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ABSTRACT 

 

The installed capacity of solar photovoltaic (PV) is continues to rise in the world and 

Malaysia throughout the year. In Malaysia, the average daily solar radiation is 4,000 to 5,000 

Wh/m2, with the average daily sunshine duration ranging from 4 to 8 hours. However, the 

output of solar energy is lack of stability due to weather variation. Solar irradiance 

forecasting is a crucial component in the effective integration of solar PV systems into the 

electrical grid. The variability of solar energy and the uncertainties associated with solar 

irradiance predictions pose significant challenges for grid operators and energy planners. 

This research project aims to develop advanced forecasting methods and methodologies for 

accurate and reliable solar irradiance prediction, considering the specific characteristics of 

local weather conditions. The study begins by analyzing the correlation between weather 

parameters and solar irradiance in the selected region, identifying the key variables that 

significantly impact solar irradiance. Quadratic regression methods are developed to 

forecast solar irradiance by leveraging the relationships between weather parameters. 

Additionally, artificial neural network (ANN), long-short term memory (LSTM), and 

seasonality autoregressive integrated moving average (SARIMA) methods are evaluated to 

determine their suitability for solar irradiance forecasting. Comparative analysis of the 

developed forecasting methods is conducted using evaluation metrics such as root mean 

square error (RMSE) and correlation of coefficient (R). The performance and suitability of 

different statistical and machine learning techniques for solar irradiance forecasting 

assisting grid operators, energy planners, and policymakers in effectively integrating solar 

PV systems into the electrical grid and optimizing the utilization of solar energy resources. 

Overall, this research project aims to advance the field of solar irradiance forecasting, 

enabling better planning, operation, and management of solar PV systems. By reducing 

uncertainties in solar energy generation, it contributes to the overall advancement of 

renewable energy integration and supports the transition towards a sustainable and clean 

energy future. 
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PERAMALAN SINARAN SURIA MENGGUNAKAN KAEDAH PEMBELAJARAN 

STATISTIK DAN PEMBELAJARAN MESIN  

 

ABSTRAK 

 

Kapasiti pemasangan fotovoltan (PV) suria terus meningkat di dunia dan Malaysia 

sepanjang tahun. Di Malaysia, purata sinaran suria harian ialah 4,000 hingga 5,000 Wh/m2, 

dengan purata tempoh cahaya matahari harian antara 4 hingga 8 jam. Walau 

bagaimanapun, pengeluaran tenaga suria adalah kekurangan kestabilan disebabkan oleh 

variasi cuaca. Ramalan sinaran suria adalah komponen penting dalam penyepaduan 

berkesan sistem PV suria ke dalam grid elektrik. Kebolehubahan tenaga suria dan 

ketidakpastian yang berkaitan dengan ramalan sinaran suria menimbulkan cabaran 

penting bagi pengendali grid dan perancang tenaga. Projek penyelidikan ini bertujuan 

untuk membangunkan kaedah dan metodologi ramalan lanjutan untuk ramalan sinaran 

suria yang tepat dan boleh dipercayai, dengan mengambil kira ciri-ciri khusus keadaan 

cuaca tempatan. Kajian bermula dengan menganalisis korelasi antara parameter cuaca 

dan sinaran suria di rantau terpilih, mengenal pasti pembolehubah utama yang memberi 

kesan ketara kepada sinaran suria. Kaedah regresi kuadratik dibangunkan untuk 

meramalkan sinaran suria dengan memanfaatkan hubungan antara parameter cuaca. 

Selain itu, kaedah rangkaian saraf tiruan (ANN), ingatan jangka panjang-pendek (LSTM), 

dan kaedah purata bergerak bersepadu autoregresif bermusim (SARIMA) dinilai untuk 

menentukan kesesuaiannya untuk ramalan sinaran suria. Analisis perbandingan kaedah 

ramalan yang dibangunkan dijalankan menggunakan metrik penilaian seperti ralat purata 

kuasa dua akar (RMSE) dan korelasi pekali (R). Prestasi dan kesesuaian teknik statistik dan 

pembelajaran mesin yang berbeza untuk ramalan sinaran suria membantu pengendali grid, 

perancang tenaga dan penggubal dasar dalam menyepadukan sistem PV suria dengan 

berkesan ke dalam grid elektrik dan mengoptimumkan penggunaan sumber tenaga suria. 

