

Faculty of Mechanical Engineering

OPTIMIZATION OF CENTRALISED AIR CONDITIONING SYSTEM PERFORMANCE FOR UNIVERSITY OFFICE BUILDING

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Imanurezeki Mohamad

Doctor of Engineering

OPTIMIZATION OF CENTRALISED AIR CONDITIONING SYSTEM PERFORMANCE FOR UNIVERSITY OFFICE BUILDING

IMANUREZEKI MOHAMAD

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this thesis entitle "Optimization Of Centralised Air Conditioning System Performance For University Office Building" is the results of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Engineering.

DEDICATION

To my family.

ABSTRACT

The centralised air-conditioning (CAC) system is the most common cooling system for medium-to-large office buildings that accounts for a large amount of annual building energy consumption and leads to high electrical energy costs. Since CAC system performance is encountered with a significant level of uncertainty due to integrating cooling process parameters and several mechanical equipment, there is no systematic approach to evaluating the performance of a CAC system to result in an optimal configuration and system operation. Therefore, this study developed a systematic framework for optimising the performance of CAC systems based on various evaluation method, known as The Performance- Based Evaluation Indicator, or (PBEI) method. The method was used as a decision-support tools for CAC system's building, cost, risk and technical performance, which also known as the performance score indicator. The study's results indicated that by improving the configuration and operational parameters of the CAC system, total system efficiency can be enhanced by 20% and the equipment's operational life extended by five years. A humidity level of 65% to 75% and 20% electrical energy savings can be achieved by optimising the CAC system's control loops of cooling process parameters. The study's findings contributed to a better knowledge of the CAC system management and resulted in the development of a decision-making strategy for either equipment replacement or upgrade in order to achieve an optimised performance level.

PENGOPTIMUMAN PRESTASI SISTEM PENYAMAN UDARA BERPUSAT UNTUK BANGUNAN PEJABAT UNIVERSITI

ABSTRAK

Sistem Penyaman Udara Berpusat (CAC) adalah sistem penyejukan yang paling biasa digunakan untuk bangunan pejabat sederhana sehingga besar yang menyumbang kepada sebahagian besar dari penggunaan tenaga tahunan bangunan dan membawa kepada kos tenaga elektrik yang tinggi. Oleh kerana, prestasi sistem CAC dihadapi dengan tahap ketidakpastian yang ketara kerana melibatkan integrasi parameter-parameter proses penyejukan dan pelbagai peralatan mekanikal, tiada pendekatan sistematik untuk menilai prestasi sistem CAC untuk menghasilkan konfigurasi dan operasi sistem yang optimum. Oleh itu, kajian ini membangunkan rangka kerja sistematik untuk mengoptimumkan prestasi sistem CAC menggunakan kaedah Penunjuk Penilaian Berasaskan Prestasi, atau kaedah (PBEI). Kaedah ini digunakan sebagai instrumen pendukung keputusan untuk prestasi bangunan, kos, risiko, dan teknikal sistem CAC, yang juga dikenali sebagai Penunjuk Skor Prestasi. Keputusan kajian menunjukkan dengan meningkatkan tatarajah dan parameter-parameter operasi sistem CAC, keseluruhan kecekapan sistem dapat dipertingkatkan sebanyak 20% dan hayat operasi peralatan dipanjangkan dengan lima tahun. Paras kelembapan 65% ke 75% dan 20% penjimatan tenaga elektrik mampu dicapai dengan mengoptimumkan kawal kitaran proses penyejukan sistem CAC. Hasil kajian ini menyumbang kepada pengetahuan pengurusan sistem CAC yang lebih baik dan menghasilkan dalam pembangunan strategi membuat keputusan sama ada untuk penggantian atan menaik taraf peralatan dalam usaha untuk mencapai paras prestasi optimum.

ACKNOWLEDGEMENTS

My outmost gratitude goes to Allah, Almighty for His kindness in blessing me with strength and wisdom for this piece of work made possible according to his plan.

