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ABSTRACT 
 

 

The purpose of this research was to look into the tool life performance of uncoated carbide under 

dry settings, to find the best parameters for carbide tool performance under dry conditions, and 

to investigate the tool wear behavior under dry conditions. The notion of tool life is regarded to 

be the cutting time necessary for a tool to achieve its tool life standards. In this study, uncoated 

tungsten carbide inserts (CNGG 120408-SGF H13A) will be employed to convert workpiece 

titanium alloy Ti-6AL-4V ELI (extra low interstitial). Titanium alloys have been widely 

employed in a wide range of applications, including aerospace, automotive, medical, and 

chemical sectors. This is owing to the high strength-to-weight ratio, strong fracture resistance, 

and improved corrosion resistance of titanium alloy. Titanium alloys, on the other hand, are 

challenging materials to produce even at high temperatures. It has a low elastic modulus, a low 

heat conductivity and is readily chemically reacted with the material of cutting implements. 

Based on previous research (Shafi’e, 2017), a two-level Factorial design was utilized to arrange 

the cutting parameters of 100 to 140 m/min cutting speed, 0.15 to 0.20 mm/rev feed rate, and 

constant depth of cut (0.35 mm). The progression of flank wear will be monitored using an 

optical microscope. The data will be collected for each 20 mm of the workpiece until flank wear 

(Vb) reaches the tool life criterion, at which time they will be replaced (International Standard 

ISO 3685). As an expected result, maximum tool life (3.97 minutes) is achieved during dry 

machining at a cutting speed of 100 m/min and a feed rate of 0.15 mm/rev. 
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PENGOPTIMALKAN PRESTASI ALAT KARBIDA DALAM KEADAAN KERING 

DALAM MENULIS ALOI TITANIUM TI-6A-4V ELI 

 

 

ABSTRAK 

 

 
Tujuan penyelidikan ini adalah untuk melihat prestasi hayat alat karbida tidak bersalut di 

bawah tetapan keadaan kering, untuk mencari parameter terbaik untuk prestasi alat karbida 

dalam keadaan kering, dan untuk untuk menyiasat tingkah laku haus alatan dalam keadaan 

kering. Pengertian hayat alat dianggap sebagai masa pemotongan yang diperlukan untuk alat 

mencapai standard hayat alatnya. Dalam kajian ini, sisipan tungsten karbida tidak bersalut 

(CNGG 120408-SGF H13A) akan digunakan untuk menukar aloi titanium bahan kerja Ti-6AL-

4V ELI (interstisial rendah tambahan). Aloi titanium telah digunakan secara meluas dalam 

pelbagai aplikasi, termasuk sektor aeroangkasa, automotif, perubatan dan kimia. Ini 

disebabkan oleh nisbah kekuatan berat yang tinggi, rintangan patah yang kuat, dan rintangan 

kakisan yang lebih baik daripada aloi titanium. Aloi titanium, sebaliknya, adalah bahan yang 

mencabar untuk dihasilkan walaupun pada suhu tinggi. Ia mempunyai modulus anjal yang 

rendah, kekonduksian haba yang rendah, dan mudah bertindak balas secara kimia dengan 

bahan alat pemotong. Berdasarkan kajian lepas (Shafi’e, 2017), reka bentuk Faktorial dua 

peringkat telah digunakan untuk menyusun parameter pemotongan 100 hingga 140 m/min 

kelajuan pemotongan, 0.15 hingga 0.20 mm/rev kadar suapan, dan kedalaman pemotongan 

malar (0.35 mm). Perkembangan haus rusuk akan dipantau menggunakan mikroskop optik. 

Data akan dikumpul untuk setiap 20 mm bahan kerja sehingga haus rusuk (Vb) mencapai 

kriteria hayat alat, dan pada masa itu ia akan diganti (Piawaian Antarabangsa ISO 3685). 

Seperti hasil yang dijangkakan, hayat alat maksimum (3.97 minit) dicapai semasa pemesinan 

kering pada kelajuan pemotongan 100 m/min dan kadar suapan 0.15 mm/rev. 
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CHAPTER 1 

 

INTRODUCTION 

 

This chapter offers a brief overview of the project background on the Tool 

Performance of Uncoated Tungsten Carbide Insert During Turning Titanium Alloy Ti-6Al-

4V ELI in Dry Conditions. Furthermore, this chapter will discuss the background 

information, problem statement, objective, necessity of study, and research arrangement. 

