UV-Vis	100	

38

	5.3	Electrical Characterization 5.3.1 I-V characteristics	105 105
6.	CON RES	ICLUSION AND RECOMMENDATIONS FOR FUTURE	107
	6.1	Conclusion	107
	6.2	Recommendations for Future Research	109
REF APP	EREN ENDIC	CES CES	111 135

LIST OF TABLES

TITLE

PAGE

TABLE

2.1	A Summary of Fabrication and SCAPS Simulation of	25
	DSSC Performance using various Photoanode and	
	Electrolyte Types	
2.2	Summary of efficiency with Different Types of ETL and	30
	HTL in PSC with various Methods in Fabrication and	
	SCAPS Simulation	
2.3	Summary Various of Optimum Parameters from Previous	37
	Researchers	
3.1	Parameters for the DSSC layer	45
3.2	Parameters for every Concentration of ZnO:Al and ZnO:Ni	46
3.3	Simulation Optimization Range of Donor Doping Density	47
	(N _D) of Pure ZnO, ZnO:Al and ZnO:Ni	
3.4	Parameters of every for HTL Material, Absorber Layer and	51
	Optimum Concentration 1 mol% of ZnO:Al and ZnO:Ni	
3.5	Parameter for Optimum Cu ₂ O, Concentration 1 mol% of	53
	ZnO:Al and ZnO:Ni, and Different Types of Absorber	
	Layer	
3.6	List of Equipment and Materials used in the Synthesis of	54
	Al-doped ZnO Nanorods Layer	
3.7	Equipment used to Observe the Quality Samples	55

3.8	Calculations Convert Molar Units of ZnA and NaOH to	59
	Grams	
3.9	Calculations Convert Molar Units of HMT and Various	63
	Concentrations of ZnO:Al to Grams	
4.1	Optimal PCE in ZnO Photoanode for Al and Ni Dopant	75
	Concentration	
4.2	PCE at Room Temperature for Varied Al and Ni Dopant	82
	Concentrations in ZnO ETL at Optimal Settings of 50 nm	
	Thick, N _D 1×10^{18} cm ⁻³ , Nit 1×10^{10} cm ⁻²	
4.3	Different HTM Layer Optimum Efficiency in Terms of	88
	Thickness, Doping, Temperature, and Defect	
4.4	PCE of the Absorber Layer at Optimal Thickness, Doping,	93
	Temperature, and Defect	
4.5	Summary for Highest PCE obtained from various	95
	concentrations of Al and Ni in DSSC and PSC	
4.6	Summary of Highest PCE obtained from various HTL and	95
	Absorber layer in PSC	
5.1	Structural Dimension of Pure ZnO Nanorods and Various	99
	Concentrations of ZnO:Al Nanorods Layer	
5.2	Value of Energy Band Gap (eV) of All Concentrations	103
	UNIZADITI TEKNIKAL MALAYSIA MELAKA	

LIST OF FIGURES

FIGURE

TITLE

PAGE

2.1	Energy Band Gap Diagram of a Silicon p-n Junction Solar	10		
	Cell			
2.2	Basic Structure of Solar Cell	11		
2.3	Structure of Solar Cell	11		
2.4	Examples of Multiple Crystalline and Single Crystalline Solar	13		
	Cell			
2.5	Examples of CdTe and CIGS Films	15		
2.6	Examples of Dye-Sensitized Solar Cell and Perovskite Solar	16		
	Cell Films and size in the films			
2.7	Three-Generations of Solar Cells Technologies	Three-Generations of Solar Cells Technologies 17		
2.8	Efficiencies of Research Solar Cells in Energy Conversion	17		
	have been Reported Over Years			
2.9	Schematic Diagram Working Principle of a Dye-Sensitized	20		
	Solar Cell (DSSC)			
2.10	Fundamental Principle of the Dye-Sensitized Solar Cells	24		
2.11	Schematic Diagram of Perovskite-Based Solar Cell 29			
2.12	Variation of Transmittance with Wavelength (a) and $(\sigma h v)^2$	33		
	with Photon Energy (b) for Al-doped ZnO			
2.13	Nano-belts, Stacked Nano-Belts, Nano-Walls, Nano-Rods,	34		
	and Nano-Nunchakus are some of the Morphologies of Al-			
	doped ZnO Films			