The financial assistance from Yayasan Biasiswa Tunku Abdul Rahman is grateful and acknowledged.

I would like to express my deepest appreciation to my advisor, Assoc. Prof. Dr. Ahmad Anas Yusof and Assoc. Prof. Dr. Ir. Hayati Abdullah for their expertise, encouragement, thoughtful guidance and ultimate support throughout this study.

I owe my deepest gratitude to Prof. Ir. Dr. Mohammad Yusri Hassan and Assoc. Prof. Ir. Dr. Md Pauzi Abdullah for their willingness to impart their time and professional expertise in electrical energy systems. Additional thanks to my friends and staff in the Office of Asset and Development, UTM and Faculty of Mechanical Engineering, UTeM for their technical support and camaraderie.

It is an honor for me to Prof. Ts. Dr. Mohd Zamri Ibrahim, Prof. Madya Dr. Musthafah Mohd Tahir and Ir. Al-Khairi Mohd Daud as a committee member. Their passionate support, and constructive criticisms to refine this research which contributed much to improving this thesis.

I am especially thankful to my mom, who always encouraged and supported my dreams. May Allah reward her with the highest degrees in *Jannah*. I also express my gratitude to my family for their endless support and love. To my wife and kids who have always beside me provided unconditional love, and displayed unwavering faith in my abilities, inspired all my past, present, and future achievements, and for their consistent support and encouragement.

TABLE OF CONTENTS

DECLARATION	
DEDICATION	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	viii
LIST OF FIGURES	xiii
LIST OF APPENDICES	xvii
LIST OF ABBREVATIONS	xviii
اويوم سيتي تيڪنيڪل مليسي IIST OF SYMBOLS	xxi
LIST OF PUBLICATIONS UNIVERSITI TEKNIKAL MALAYSIA MELAKA	xxiv

CHAPTER

1.	INT	RODUCTION	1
	1.1	Study Background	1
	1.2	Problem Statement	5
	1.3	Objectives of Study	8
	1.4	Scopes of Study	9
	1.5	Importance of Study	11
	1.6	Limitation of Study	12
	1.7	Thesis Structures	14
2.	LIT	ERATURE REVIEW	16
	2.1	Introduction	16
	2.2	Building Electrical Energy Consumption	17

PAGE

2.3	Building Electrical Energy Management Procedure	20
2.4	Building Energy Audit	25
2.5	Centralised Air-Conditioning System for Office Buildings	29
2.6	Influence Parameters for Optimization of Centralised Air-Conditioning	
	Cooling Process	39
2.7	Optimization Assessment for Centralised Air-Conditioning System	
	Performance	45
2.8	Management of Centralised Air-Conditioning System Performance	61
2.9	Evaluation of Centralised Air-Conditioning System Performance	
	Regulations	69
2.10	Summary of Literature Review	72
ME	THODOLOGY	75
3.1	Introduction	75
3.2	Step 1: Energy Audit of BSCI Building and	
	Centralised Air Conditioning System	78
	3.2.1 Building Energy Load Profiles	84
	3.2.2 Audit of Centralised Air Conditioning System	89
3.3	Step 2: Evaluation of Centralised Air-Conditioning System	
	Configurations and Auxiliary Equipment Performance	90
	3.3.1 Chiller System Configuration Before Optimization	93
	3.3.2 AHUs System Configuration Before Optimization	97
	3.3.3 Cooling Tower System Configuration Before Optimization	100
	3.3.4 Fans, Pumps and Motors System Configuration Before	
	Optimization	102
	3.3.5 CAC System Measurement and Sensor Equipment's Before	
	Optimization	103
	3.3.6 CAC System Control Devices Before Optimization	106
	3.3.7 CAC System of Water and Air Flow Distribution	
	System Before Optimization	108
3.4	Step 3: Analysis of Operating and Cooling Process	
	Parameter Performance for Centralised Air-Conditioning	
	System Optimization	109

3.