1.1. Background information 

 

Machinability refers to how easily a workpiece can be machined under specified 

operating parameters such as cutting speed, feed rate, and depth of cut. A workpiece's 

machinability is determined by evaluating the cutting tool life, machined surface quality, and 

component forces during cutting mentioned by (M. Sulaiman et al., 2014a). This kind of 

titanium alloy is machined using various cutting methods such as milling and turning. 

Turning is a machining technique that removes materials from a workpiece using a single-

edge cutting tool to produce a cylindrical form or a complex surface profile (Groover, 2020). 

High-speed machining (HSM) is a contemporary technology that improves the efficiency, 

precision, and quality of workpieces while also lowering costs and machining time as 

compared to traditional cutting. The method is 5–10 times faster than traditional machining 

at specific cutting rates. 

 (M. Sulaiman et al., 2014a) have stated titanium and titanium alloys are two of the 

numerous alloy materials that have been produced and are extensively employed, 

particularly in aerospace, automotive, offshore industries, medicinal materials, oil 

exploration, and nuclear storage. Titanium alloy is a complex and costly metal. It has a 

unique strength-weight and resistance to cracking at high temperatures; decreased chemical 
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characteristics; high-temperature wear and corrosion resistance; and longer life. It is also 

appropriate for use with composite constructions. A Ti-6Al-4V extra low interstitial (ELI) 

alloy was employed in this study, which has a better purity grade than the ATI Ti-6Al-4V 

alloy. Because of its low oxygen, carbon, and iron content, this grade has high strength and 

depth hardening ability. It is used in biomedical applications like surgical tools and 

orthopedic implants. It is also used in the aerospace and maritime industries. 

Cemented carbide is a hard substance that is widely used in cutting tool materials 

and other industrial applications. It is made up of tiny carbide particles that are glued together 

to a composite by a binder metal. The aggregate in cemented carbides is often tungsten 

carbide (WC), titanium carbide (TiC), or tantalum carbide (TaC). In industrial applications, 

the terms "carbide" or "tungsten carbide “commonly apply to these cemented composites. 

Carbide cutters, in most cases, provide a superior surface quality on the item and allow for 

quicker machining than high-speed steel or other tool steels. Carbide tools are more resistant 

to heat at the point of cutter-workpiece contact than ordinary high-speed steel tools (which 

is a principal reason for the faster machining). Carbide is usually best for cutting rigid 

materials like carbon steel or stainless steel, as well as when other cutting tools would wear 

out faster, such as during high-volume production runs.  

To obtain high product quality, it is critical to detect tool wear. Aside from that, early 

manufacturing process planning, increasing product quality, and computer-assisted process 

planning are critical. The present work studies the optimization of carbide tool performance 

under dry conditions in the titanium alloy ti-6al-4v Eli, at various values for speed, feed, and 

depth of cut, using experiments. The temperature produced and the force applied at the tool's 

cutting edge has the most significant impact on tool life. Changing the cutting speed, feed 

rate, and depth of cut parameters will have a direct impact on the cutting force and 

temperature produced toward the end of the tool life. The goal of this experiment is to 
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investigate the tool life during the turning of titanium alloy under various conditions. 

Furthermore, uncoated tungsten carbide insert cutting speeds range from 0–100 m/s to cut 

titanium alloy under dry conditions. 

 

1.2. Problem Statement 

 

Because of the harsh operating environment of aviation engines, improvements to 

aircraft engines that rely on material qualities have been made in recent years. Among all 

the options, titanium alloy has emerged as one of the most valuable materials in the aircraft 

sector. Titanium alloy has a very high strength-to-weight ratio, making it a lightweight 

material with excellent strength. Furthermore, it has exceptional strength at high 

temperatures, allowing it to withstand the aircraft engine environment. Titanium, on the 

other hand, is categorized as a difficult-to-cut material due to its intrinsic features, such as 

its limited thermal conductivity, which raises the temperature at the tool-work-piece 

interface, affecting tool performance substantially.  

The second issue is that its strong chemical reactivity creates material bonding and 

chip evacuation issues, which often result in catastrophic tool failure. Finally, although its 

great strength at raised temperatures has been stated as a positive, it requires exceptionally 

high cutting forces and power, which causes various issues during the machining process. 

As a result, machining titanium alloy has become a critical problem in both the industrial 

and academic fields. Turning is regarded as a key technology not only because it quickly 

removes undesired parts of materials but also because it can make almost all types of contour 

surfaces smoothly.  

It is, nevertheless, a cutting process with variable chip load, pressures, and heat 

production. Rake and clearance angles vary with distance from the milling tool tip along the 

turning tool edges. As a result, analyzing the turning process and turning tool performance 
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is always a difficult task. Because the material is difficult to cut or the available speed is 

limited, turning titanium alloys has attracted attention. Because titanium alloys have limited 

thermal conductivity, most of the heat produced during the cutting operation is transferred 

to the tool rather than the chips or workpiece. The high temperature in the tool weakens its 

characteristics, generates thermal stress, and causes severe tool damage. The experimental 

technique is still the most often used way to examine tool performance in the titanium turning 

process, with several research focusing on testing for various cutting circumstances. 

1.3. Objective 

 

• To investigate the tool life performance of uncoated carbide under dry conditions. 

• To obtain optimum parameters of carbide tool performance under dry conditions. 

• To investigate the tool wear behavior under dry conditions. 

1.4. Scope of Project 

 

This study focuses on cutting tool performance (tool life) and tool wear pattern in 

turning titanium alloy Ti6Al-4V under dry conditions. The goal of this research was to 

maximize the cutting tool life performance and wear pattern investigation in the turning of 

Ti-6Al-4V Extra Low Interstitials (ELI) under dry conditions utilizing an H13A uncoated 

carbide cutting tool. The result will also be supported by a critical analysis of past research. 

To meet the experiment's goals, a computer numerical control (CNC) lathe machine was 

employed in the turning procedure. Cutting parameters considered include cutting feed rate, 

cutting depth, and cutting speed. While the depth of cut remains constant, the feed rate and 

cutting speed will vary. 
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1.5. Importance of Study 

 

Titanium alloys (Ti-6Al-4V) have been used in a wide range of applications, notably 

in aerospace, automotive, chemicals, and medicine, due to their high strength-to-weight 

ratio, excellent resistance to fracture, and remarkable anti-corrosion properties. On the other 

hand, Ti-6Al-4V is difficult to machine even at high temperatures because it has poor heat 

conductivity and elastic modulus and may chemically react with the uncoating on the cutting 

tool. Wear is one of the unavoidable issues in the machining process. The tool performance 

under dry machining conditions must be explored in order to characterize the interaction of 

carbide inserts with titanium alloy. Research must be done on cutter parameters like cutting 

speed, feed rate, and depth of cut to find out how carbide tools work best in dry conditions. 

1.6. Organizational Report 

 

Chapter 1 discusses the experiment's beginning. It includes the background of the study, 

problem statement, objectives, scope of the study, and significance of the study. 

This study's literature review is covered in Chapter 2. It includes a review of turning 

machining, dry machining, and tool performance.  

Chapter 3 discusses the project's methods. It includes a flow chart, literature review, and full 

factorial method. 

This research's findings and conclusions are presented in Chapter 4. This study's data will 

be compiled and analyzed. 

Chapter 5 discusses the research's findings and recommendations for future improvement. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

This chapter includes a review of the literature on the tool performance of carbide 

inserts while turning titanium alloys under dry circumstances. This literature study was 

shown to conclude this research. This chapter covers machining operations, titanium alloy 

(Ti – 6AL – 4V – ELI), cutting conditions (dry), uncoated tungsten carbide, tool wear 

behavior, tool life, and experiment design approach. 

2.1 Machining Process 

Machining is a subtractive manufacturing technique that includes the removal of 

material from a workpiece, often in the form of chips. Material is removed from a workpiece 

during machining using either a cutting tool or an energy source. Material removal in 

classical machining is followed by the generation of chips, which is performed by the 

employment of a cutting tool with a cutting edge (s). Nontraditional machining (NTM) 

methods, on the other hand, are chip-less material removal procedures that entail the 

utilization of energy for material cutting. Turning, drilling, milling, shaping/planing, 

broaching, and grinding are examples of classic machining processes as stated (Huda, 2020).  

Machining may be thought of as a system made up of the workpiece, the cutting tool, 

and the equipment (machine tool). There is a relative motion between the tool and the work 

in machining; the main motion is termed cutting speed, and the secondary motion is called 

a feed. There are three main cutting conditions in general: (a) cutting speed, (b) feed, and (c) 

depth of cut. Cutting speed is the greatest of a cutting tool's or workpiece's relative velocities. 

In a turning machining process, for example, the surface speed of the workpiece is the cutting 

speed (v), which is commonly represented in m/min (see Figure 2.1). Feed (f) is the distance 