2.14	Transmittance (left scale) and Reflectance (right scale) of	35	
	ZnO and Ni-doped ZnO Thin Films as a Function of		
	Wavelength		
2.15	SEM Micrographs at Magnification ff 15000X for ZnO (a), 1	36	
	mol% (b), 2 mol% (c), 4 mol% (d), and 6 mol% (e) Ni-doped		
	ZnO Nano-Fibers. Inset shows the SEM images at a		
	Magnification of 40000X		
3.1	Flow Chart of Simulation throughout the Research	39	
3.2	Flow Chart of Fabrication of ZnO:Al ETL	40	
3.3	Action Panel (a) and Example of Structure of Solar Cells (b)	42	
	in SCAPS Simulation		
3.4	Layer structure of DSSC with ZnO:Al and ZnO:Ni in SCAPS	44	
3.5	Energy Level Diagram of Each Layer of Simulated DSSC	45	
3.6	Layer structure of PSC simulate in SCAPS	48	
3.7	Energy Level Diagram of Each Layer Simulated PSC		
3.8	Substrates for Pure ZnO and ZnO:Al		
3.9	Cleaning Process using Ultrasonic Bath		
3.10	Substrate on a Hotplate for Dried		
3.11	Periodic Table		
3.12	Three Beakers that Labelled as A, B, and C with their	60	
	Chemical Solution KNIKAL MALAYSIA MELAKA		
3.13	Chemical Solution of A+C was Dropped in the Beaker B at	61	
	60 °C		
3.14	Double Boil Process on a Hotplate at 60 °C for 3 Hours	62	
3.15	Drying ITO Glasses on the Hotplate for 3 Hours	62	
3.16	Chemical Solution prepared in Beaker Labelled as D and E	65	
3.17	A Mixture of Chemical Solutions D and E	65	
3.18	Substrate of Pure ZnO Nanorods and 1 mol% - 4 mol% of Al-	66	
	doped ZnO Nanorods after the Annealing in the Oven at 90 °C		
	for 9 Hours		
3.19	Nanorods growth on substrate after annealing for 9 Hours	66	

4.1	PCE for Varied Dopant Concentrations and Layer	69
	Thicknesses in ZnO:Al (a) and ZnO:Ni (b) Photoanodes in	
	DSSC	
4.2	Effects of Doping Concentrations on PCE in ZnO:Al (a) and	71
	ZnO:Ni (b) Photoanodes DSSC	
4.3	Effects of Working Temperature in PCE for ZnO:Al (a) and	72
	ZnO:Ni (b) Photoanodes in DSSC	
4.4	Effects of Efficiency in Two Types of the Interface Layer,	74
	N719 Dye/ZnO:Al or ZnO:Ni ((a) and (c)) and spiro-	
	OMeTAD/N719 Dye ((b) and (d)) with Various Dopants of	
	ZnO:Al, and ZnO:Ni	
4.5	Cell Performance with Various Thicknesses ZnO:Al (a) and	76
	ZnO:Ni (b) ETL in PSC	
4.6	Cell Performance with Various Doping Concentrations of	78
	ZnO:Al (a) and ZnO:Ni (b) ETL in PSC	
4.7	Effect of Operating Temperature in every Concentration of	79
	ZnO:Al (a) and ZnO:Ni (b) ETL	
4.8	Effects of Efficiency in Two Types of the Interface Layer,	81
	CH3NH3PbI3/ZnO:Al or ZnO:Ni ((a) and (c)) and spiro-	
	OMeTAD/ CH ₃ NH ₃ PbI ₃ ((b) and (d)) with Various Dopants	
	of ZnO:Al and ZnO:Ni	
4.9	Various Types of HTL in terms of Thickness for ZnO:Al (a)	83
	and ZnO:Ni (b)	
4.10	Various Types of HTL in terms of Doping Density for ZnO:Al	84
	(a) and ZnO:Ni (b)	
4.11	Effects on Working Temperature for Various Types of HTL	85
	for ZnO:Al (a) and ZnO:Ni (b)	
4.12	Effects of Efficiency in Two Types of Interface Layer,	87
	CH ₃ NH ₃ PbI ₃ /ZnO:Al (a) and HTL/ CH ₃ NH ₃ PbI ₃ (b)	
4.13	Effects of Efficiency in Two Types of Interface Layer,	87
	CH ₃ NH ₃ PbI ₃ /ZnO:Ni (a) and HTL/ CH ₃ NH ₃ PbI ₃ (b)	
4.14	Effects of PCE in Thickness for Various Types of Absorber	89
	Layers in Al and Ni-doped	