3.5	Step 4	: Development of Performance-Based Evaluation Indicator	
	for Ce	entralised Air-Conditioning System Optimization Framework	119
	3.5.1	Building Performance Score Indicator Assessment	122
	3.5.2	Cost Performance Score Indicator Assessment	123
	3.5.3	Risk Performance Score Indicator Assessment	136
	3.5.4	Technical Performance Score Indicator Assessment	139

4. **RESULTS AND DISCUSSIONS** 143 4.1 Introduction 143 4.2 Step 1: Energy Audit for BCSI Building and Centralised Air-Conditioning System 144 4.2.1 Building Characteristics and CAC System Configuration 145 4.2.2 Evaluation of Building Electrical Energy Consumptions 154 4.3 Electrical Energy Performance for CAC System 160 4.3.1 Benchmarking of Electrical Energy Consumption for CAC System 161 4.3.2 Evaluation of Electrical Energy Consumption Cost 164 Step 2: Evaluation of Centralised Air-Conditioning System 4.4 Configuration and Auxiliary Equipment Performance 168 4.4.1 Assessment of Key Operating Parameter for Centralised A MELAKA Air - Conditioning System Performance 172 4.5 Step 3: Analysis of Operating and Cooling Process Parameter Performance for Centralised Air-Conditioning System Optimization 179 4.5.1 **Chiller System Performance** 179 4.5.2 Cooling Tower System Performance 195 4.5.3 AHU System Performance 208 4.5.4 Fan and Motor System Performance 213 4.5.5 Pump System Performance 219 4.5.6 Duct and Pipe Distribution System Performance 225 Cooling Process Performance for Centralised 4.5.7 231 Air - Conditioning System

	4.6	Step 4: Development of Performance - Based Evaluation Indicator	
		for Centralised Air-Conditioning System Optimization Framework	246
		4.6.1 Building Performance Score Indicator Result	246
		4.6.2 Cost Performance Score Indicator Result	249
		4.6.3 Risk Performance Score Indicator Result	262
		4.6.4 Technical Performance Score Indicator Result	265
	4.7	Summary of Results and Discussions	269
5.	CON 5.1	NCLUSION AND RECOMMENDATIONS Conclusion	273 273
	5.2	Recommendations	280
REF	ERE	NCES	283
APP	'END	UTEN	325

اونيۈم سيتي تيڪنيڪل مليسيا ملاك UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF TABLES

TABLE

TITTLE

PAGE

2.1	Basic of Building Energy Management Terms	21
2.2	Four Levels of Building Energy Audit Analysis (ASHRAE, 2018)	27
2.3	Main Components of CAC Systems	34
2.4	Types of Building CAC System Equipment	35
2.5	Summarized of CAC System Cooling Process Parameters	40
2.6	Example of Parameters that Effects the CAC System Performance	41
2.7	CAC System Performance Studies on Various Regions and Climate	46
2.8	The Data-Driven Based Techniques / Algorithm Simulation Method	48
2.9	CAC System Operational Control Loops Parameters for Real-Time	
	Operation Control (RTOC) Optimization Method	49
2.10	Development of Optimization Methods for CAC System Performance	50
2.11	Review of Typical Fault in CAC System Equipment	56
2.12	Overview of CAC System Fault and Performance Effects	57
2.13	Components of Cooling Tower and Chiller Equipment for Potential of	
	Energy Savings (Lee et al., 2016)	66
3.1	General BCSI Building Characteristics	77
3.2	Building Physical Specifications Parameters	80
3.3	Energy Audit Assessment Information	84
3.4	Building Lighting System	86
3.5	Overview of Technical Parameters for BCSI CAC System	92
3.6	Sensor Information for the CAC System Energy Assessment	103
3.7	Main CAC Operational Parameters and Measurement Error	104
3.8	RTD Sensor Types Used for Temperature Measurements	104

3.9	Site Monitoring Parameters	105
3.10	Modelling Assumptions of Internal Load Density and	
	Operational Schedules	118
3.11	Key Operating Parameters for the Referenced CAC System	118
3.12	Air Indoor Quality Guidelines for Office Buildings	123
3.13	The Building Performance Score Indicator Colour Code Range	123
3.14	The Cost Parameters Used to Calculate the PWF and LCC	127
3.15	Life Cycle Cost Calculation	128
3.16	Estimation of Cost Savings Potential at Different CAC System	
	Operation Period	130
3.17	Example of Incremental Cost of High Efficient Motors (Saidur, 2009)	133
3.18	Cost Performance Score Indicator Colour Code Range	136
3.19	Specification Criteria for Risk Performance Score Indicator	137
3.20	Specification Factor for CAC System Severity Score	138
3.21	Specification Factor for CAC System Occurrence Score	138
3.22	Risk Performance Score Indicator Colour Code Range	138
3.23	Technical Performance Score Indicator Colour Code Range	142
4.1	BCSI Building Characteristics	147
4.2	Heat Gain Estimation from Building (Wall and Glazing)	148
4.3	Thermal Building Conditions	149
4.4	Estimation of Building Energy Index Summary Based on Building	
	Information	149
4.5	Building Lighting and Air-Conditioning Baseline	150
4.6	Building Air Conditioning and Mechanical Ventilation System	151
4.7	Estimation of Current Building System Costs	151
4.8	Summary of Energy Intensity (kWh/m²/year) Breakdown for	
	Building System	152
4.9	Summary of Descriptive Statistics of BCSI Building Energy	
	Consumption	159
4.10	Occupancy Density for BCSI Building	160

4.11	Summary of BCSI Cooling Energy Load Building Parameters	162
4.12	Malaysia Building's Electricity Tariff	165
4.13	Malaysia Building's Water Tariff	165
4.14	Summary of Monthly Building Energy Cost	165
4.15	Estimated Life Cycle Cost for BCSI Building Electrical Energy	
	Consumption	167
4.16	Summary of CAC System Operation Parameters	169
4.17	Specific Existing CAC System Internal Load Level	170
4.18	Summary of Existing CAC System Design Specification Parameter	171
4.19	Evaluation of Major Existing CAC System Equipment's Power Ratings	171
4.20	Comparison of the Steady State CAC Performance	173
4.21	Comparison of CAC System Equipment Performance	173
4.22	CAC System Components Characteristics	173
4.23	Statistical of CAC System Cooling Process Parameters	174
4.24	Comparison of Existing and Best Practice Value for Pump	
	System Performance	175
4.25	CAC Sub System Efficiency Evaluation	175
4.26	BCSI Chiller Rated Parameters	177
4.27	Recommended Default Performance Values for Existing Chillers	
	اويوم سيتي بيڪتيڪل مليسيا مهرsystem	178
4.28	Simulated Performance Analysis for Different Chiller Capacities	178
4.29	BCSI Chiller Performance Worksheet	181
4.30	Chiller Operating Parameters under Part Load Conditions	180
4.31	Simulated Chiller System Performance under Part Load Conditions	185
4.32	Summary of Simulated Chiller System Performance Parameter	189
4.33	Chiller Performance Benchmark Model Parameters	190
4.34	Chiller Performance Rated Parameters	190
4.35	Chiller Cooling Process Performance Parameters	190
4.36	Chiller Steady- State Data Tolerances	191
4.37	BCSI Water Chiller System Specification	192
4.38	Basic Design Operating Conditions of BCSI Water Chiller System	192
4.39	Simulated Chiller System Operation Parameters (for one chiller)	193
4.40	Summary of Chiller Condenser Water Performance (Kirsner, 1998)	194

4.41	Main Dimension of One Cell BCSI Cooling Tower	196
4.42	Operation Parameters and Configuration for Cooling Tower Performance	197
4.43	Cooling Process Parameters for Cooling Tower Analysis Input	199
4.44	Cooling Tower System Operation Performance Before Optimization	200
4.45	Cooling Tower System Performance Before Optimization	201
4.46	AHUs System Operational Parameters	209
4.47	AHU Air Parameter Values	210
4.48	Average Values of AHUs System Operation	211
4.49	Mean of AHU Parameters with 95% