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Abstract: In the era of Industry 4.0, the digital capture of products has become a critical aspect,
which prompts the need for reliable inspection methods. In the current technological landscape,
the Internet of Things (IoT) holds significant value, especially for industrial devices that require
seamless communication with local and cloud computing servers. This research focuses on the
advancements made in roundness measurement techniques for industrial automation by leveraging
an IoT architecture, computer vision, and image processing. The interconnectedness enables the
efficient collection of feedback information, meeting the demands of closed-loop manufacturing.
The accuracy and performance of assemblies heavily rely on the roundness of specific workpiece
components. In order to address this problem, automated inspection methods are needed. A new
method of computer vision for measuring and inspecting roundness is proposed in this paper. This
method uses a non-contact method that takes into account all points on the contours of measured
objects, making it more accurate and practical than conventional methods. The system developed
by AMMC Laboratory captures Delrin work images and analyzes them using a specially designed
3SMVI system based on Open CV with Python script language. The system can measure and inspect
several rounded components in the same part, including external frames and internal holes. It is
calibrated to accommodate various units of measurement and has been tested using sample holes
within the surface feature of the workpiece. According to the results of both techniques, there is a
noticeable difference ranging from 2.9 µm to 11.6 µm. However, the accuracy of the measurements can
be enhanced by utilizing a high-resolution camera with proper lighting. The results were compared to
those obtained using a computer measurement machine (CMM), with a maximum difference of 8.7%.

Keywords: computer vision; image processing; CMM; 3SMVI; inspection; IoT; roundness

1. Introduction

In the present fast-changing industrial world driven by globalization, product cus-
tomization, and automation, the manufacturing industry plays a crucial role. With ad-
vanced technologies and techniques that enable rapid and efficient changes in products,
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processes, and supply chains, the manufacturing industry is at the forefront of Indus-
try 4.0. In the realm of advanced manufacturing systems, manufacturing metrology holds
significant importance as it pertains to the measurement and inspection of nearly all
machined objects. The advent of Industry 4.0 brings forth novel methodologies for the
development of next-generation manufacturing metrology systems that possess character-
istics such as intelligence, autonomy, flexibility, interoperability, high productivity, and
self-adaptability [1]. Furthermore, a significant shift is generally known as the fourth in-
dustrial revolution (IR 4.0) [2]. Emerging technologies such as machine learning, artificial
intelligence, big data, 3D printing, and robotics are constantly evolving within the realm of
IoT (Internet of Things). The rapid progress of these technologies brings about substantial
transformations, as IoT enables devices to perceive and interact with the surrounding
environment, imbuing them with a sense of vitality. This industrial decentralization has
paved the way for the efficient and remote control and monitoring of industrial operations.
Given that IoT represents the future of computing, it requires the synergistic support of
pioneering technologies to facilitate its growth and development [3,4]. IoT provides a
wide variety of digital and physical resources for I 4.0. Thus, the established network
allows for decentralized decision-making and reacting to cyber–physical systems (CPS)
in real time [5]. In addition, a computer vision system contains smart Internet of Things
(IoT) cameras looking directly at the production line that capture images, which are then
algorithmically compared to a predefined image to detect defective objects [6]. The IoT and
digital manufacturing industry significantly accelerate product development, producing
products with complexity and precision that previously could not be created by cycles and
manufacturers [7].

Circular features are among the fundamental geometric elements of mechanical parts.
The performance and lifespan of mechanical products depend on how accurately and
efficiently circularity errors can be evaluated [8]. To determine the degree of roundness
of rounded parts, the entire profile should be measured in accordance with the geometric
roundness tolerance standard [9]. The mission is to use machine vision to inspect an
automotive camshaft for roundness errors in real time. Further measurement studies are
required to improve accuracy and efficiency in roundness error measurement in order to
achieve successful roundness evaluation of the part using image processing procedures
and mathematical models [10–13]. Coordinate metrology is an essential inspection tool
for ensuring quality in machined workpieces. It can analyze the impact of parameters on
milled pocket diameter and roundness accuracy using CNC and CMM specimens, address
measurement deviations, and estimate uncertainty using statistical repeatability analysis [14].
The measurement of circular sector elements requires appropriate control, which is driven
by the increasing demand for complete control of specific geometrical features [15–17].
Conventional instruments have limitations in their sampling points, making it difficult
or impossible to meet current roundness measurement standards. Furthermore, using
such instruments to measure the entire profile of rounded parts increases the process’s
complexity and duration. Coordinate measuring machines (CMMs) are becoming more
common in automated inspections of manufactured components, both online and offline,
to meet geometric roundness tolerance standards. In the measurement of roundness errors,
coordinate measuring machines (CMMs) rely on capturing data from various sampling
points along the profile of curved parts. However, the use of CMMs for this purpose can be
both resource-intensive and time-consuming, particularly when a large number of points
need to be measured [18–20].

The availability of inexpensive digital computers has made it possible to incorpo-
rate machine vision systems into automated manufacturing systems without a large
financial burden. The progress in machine vision, image processing, computational in-
telligence, and similar areas has significantly improved the potential of visual inspection
methods [21–23]. A stereo vision and image analysis system for automating workpiece
referencing in three-axis machining centers is presented. The system captures images
with two cameras, which are then processed in custom software to return workpiece
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coordinates to machining workers [24]. A cloud-based system uses stereo vision and image
analysis to automate workpiece referencing in machining companies. The system processes
images from two cameras in the spindle in custom software and returns the Workpiece Coor-
dinate System (WCS) position to the CNC machine controller. Experiment results validate
the application in actual machining processes [25]. In comparison to coordinate measuring
machines (CMMs), a machine vision system equipped with a standard 512 × 512 image pro-
cessor can gather a large number of boundary points in a short period. Furthermore, machine
vision can conduct non-contact inspections of products, whereas most instruments used to
measure roundness require physical contact. As a consequence, there has been significant
interest in developing machine vision systems for inspection in the industrial sector [2,26–31].
A machine vision-based inspection system has been addressed for real-time geometric
inspection of A-grade nuts to ensure their quality. The algorithm was optimized for
accuracy and usability, resulting in faster and more appropriate nut detection, making
it suitable for all testing processes [32]. Machine vision systems provide benefits such
as faster measurement times, improved accuracy, and increased flexibility compared
to traditional methods. However, since machine vision is a precise and efficient data
collector, specialized assessment algorithms are required for different inspection tasks.
The effective development of algorithms that are tailored to manufactured parts and
error analysis holds significant importance in the context of vision-based inspection.
This research project aims to establish a comprehensive collection of computer vision
algorithms capable of analyzing images of circular parts to measure and inspect round-
ness errors and publish the data cloudily through VNC. The proposed methodology
integrates an Internet of Things (IoT) architecture and leverages MQTT protocols to
enable seamless data communication.

This article is organized as follows: In Section 2, relevant studies on roundness mea-
surement and the MZC algorithm used in determining the shape of a circular form are
discussed. Section 3 covers the methodology and the experimental setup and process
proposed. Section 4 presents the development of 3SMVI software and the implemen-
tation algorithms for image processing. Section 5 outlines the development of a vision
system calibration, and Section 6 explains the CMM approach. Section 7 provides a discus-
sion of the results and their interpretation. Finally, in Section 8, the authors’ conclusions
are summarized.

2. Previous Studies in Auto-Vision of Inspection System

The two types of measurements are diametral and radial roundness [33]. Diametral
measurements are made with two-point measuring tools such as calipers or microme-
ters, whereas radial measurements require precision spindle instruments that are both
expensive and time-consuming. These studies introduced a method for evaluating round-
ness and cylindricity tolerances, addressing difficulties encountered by technicians and
engineers, focusing on optimizing manual procedures, and improving skills [34]. Fur-
thermore, roundness profiles with pseudo and actual diameters were evaluated, and
relationship models with neural network regression based on coordinate measuring
machines were developed [35]. The “roundness tolerance band” is defined by the In-
ternational Organization for Standardization (ISO) as the area between two concentric
circles at the same cross-section where the difference in their radii equals the roundness
tolerance value. This value emphasizes the geometric roundness tolerance standard by
representing the allowable range of deviation from perfect roundness in a circular object.
It specifies the acceptable margin of error for the roundness of a part [13,36,37]. This study
addressed four ISO 14405-1:2016 modifiers, providing simple algorithms for evaluating
circularity errors and investigating the impact of measurement system strategies on these
new specifications [38].
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In engineering processes, the surface structure can be defined by three primary features:
form errors, roughness, and waviness. Errors encompass three vital criteria essential for the
assembly and connection of different parts, namely straightness, flatness, and circularity,
commonly referred to as roundness. Out-of-round (OOR) indicates the disparity between
the actual and measured radius at a particular point. Roundness measurement is usually
based on four globally recognized reference circles discussed in ISO-GPA and ASME
Y14.5(1994), such as Maximum Inscription Radial Circle (MIC), Minimum Circumscribing
Circle (MCC), Minimum Zone for Circularity (MZC), and least squares circle (LSC), as
addressed by [10,39–41]. The comparison of the benchmark algorithms for calculating
round errors based on MCC, MIC, and MZC was shown by [42].

Likewise, this research focused on two robust cylinder fitting alignment algorithms
that combined PCA, regression, and algebraic methods, as well as a PCD cylinder alignment
algorithm that can handle high-percentage deviations and improve shape recognition [43,44].
This study also conducted an iterative procedure for robust circle fitting that employs
Taubin’s method to obtain the center and radius, as well as geometric distances to the
circle, to identify and remove outliers, thereby reducing the corrupted effect on circle
parameter estimates [45]. A new roundness measurement algorithm and least squares
circle fit arithmetic were employed in a rapid quality detection system for electrochemically
fabricated micro-holes. The findings demonstrated reliable results and high precision,
meeting the requirements for quality inspection of electrochemical machining [46]. The
optimal wire spark erosion machining (WSET) turning condition minimized roundness
deviation and maximized material erosion rate. It produced a suitable surface for a variety
of applications, with a roundness deviation of 15.51 m and a material erosion rate of
9.35 mm3/min. These findings will be useful in the advanced fabrication of miniature
products from difficult-to-machine materials such as titanium [47]. The hybrid approach
evaluates circularity error using the least squares method (LSM) and probabilistic global
search Lausanne (PGSL) techniques, which have been proven to be efficient and suitable
computer-aided circularity measuring instruments [48]. A circular profile surface has a
maximum point that is connected by a wide circle diameter, as shown in Figure 1a. The
center of the circle is represented by C, and its radius can be calculated for all points. The
maximum error is determined by measuring the values for the outer and inner boundaries.
The inner boundary, outer boundary, and circular center are represented by xi, xo, and c,
respectively, as described by [49]. The distance is measured by establishing a reference circle
from the measurement data. In the case of shafts, the largest circle that can be contained
within the workpiece’s profile is used, known as the MIC. Conversely, the smallest circle
that can just contain the profile is used for holes, referred to as the MCC. To find the
roundness error, it is necessary to find a pair of concentric circles between which the
narrowest annular zone, known as the MZC, can be established. The circle that minimizes
the sum of the squares of the radial distances of the data points is selected as the LSC.
Accurate determination of the center position and radius of the reference circle is crucial
in assembly operations. The methods MIC, MCC, and MZC, along with their respective
algorithms and mathematical calculations, have been previously discussed [20]. Therefore,
the primary objective of this paper is to concentrate on the mathematical calculations
with algorithms of the MZC technique for measuring roundness error through the aid of
computer vision. Additionally, the study aims to integrate the data collected using MQTT
protocols with the Internet of Things (IoT) based on Virtual Network Computing (VNC).
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(b) MCC, and (c) MZC [50].

2.1. The Minimum Zone Circles

The MZC method determines roundness error by using two reference circles, which
provide a quantitative measure by comparing the actual contour with two reference circles:
the Maximum Inscribed Circle (MIC) and the Minimum Circumscribed Circle (MCC). In
this technique, a circle is drawn around the circularity profile, while another circle is drawn
inside the roundness profile to fit it as described by [51]. In the measurement of roundness,
two circles, namely the circumscribed circle and the inscribed circle, play a crucial role. By
identifying the center of these circles, which forms the minimal zone circle, the center of
the measured shape is determined. This center is used as a reference point to assess the
roundness profile. The roundness error is then computed by measuring the radial distance
between the minimum inscribed circle and the maximum circumcised circle. The difference
in radii between these circles indicates the magnitude of the roundness error present in
the measured object. The roundness error is established using the MZC technique by
measuring the radial separation between two circles, specifically the minimum inscribed
circle and the maximum circumscribed circle. The difference in radii between these two
circles indicates the roundness error of the object being measured.

R1 − R2√
(xi− xc)2 + (yi− yc)2 ≤ R1√
(xi− xc)2 + (yi− yc)2 ≥ R2, i = 1, 2, 3, . . . n

R1 − R2 ≥ 0
RL ≤ R ≤ RU ;
xL ≤ xc ≤ xU ;
yL ≤ yc ≤ yU


(1)

where the R1 and R2 are the radii of c1 and c2, respectively, and thus share a center at
(xc, yc). The minimum radial separation is defined as the roundness error. It is mathemati-
cally formulated as

eMZC = Rmax − Rmin (2)

In recent years, there has been a growing interest in implementing computer vision sys-
tems in industrial workplaces to detect defects in products. These systems use various image
processing techniques to analyze the features and surface of the model, providing valuable
information to the experts. Advanced industrial systems necessarily involve ever-improving
product performance and improved product quality during the production process [52–54].
Defects, such as scratches, imperfections, or holes on the surface of the product, on the other
hand, have an adverse influence mainly on the product’s aesthetics and user comfort but also
on its performance [55–58]. Therefore, defect detection is an efficient strategy for minimizing
the environmental effects of product defects [59–61]. Machine vision in industrial processes
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can help with a wide range of industrial tasks [62–64]. A typical industrial visual inspec-
tion system is categorized into three components: optical illumination, image acquisition,
image processing, and defect detection [29,65]. The development of an automated smart
system-based interpreter for detecting and measuring the surface feature of Example 1,
Part 21, of ISO 14649 standard using machine vision inspection (3SMVI) is proposed in this
study [66]. The 3SMVI system will be developed in the milling machine using a camera
system and lighting system [50,66]. The 3SMVI system is widely adopted as a standard tool
for measuring and inspecting surfaces. This article explores the increasing use of camera
systems to validate the accuracy of surface features in design and measurement. It also
discusses the challenges of measuring roundness in circles using vision and validates the
system based on IoT.

3. Materials and Methodology
3.1. Materials

The CAD model displayed in Figure 2 is utilized to determine the surface area of the
side view layout. The model illustrates the presence of five holes that require inspection,
and the inspection circles comprise the largest portion of the model’s surface area that can
measure the outer edge surface. Machining parameters for a mild Delrin workpiece that has
round holes with a 30 mm diameter, a spindle speed of 2000 revolutions per minute (rpm), a
feed rate of 0.1 mm per revolution (mm/rev), a cutting depth of 20 mm, and a cutting speed
of 250 m per second (m/s) are given. In this study, the inspection hardware is developed
with the aid of IoT support devices, including a Raspberry Pi, multiple subsystem cameras,
a lighting system, and a Wi-Fi router. The hardware component specifications used in the
IoT configuration are listed in Table 1.

Table 1. Characteristics of parameters, hardware, and software components.

Machine Characteristics Parameter Specification

Machine Part
Workpiece Delrin
Size 120 × 100 × 50 mm

Machining

Feed rate 0.1 mm
Spindle speed 2500 rpm
Depth of cut 22 mm
One Circle diameter 30 mm
Cutting speed 250 m/s

Cutting tool

Material type High-speed steel
Diameter 0.6 mm
Number of flutes 2
Tool type New tool

Number of axes Three axes, X, Y, and Z

CMM measurement

Machine type MITUTOYO QM-353
Resolution 0.0005 mm (0.00002 in.)
High accuracy Accuracy of min 0.0017 mm
Versatility Wide range of probe systems are available

Software
Open CV Open Vision Library2011, windows 10
Python 3.8.3
Pycharm editor IDE used in computer programming for Python
CAD design CATIA v5, R21 2020
Operating System The Raspbian Debian Buster

MQTT protocol Messaging protocol designed for
low-bandwidth
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3.2. The Experimental Setup and Procedure

The setup for the experiment includes a combination of hardware and software for
carrying out non-contact roundness tests through a vision system. Proper lighting is
essential for acquiring good-quality images of the test objects. The workpiece is rotated
through the use of a servo motor, while the encoder response on the fixed axis measures
the angle of rotation. Simultaneously, a COMS camera captures visual data of the targeted
region. The experimental setup for the Smart System-based STEP-NC file-21 for the Machine
Vision Inspection (3SMVI) prototype, which incorporates cloud-based MQTT connectivity,
is depicted in Figure 3. This system was implemented on an INTELITEK PROLIGHT
three-axis milling machine, designed in accordance with Example 1, Part 21, of the ISO
14649 standard.
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Case Study

Based on the ISO 14649 standard’s Example 1, Part 21, a system design was formulated
specifically for the INTELITEK PROLIGHT 3-axis milling machine. The CAD model was
utilized to identify the surface region of the side view layout, with a specific focus on one
hole and one pocket that necessitate inspection. The selected circle designated for inspection
represents the most critical section of the model area, ensuring precise measurement of the
outer surface of the edge.

This case study provides comprehensive information regarding the machining pa-
rameters employed for a Delrin prismatic mill workpiece. Notably, the workpiece has a
roundness hole with a diameter of 30 mm. The specified parameters consist of a spindle
speed of 2000 rpm, a feed rate of 0.1 mm/rev, a depth of cut of 20 mm, and a cutting speed
of 250 m/s. To further elaborate, this case study encompasses an expanded version of
Example 1 ISO 14649 Part 21 file, incorporating four holes and one pocket, as illustrated
in Figure 2. Additionally, Table 1 presents an overview of the characteristic parameters,
hardware, and software components involved in the study.

4. The Development of 3SMVI Software and Integration

The successful integration of machining and inspection capabilities within a single
CNC machine marked a significant advancement in the establishment of the 3SMVI (Smart
System-based STEP-NC file-21 for Machine Vision Inspection) system. Its primary goal
is to create 3SMVI applications that combine software and hardware, as noted in [66].
The 3SMVI system is intended to operate in an IoT environment based on the STEP-NC
protocol, with a heavy emphasis on hardware and software integration. The OpenCV
library and Python programming language were employed to construct the machine vision
system, while the 3SMVI application consisted of four major components: data diffusion
mechanism, operational modules, data model, and computational intelligence algorithm.
The 3SMVI system provides a comprehensive solution for machining and inspection tasks
by integrating these components into a single computer. The software for the 3SMVI system
was written in Python 3.8.3 with the PyCharm editor, which supported 64-bit Windows
applications. It includes several computer vision and image processing algorithms for
accurately measuring and inspecting roundness errors in circular components.

Figure 3 depicts the 3SMVI system based on MQTT protocols with virtual network
computing. The object is placed on the backlighting table to begin the measurement or
inspection process, and the capturing software, which is based on Open Computer Vision,
captures and saves an image in BMP format. The vision inspection system then opens the
captured image and performs the necessary inspection and measurement procedures.

4.1. The 3SMVI Hardware and Software Integration

The advancement of a smart system with interpreted files of STEP-NC for machine
vision inspection based on an IoT environment. This innovation successfully integrated
the machining and inspection of the roundness of the milled workpiece into a PC CNC
machine cloud platform under an Open CV environment depending on a new technology
approach known as IoT. Every device and machine vision were connected to the internet
via the same IP address and communicated wirelessly. Therefore, the IoT application
approach enables inspection integration and communication through the server broker.
In addition, the information from interpreted files of the STEP-NC-based CNC machine
was sensed through the camera device and finally sent back the inspection dataset into the
server cloud to the STEP-NC-based IoT application. Figure 4 illustrates the smart system
for interpreted files of STEP-NC for machine vision inspection based on IoT or the 3SMVI
systems with the integration of both 3SMVI hardware and 3SMVI software. Additionally,
the developed system provides an advanced human–machine interface that uses visual
network computing (VNC) on any smart device, such as a mobile phone, tablet, and PC,
through a single IP address.
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4.2. Software Utilization and Algorithms

The data was implemented and published in cloud server-based MQTT on IoT applica-
tions. Hence, the captures of the images were data acquisition, facilitating data integration
and communication during machining between inspection systems and VNC cloud servers
through IoT-based technology. The main interface, as shown in Figure 5, requires two
inputs from the user to carry out the measurement and inspection procedures. The 3SMVI
system takes two inputs for measuring and inspecting circular objects. The diameter of the
object is the first input, which is used to calibrate the system. The second input, which is
used for inspection, is the maximum allowable roundness error value. To perform mea-
surement and inspection procedures, the system employs a variety of algorithms based on
computer vision and image processing.
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4.3. Image Analysis and Segmentation

Image analysis is the initial stage of the process of image segmentation in the computer
vision process. The image is fed into the system, and features are then extracted from
it. Pixels that have similar characteristics are grouped together into an area, and regions
with linear structures and 2D shapes are separated based on the success or failure of the
computer vision-based process that relies on efficient segmentation. Industrial machine
vision is one example of a typical application where the assembly of gadgets is monitored,
and objects are automatically recognized and tracked. Apart from that, image segmentation
has been used in traffic control, content-based image retrieval, video investigation, and
sports arenas. The process of extracting meaningful information and insights from images
is referred to as image analysis.

In the segmentation process, the system uses either of two features of an image
separation procedure that relies on controlling the direction of illumination as part of
the discontinuity. There are defined mechanisms like thresholding, region splitting and
merging, and region growth used in the similarity approach to partition the image into
comparable areas. Thresholding is used to separate the foreground from the background
by selecting a threshold value. A binary image is generated from the gray-level image,
with the threshold value being the average value of all pixels. Binary images have the
advantage of minimizing data complexity and simplifying the process of image recognition
and segmentation, but setting a threshold value can be difficult due to its sensitivity to noise.
Clustering is the process of categorizing objects based on their characteristics. Following
segmentation, models are extracted using edge detection algorithms such as Canny edges,
as illustrated in Figure 10.

The process of measuring the roundness error of a Delrin workpiece involves capturing
images, isolating the edge pixels of the object, and applying an edge detection algorithm.
Typically, the frame grabber captures color images. However, for this particular application,
binary images featuring only two colors, black and white, are required. To achieve this, a
gray image must first be generated from the color image using the following formula:

Gl = 0.299Rc + 0.587Gc + 0.114Bc (3)

where Gl describes the pixel’s grey level and Rc, Gc, and Bc are the red, green, and blue
components of the pixel color, respectively. Then, the histogram of each gray level is
determined to compute a threshold value using the following:

T = Abs((Glmax1− Glmax2)/2) (4)

where Glmax1 and Glmax2 are the two grey levels with the highest frequencies, and T is
the threshold value. All pixels with grey levels above the threshold are converted to black
pixels to generate the binary image, and all other pixels are converted to white pixels.

4.4. An Algorithm for Detecting Edges

The edge detection process entails detecting the pixels that form the edges in a binary
image. This is achieved through the use of an edge detection algorithm that compares
the color of each pixel in the binary image with that of its eight neighboring pixels. If a
pixel’s color is black (0), and any of its neighboring pixels are white (255), it is classified as
an edge pixel. However, if the pixel’s color is not black or its neighboring pixels are not
white, it is considered a background pixel. A process flowchart depicting these algorithms
is shown in Figure 6, and further descriptions of these algorithms are provided in the
subsequent sections. The following code can be used to implement this algorithm, as
shown in Supplementary File.
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Objects or Models Detection

An outline of object detection is seen in Figure 7, which includes a set of two images.
Image 1 contains an object’s reference, and Image 2 transforms them to grey, adds a bit of
filtering to blur the image, and then subtracts the images to a binary or black-and-white
image. Finally, the outcome was dilated to merge some of the near pixels or blobs, detecting
the largest circle and rectangular blob around it. That was one method of detecting changes
in the pixel value of images. Hence, the principle of whether to adjust a bit more behind
motion or object detection to improve the final output to suit the circumstances of the
image, etc. Firstly, users would need to create a video stream. Once the users have created
a video feed, the first image is captured in the same way as Image 1 and used as a reference
image, and then the frames are compared with the reference frame.
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4.5. Data Acquisition

This non-contact roundness measurement method automatically generates data ac-
quisition by rotating the workpiece at a specific point using a machine vision system and
capturing images with a high-end webcam camera placed directly in front of the object
with 90 degrees of freedom. For one cycle of the measurement part, 330 images of the target
region were captured, with each measurement performed after rotating the workpiece
by 1.8 degrees using an Arduino-controlled two-phase stepper motor, which provides
higher resolution due to its smaller step angle and usable torque. The application connects
to MQTT clients over the internet by specifying the client’s IP address and port number
through visual network computing. Once connected, the VNC module displays the image
file and serves as the primary interface for the machine vision platform. A sample image
obtained from the vision system is shown in Figure 6.

Table 2 presents the surface feature of a hole pocket with four circle hole diameter
values, namely 22 mm, 22 mm, 22 mm, and 22 mm, generated at different angles ranging
from 0 degrees to 360 degrees in the 3SMVI vision system. The average circular error in
micrometers for each hole was also calculated.

Table 2. The diameter values from the vision system for mild Delrin workpiece.

Image No. Angle in
Degree Mild Delrin Dia. 30 mm

1 0◦ 29.9383
2 31◦ 29.9397
3 62◦ 29.9378
4 93◦ 29.9292
5 124◦ 29.9364
6 155◦ 29.9281
7 186◦ 29.9368
8 217◦ 29.9311
9 248◦ 29.9315
10 279◦ 29.9299
11 310◦ 29.9324
12 360◦ 29.9308

Roundness Circle Hole
Error in µm
= Rcmax
−Rcmin

2.9 µm

4.6. The Algorithm for Edge Labelling

To compute the roundness error of each circular part individually, it is necessary to
first identify the edge pixels of each part from the captured images. This can be achieved
through the use of an edge labeling algorithm, which generates a labeled image from
the edge image and assigns a unique color label to the pixels of each circular part. The
algorithm follows a general process described in the reference and comprises several
steps [43], including the following steps:

1. The edge-pixel image is encoded using the run-length algorithm;
2. After scanning the runs, each run is given a preliminary label. The label equivalent is

then entered into a local equivalent table;
3. The classes that are resolved have equivalence;
4. Finally, based on the resolved equivalence classes, the runs are given labels.

4.7. The Error Algorithm for Roundness Holes

The roundness error algorithm, which is explained in Section 2.1, uses the minimum
zone circles technique and includes the following steps:
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1. The labeled image is scanned from left to right and top to bottom. During this process,
the (x, y) coordinates of the edge pixels of a selected part (color) are extracted and
stored in an array known as Edge Pixels;

2. The minimum zone method is then applied to the pixels in the Edge Pixels array to
determine the center and radius of the minimum zone circle;

3. The center of the minimum zone circle is calculated, and the distances between this
center and all pixels in the Edge Pixels array are computed. The minimum and
maximum distances are identified as Rmin and Rmax.

5. System Calibration

To calibrate the system, it is necessary to compute the pixel sizes in both the x and y
directions based on the actual size of the holes in the workpiece being measured. Camera
calibration involves determining internal parameters like focal length and correcting lens
distortions, as well as establishing the camera’s position and orientation. This process,
aided by specialized software and calibration targets, enhances measurement accuracy
and computer vision applications, especially in robotics, augmented reality, and industrial
quality control. The following steps are involved in this process:

1. The user provides the 3SMVI platform with the actual diameter (in millimeters) of the
object being measured. If the object is comprised of multiple circular parts, the outer
part’s size (maximum diameter) should be utilized.

2. The software searches for the two edge pixels on the outer contour with the minimum
and maximum x coordinates to determine the maximum diameter of the captured
image in the x direction (Dmaxx) using the formula

Dmaxx = Abs(Xmax − Xmin) (5)

where Xmax and Xmin are the maximum and minimum x coordinates of the edge pixels
of the outer contour, respectively.

3. The calibration factor in the x direction (CFx) is calculated as follows:

CFx = Dactual/Dmaxx (6)

4. In the same manner, the calibration process also involves determining the calibration
factor in the y direction (CFy ) by identifying the two pixels with the minimum and
maximum y coordinates, which can be obtained by using the formula

CFy = Dactual/Dmaxy (7)

5. After calculating CFx and CFy, all x and y coordinates of the edge pixels are multiplied
by these calibration factors.

6. The primary roundness error (RE primary) is then calculated using the least squares
circle technique on the edge pixels.

7. Furthermore, using a formula derived from Excel, the fixed error (FE) in pixels is
determined based on the user-provided value of the smoothing factor (SF).

8. The fixed error is then calibrated and expressed in millimeters (FE mm) using the
following equation:

FE mm = FE pixel CFx× CFy (8)

9. The final roundness error (RE f inal) is calculated as follows:

RE f inal = RE primary− FE mm (9)
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Camera-to-Workpiece Distance Estimation

After calibration, the distance to the object was calculated using a single photograph.
Thus, the concept of the given solution was the image analysis resulting from the object
moving away from the point for which it defined the focus, how to use a single camera to
figure out the distance to an object, where the focal distance (f ) and height (h) and distance
the distance between the object and the lens known as (d). b was the height, while m was
the distance between the camera and a and b, which was named the reflection of height.
Figure 8 below shows the points between the camera distance and the object.

a
f
= tan θ1 =

h
d

(10)

b
f
= tan θ2 =

h
d−m

(11)

By dividing Equations (10) and (11), they may represent the distance between the
object and lens and calculate the pixel distance to figure out the length.

⇒ a
b = tan θ1

tan θ2
= h

d ×
d−m

h = 1− m
d ;

⇒ m
d = 1− a

b ;
⇒ d = m

1− a
b

(12)
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6. CMM Inspection of Contact Measurement

In this validation section, a case study was used to inspect the roundness of a circle
hole known as an offline coordinate measuring machine. Figure 9 shows the illustration of
a model that measures the surface feature during the inspection process using the CMM
technique, as described in this section. Furthermore, the research employed an offline
measuring tool to evaluate the Delrin components utilizing Example 1, Part 21, file based
on the STEP-NC environment. The QM-353 manual CMM equipment at UTHM Metrology
was used to examine samples of the same workpiece holes. The CMM measurements were
conducted in a particular sequence to determine the roundness of the holes and surface
characteristics of mild Delrin workpieces.



Appl. Sci. 2023, 13, 11419 15 of 22Appl. Sci. 2023, 13, x FOR PEER REVIEW  16  of  23 
 

 

Figure 9. The CMM implementation for Case Study 1. 

7. Result and Discussion 

The study utilized a new cutting tool to produce Delrin parts with the Example 1, 

Part 21, file based on the STEP-NC environment using a PROLIGHT CNC milling machine 

in this validation section. However, the inspection processes utilizing image processing 

techniques remained the same as described in the previous section on the 3SMVI system 

implementation. Figure 10 depicts a graphical representation of the inspection procedure, 

illustrating the steps involving image processing, image analysis, and computational in-

telligence  for measurement  identification.  Images were pre-processed  to  identify  their 

contents for further analysis, such as counting or measuring roundness circles and plane 

surface features. When identifying objects in an image, edges play a crucial role. Bounda-

ries were the lines that differentiate groups of identical pixels in the image from groups of 

distinct pixels. The edge considers image pixels that delineate the boundary of a target, 

such as whether the image’s background finishes and the image continues. 

Figure 9. The CMM implementation for Case Study 1.

7. Result and Discussion

The study utilized a new cutting tool to produce Delrin parts with the Example 1,
Part 21, file based on the STEP-NC environment using a PROLIGHT CNC milling machine
in this validation section. However, the inspection processes utilizing image processing
techniques remained the same as described in the previous section on the 3SMVI system
implementation. Figure 10 depicts a graphical representation of the inspection procedure,
illustrating the steps involving image processing, image analysis, and computational
intelligence for measurement identification. Images were pre-processed to identify their
contents for further analysis, such as counting or measuring roundness circles and plane
surface features. When identifying objects in an image, edges play a crucial role. Boundaries
were the lines that differentiate groups of identical pixels in the image from groups of
distinct pixels. The edge considers image pixels that delineate the boundary of a target,
such as whether the image’s background finishes and the image continues.
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Table 2 illustrates the surface feature diameter of the roundness circle values of Ex-
ample 1, Part 21 file based on ISO 14649, developed using the 3SMVI vision system in
twelve points. Consequently, Figure 11 displays consistent and predictable diameter data
at each point, covering various angles ranging from zero degrees to 360 degrees of position.
In addition, it depicted the data in red color decrease as the minimum value in three
measurements.
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Table 3 presents the results of the measurements taken with the MITUTOYO QM-
Measure CMM of the surface feature of a roundness hole of the workpiece. Figure 12 shows
that the diameter data obtained at each point were uniform and predictable, with positions
ranging from 0◦ to 360◦. The red data points represented the minimum value measurements,
which were considered the optimal values for the vision system. However, while the contact
approach provided accurate results, it was more time-consuming compared to the vision
system. The main issue with the contact method was the wear and tear that occurred
between the measuring probe and the workpiece.

Table 3. Dimensional information from the CMM for a mild Delrin workpiece.

No. of Point Points Mild Delrin Dia. 30 mm
3 A,B,C 30.0121
3 A,C,B 30.0099
3 B,A,C 30.0112
3 B,C,A 30.0123
3 C,A,B 30.0133
3 C,B,A 30.0113
3 a,b,c 30.0104
3 a,c,b 30.0109
3 b,a,c 30.0124
3 b,c,a 30.0116
3 c,a,b 30.0128
3 c,b,a 30.0103
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Table 4 illustrates the average value of the difference errors in microns between contact
and non-contact measurements of the dimensions in each parameter for the case study.
Therefore, Figure 13 shows the decline of deference errors in microns between the 3SMVI
and CMM.

Table 4. Comparison of the difference of average circle hole error between 3SMVI and CMM
measurements for mild Delrin Case Study 1.

Diameter in mm Hole Circle Error from
3SMVI System in µm

Hole Circle Error
from CMM in µm Difference in µm

30 11.6 µm 2.9 µm 8.7
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8. Conclusions and Future Research

The fusion of IoT architecture, computer vision, and image processing methods has
driven progress in measuring roundness within industrial automation. This integration en-
hances the accuracy and effectiveness of assessing roundness in industrial applications. IoT
architecture facilitates real-time data exchange among devices, enabling instant monitoring
and analysis of roundness measurements. This interconnectedness enables automated
systems to gather and process image data from diverse sensors and cameras, offering a
holistic perspective on an object’s roundness.

This paper discusses the development of an intelligent system utilizing machine vision
inspection within an IoT framework and ISO 14649 interpreted files. A case study, including
Example 1, Part 21, of STEP-NC, validated the system’s functionality and confirmed
its high accuracy compared to previous models. The article stresses the significance of
assessing uncertainty from the perspective of the MVIS system rather than solely focusing
on algorithm development. The 3SMVI system, built on IoT architecture, has been fully
developed, and the next step involves integrating advanced intelligent algorithms to
enhance its capabilities. The primary contribution of this research is the examination of
workpiece roundness using the 3SMVI system within an IoT and CMM framework. The
IoT architecture facilitates seamless communication between the roundness measurement
system and connected devices, enabling efficient data exchange, remote monitoring, and
data-driven decision-making.

Computer vision algorithms play a crucial role in extracting meaningful information
from the captured images. These algorithms can identify and analyze geometric features,
enabling accurate roundness measurements. Through the use of edge detection, contour
analysis, and shape-fitting algorithms, the system can precisely determine the roundness
of objects with minimal human intervention. A vision system was introduced to measure
and inspect circular parts’ roundness errors using a non-contact method that adheres to
geometric roundness tolerance standards. The 3SMVI system was developed to assist mea-
surement and inspection processes by analyzing captured images using image processing
and computer vision algorithms based on Open Computer Vision. Therefore, to ensure the
system’s accuracy, the roundness error of holes in workpiece parts was measured using
both a coordinate measuring machine (CMM) and the machine vision inspection system
(MVIS). The results were compared, and the maximum difference between the outcomes of
the two systems was found to be 8.7%.

In a future study, we aim to enhance the 3SMVI system’s performance by upgrading
hardware and software algorithms, improving image quality, and using more protocols for
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information transmission via cloud computing servers. It will focus on enhancing surface
feature detection and manufacturing optimization using deep learning techniques and
incorporating machine learning and artificial intelligence for continuous improvement and
intelligent decision-making in industrial automation.
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ASME American Society of Mechanical Engineers
ACO Colony Optimization
CNC Computer Numerical Control
CMM Coordinate measuring machine
C Center of this circle
CMOS Complementary metal–oxide–semiconductor
EO Engineering Ontology
eMZC Error-based Minimum Zone radial circles
CLIM Closed-loop inspection manufacturing
CAIP Computer-aided Inspection Planning
FTP File Transfer Protocol
GA General Assembly Simulation
GD&T Geometric Dimensioning and Tolerance
I 4.0 The Fourth Industrial Revolution
IoT Internet of Things
WSET Wire spark erosion machining
ISO International Standard Organization
LED Light-emitting Diodes
MQTT Message Queuing Telemetry Transport
MZC Minimum Zone for Radial Circles
MTD Metrology for the Digitalization
Open CV Open Computer Vision
OLP Offline Programming System
OOR Out-of-the-Round
QM Quality MITUTOYO Measure
RGB Three channels of color: Red, Green, and Blue
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Ri Radius inner
RU Upper radius
RL Lower radius
STEP-NC The Standard for the Exchange of Product Model Data for Numerical Control
VNC Visual network center
3SMVI Smart System based on interpreted STEP-NC for Machine Vision Inspection
3D Three-dimension model
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