Secara keseluruhannya, projek penyelidikan ini bertujuan untuk memajukan bidang 

peramalan sinaran suria, membolehkan perancangan, operasi dan pengurusan sistem PV 

suria yang lebih baik. Dengan mengurangkan ketidaktentuan dalam penjanaan tenaga suria, 

ia menyumbang kepada kemajuan keseluruhan integrasi tenaga boleh diperbaharui dan 

menyokong peralihan ke arah masa depan tenaga yang mampan dan bersih.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Introduction 

For the first time in history, solar photovoltaic (PV) overtook the wind in terms of 

the new installed capacity in 2016. Solar PV set a new record of 71GW, while wind 

generated 51GW (IRENA, 2017). Solar PV in 2016 is nearly half the size of the solar PV in 

2020, which is 126GW. As a result, the world’s and Malaysia’s new installed capacity for 

solar PV is gradually increasing (IRENA, 2017, IRENA, 2021). Against the backdrop of the 

declining prices of coal, it is indeed interesting to note that plans for coal-fired power plants 

actually dropped by almost half in 2020. Malaysia ratified the Paris Climate Agreement in 

November 2016 along with the deposition of instrument with the UN Headquarters. Our 

Nationally Determined Contribution (NDC) is to reduce our greenhouse gas (GHG) 

emissions intensity of Gross Domestic Product (GDP) by 45% by the year 2030 relative to 

2005 levels. This consists of 35% on an unconditional basis while a further 10% is 

conditional upon the receipt of support from the developed countries in terms of climate 

finance, technology transfer and capacity building.  

With an increasing PV fraction of total power generation (“penetration”), the solar 

irradiance variability becomes important and grid operators and regulators alike need to 

understand the impact on the electric power system (technical considerations), but also on 

electricity markets (economic considerations). PV grid integration has been already a matter 

of immediate concern in some locations. For example, in the parts of Australia, Hawaii, 
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Germany, which is as PV power continues to enjoy policy support such as feed-in tariffs or 

has reached price parity with existing generation technologies, there is a tendency that PV 

systems get deployed in large numbers very rapidly. In Germany, for example, 3 GW of 

new PV capacity was installed in the month of December 2011 alone, which is equivalent 

to about 4% of peak load. Malaysia also has taken steps to further clean energy deployment 

by mandating adoption of a renewable energy Feed-in Tarif (FiT) mechanism under the 

country’s Renewable Energy Act 2011. At the end of 2016, the Authority has approved 

232.0434 MW of RE installed capacities. Meanwhile, in terms of approved RE installed 

capacities, solar PV consisting of 98.139 MW. 

Therefore, the increase in contribution of renewable energy sources into the grid is 

part of smart grid initiatives. The integration of renewables such as solar energy into the 

electrical network in the world and in Malaysia to reduce the carbon footprint. In 2020, the 

country of Asia that most contributes to solar energy is China then followed by India, Japan, 

and Korea which keep forward to green energy world. The ASEAN country that most 

contributes to solar energy is Vietnam, which is 16.5MW (Nam and Burke, 2021). However, 

the integration of solar energy is also facing the challenge for grid operators because of its 

intermittent due to weather variations. Despite this, the installed capacity of solar PV 

globally continues to increase. Thus, forecasting is becoming an important tool for system 

grid operators to manage solar photovoltaic (PV) energy production and satisfy the demand 

of energy consumers (Lawin et al., 2019). 

 

1.2 Problem Statement 

Solar irradiance forecasting plays a vital role in optimizing the integration of solar 

photovoltaic (PV) systems into electrical grid. The variability of solar energy and the 
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inherent uncertainty in solar irradiance predictions pose significant challenges for grid 

operators and energy planners. The lack of accurate and reliable solar irradiance forecasts 

can lead to imbalances between electricity supply and demand, necessitating the 

development of additional backup power resources and negatively impacting the overall 

operational efficiency of the grid. 