4.15 Effects of PCE in Acceptor Doping Density for Various Type		
	of Absorber Layer in Al and Ni-doped	
4.16	Effects of PCE in Temperature for Various Types of Absorber	91
	Layer in Al and Ni-doped	
4.17	Effects of Efficiency in Two Types of the Interface Layer,	92
	absorber layer/ZnO:Al or Ni (a) and Cu ₂ O/absorber layer (b)	
4.18	Quantum Efficiency for the Variation of Absorber Layer for	93
	PSC	
5.1	SEM Images Pure ZnO Nanorods (a) and ZnO:Al Thin	98
	Layers, 1 mol% (b), 2 mol% (c), 3 mol% (d), and 4 mol% (e)	
5.2	X-ray diffraction (XRD) Patterns for Pure ZnO Nanorods, 1	
	mol%, 2 mol%, 3 mol% and 4 mol% of ZnO:Al Thin Layers	
5.3	Tauc Plot of Band Gap (Eg) for Undoped ZnO Nanorods, 1	102
	mol%, 2 mol%, 3 mol% and 4 mol% ZnO:Al ETL	
5.4	Energy Band Gap (eV) with Various Concentrations of Zn:Al	102
5.5	UV-Vis Absorption Spectra of Pure ZnO Nanorods and	104
	Various Concentrations of ZnO:Al Thin Layers	
5.6	Optical Transmittance Spectra of Pure ZnO Nanorods and	104
	Various Concentrations of ZnO:Al Thin Layers	
5.7	Current Voltage (I-V) Characteristics Curves of Pure ZnO	106
	Nanorods and 1 mol% to 4 mol% ZnO:Al layers	
5.8	Resistance Difference between 1 mol% to 4 mol% in This	106
	Work and Previous Work	

LIST OF APPENDICES

APPENDIX TITLE PAGE А Graphics and peak list obtained from XRD equipment for 135 substrate 0 mol% of Al-doped ZnO nanorods В Graphics and peak list obtained from XRD equipment for 137 substrate 1 mol% of Al-doped ZnO nanorods С Graphics and peak list obtained from XRD equipment for 139 substrate 2 mol% of Al-doped ZnO nanorods D Graphics and peak list obtained from XRD equipment for 141 substrate 3 mol% of Al-doped ZnO nanorods Ε Graphics and peak list obtained from XRD equipment for 143 substrate 4 mol% of Al-doped ZnO nanorods UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF ABBREVIATIONS

AC	-	Alternating current
ACN	-	Acetonitrile
Al	-	Aluminium
Al^{3+}	-	Aluminium ion
AlCl ₃ H ₁₂ O ₆	MALAYSIA	Aluminium chloride hexahydrate
ALD	5 -	Atomic layer deposition
Al ₂ O ₃	-	Aluminium oxide
AR		Antireflective
As	· -	Arsenic
Au	Alkn-	Gold
B 🚽	ليستأ ملأل	Boron in in in a single
C - f	<u>-</u>	Capacitance - Frequency
C –V U	NIVERSITI	Capacitance - Voltage AYSIA MELAKA
С	-	Carbon
CaTiO ₃	-	Calcium titanate
CB	-	Conduction band
CBD	-	Chemical bath deposition
Cd	-	Cadmium
CDCA	-	Chenodeoxycholic acid
CdTe	-	Cadmium tellurite
CE	-	Counter electrode
CH ₃ NH ₃ ⁺	-	Methyl-ammonium
CH ₃ NH ₃ PbBr	3 -	Methylammonium Bromide
CH ₃ NH ₃ PbI ₃	-	Methylammonium lead iodide
CH ₃ NH ₃ SnI ₃	-	Methylammonium tin halide

CIGS	-	Copper indium gallium selenide
Co	-	Cobalt
CoNi0.25	-	Nickel-modified cobalt phosphide
CoS	-	Carbonylsulfide
(CH ₂) ₆ N ₄	-	Hexamethylenetetramine
C ₂ H ₅ OH	-	Ethanol
C ₃ H ₆ O	-	Acetone
CuI	-	Copper (I) iodide
CuInSe ₂	-	Copper indium selenide
Cu ₂ O	-	Copper (I) oxide
CuSCN	-	Cuprous thiocyanate
DC	-	Direct current
DI	-	Deionized
DSSC	NALAYSIA	Dye-sensitized solar cell
EM		Electromagnetic
EL-HPE		High performance electrolyte
ELIS	-	Electronics and Information System
ETL	" SAINO	Electron transport layer
Fe	abl (- 1	Iron
FeSe	ليسيا ملاك	اويوم سيني يهم
FF		Fill Factor AL MALAYSIA MELAKA
FTO		Fluorine-doped tin oxide
GaAs	-	Gallium arsenide
Ge	-	Germanium
GO	-	Graphite oxide
H ₂ O	-	Deionized water
НОМО	-	Highest occupied molecular orbital
HTL	-	Hole transporting layer
I - V	-	Current - Voltage
IL	-	Ionic liquid
In	-	Indium
Isc	-	Short circuit current
ITO	-	Indium-doped tin oxide

J _{SC}	-	Lower cell photocurrent
La	-	Lanthanum
LUMO	-	Lowest unoccupied molecular orbital
MgO	-	Magnesium oxide
NA	-	Acceptor doping
NaOH	-	Sodium hydroxide
Nb ₂ O ₅	-	Niobium (V) oxide
Ni	-	Nickel
Ni ²⁺	-	Nickel ion
NIR	-	Near infrared ranges
NMP	-	N-methylpyrrolidine
NR	-	Nanorods
Nit	-	Interface density of state
OHIP	MALAYSIA	Organic-inorganic hybrid-perovskite
РЗНТ	-	Poly(3-hexylthiophene-2,5-diyl)
P H		Phosphorus
Pb2 ⁺	-	Lead (II) ion
PCBM	AINO	Phenyl-C61-butyric acid methyl ester
PCE	1 (-	Power conversion efficiency
PEDOT:PSS	بسب مہ	Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate
PSC	VERSIT	Perovskite solar cell
Pt	-	Platinum
c	-	Poly(triaryl amine)
PV	-	Photovoltaic
PVD	-	Physical vapor deposition
QE	-	Quantum efficiency
RF	-	Radio frequency
RH	-	Hall coefficient
Sb	-	Antimony
SCAPS	-	Solar cell capacitance simulator
SEM	-	Scanning electron microscope
Si	-	Multicrystalline Silicon
SnO ₂	-	Tin (IV) oxide

TBP	-	4-Tert-butylpyridine
ТСО	-	Transparent conductive oxide
Te	-	Tellurium
TEL	-	Transport electrode layer
TiCl ₄	-	Titanium tetrachloride
TiO ₂	-	Titanium dioxide
UV	-	Ultraviolet
UV-Vis	-	Ultraviolet-visible
VB	-	Valence band
Voc	-	Open circuit voltage
WE	-	Working electrode
XRD	-	X-ray diffraction
ZnA	-	Zinc acetate dihydrate
ZnO	-	Zinc Oxide
Zn ²⁺	-	Zinc ion
ZnO:Al		Aluminium doped ZnO
Zn(CH ₃ CO ₂) ₂ ·2H ₂ O	-	Zinc Acetate Dihydrate
ZnO:Ni	-	Nickel doped ZnO
Zn(NO3)2.6H2O	ليسيا	وينور سيتي ليحصيك

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF SYMBOLS

А	-	Organic cation
В	-	Metal cation
Х	-	Halide anion
%	-	Percent
°C	HALAYSI	Celsius
$cm^2 V^{-1} s^{-1}$	5 -	Electron mobility
Å	- K	Angstrom
η	<u>ا</u>	Efficiency
Ω/cm^2	150 - E	Volume resistivity
eV	"Ainn-	Electronvolt
S^+/S	ستا ملاك	Ground state
S^+/S^*	<u>*</u>	Excited state
h	UNIVERSIT	Plack constant. MALAYSIA MELAKA
v	-	Frequency
$r_A, r_B, \text{ and } r_A$	r _x -	Ionic radii
nm	-	Nanometer
20	-	2-Theta
mol%	-	Percentage of the total moles compound
μΗ	-	Hall mobility
kg	-	Kilogram
MB	-	Megabyte
n	-	Free holes
р	-	Electrons
n _t	-	Trapped holes
p_t	-	Trapped electrons

ψ	-	Electrostatic potential
q	-	Electron charge
G	-	Generation rate
ξ	-	Permittivity
D	-	Diffusion coefficient
N_a^-	-	Ionised acceptor-like doping concentration
N_b^-	-	Ionised donor-like doping concentration
cm ⁻³	-	Doping density
К	-	Kelvin
cm ⁻²	-	Defect density
mM	-	millimolar
g/mol	-	Molecular mass
ml	AVE	Millilitre
σ	. B. WALLOIA	Conductivity
n	- 1	Electron concentration
Eg	۳	Band gap energy
h	FIS -	Planck's constant
А	SAINO	Constant
Т	shi - 1	Transmittance
d	يسب سرد	Thickness

UNIVERSITI TEKNIKAL MALAYSIA MELAKA