Furthermore, the intermittent nature of solar energy due to weather variations 

introduces significant fluctuations in solar irradiance, making it difficult to accurately 

estimate the amount of electricity that can be generated by solar PV systems at specific time 

intervals. This uncertainty in solar irradiance forecasts hinders effective grid management 

and prevents the optimal utilization of solar energy resources. 

 In fact, reliable forecast information is needed, while it can offer a better quality of 

service (Zhang et al., 2018). The fluctuations in solar energy and the uncertainty associated 

with solar energy forecasts indirectly necessitate the presence of operating reserves within 

electric systems. These reserves are crucial for reconciling discrepancy between energy 

demand and production. For example, the large plants cannot follow the existence of 

operating reserves in electric system when the variability of the solar resources caused ramp 

events (Yang et al., 2018). 

Forecasting of irradiance is needed to ensure that the solar power generation 

consumption to residential is in good working order and that there is no gap between 

switching from the solar power to fuel power. Forecasting solar irradiance requires different 

techniques for different time horizons. For short-term forecasting, such as the next few 

minutes (“now-casting”) to sub-hourly predictions, the statistical and machine learning time 

series models that are commonly used (Abuella and Chowdhury, 2015; Jawaid and 

NazirJunejo, 2016; Chong et al., 2018; Fernando et al., 2019). For example, in the medium-
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term forecasting that is a few hours ahead (“intra-day”), meteorological models relying on 

combinations of weather data-derived data with ground observations (such as sky cameras) 

that produces the greatest results. While, for example, in the long-term forecasts is day(s) 

ahead, which require the use of complex numerical weather prediction (NWP) models 

(Massidda and Marrocu, 2017) such as WRF (Weather Research and Forecasting) or 

ECMWF (European Centre for Medium-Range Weather Forecasts).  

While various statistical and machine learning methods have been proposed for solar 

irradiance forecasting, there is a need for further research to identify the most suitable and 

reliable techniques that can effectively address the challenges associated with accurate solar 

irradiance forecast. The development of robust and accurate forecasting methods that can 

capture the complex relationship between local weather measurements and solar irradiance 

patterns is crucial. 

Therefore, this study aims to investigate and develop advanced forecasting 

methodologies for solar irradiance prediction, considering the specific characteristics of the 

local weather conditions. The research explores the potential of statistical and machine 

learning techniques, such as regression learning, artificial neural networks, long-short term 

memory, and seasonality autoregressive integrated moving average, to improve the 

accuracy and reliability of solar irradiance forecasts. The outcomes of this research provides 

valuable insights and tools for grid operators, energy planners, and policymakers to enhance 

the integration of solar PV systems into the electrical grid and promote the effective 

utilization of solar energy resources. 
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1.3 Research Contributions 

The research on solar irradiance forecasting makes several key contributions to the field: 

1. Advanced forecasting methods  

 The research aims to improve the accuracy and reliability of solar irradiance 

forecasting by incorporating the specific characteristics of local weather conditions. This 

contributes to the development of robust forecasting methods that can capture the complex 

relationships between weather parameters and solar irradiance. Before evaluating the 

regression learning methods and artificial neural network methods, the correlation between 

weather parameters and solar irradiance is analyzed.  

2. Evaluation of Statistical and Machine Learning Methods 

 The research evaluates the performance of various statistical and machine learning 

methods that include regression learning, artificial neural network, long-short term memory, 

and seasonality autoregressive integrated moving average. By comparing and assessing the 

effectiveness of these methods, the research provides valuable insights into the most suitable 

approaches for solar irradiance forecasting. 

3. Addressing Uncertainty and variability 

 The research acknowledges the inherent uncertainty and variability associated with 

solar energy and solar irradiance forecasts. The research aims to reduce the uncertainties 

and fluctuations in solar irradiance forecasting by developing accurate and reliable 

forecasting methods. This contribution enhances the ability of grid operators and energy 

planners to manage the integration of solar PV systems effectively and optimize the 

utilization of solar energy resources. 

4. Practical Applications and Implications 
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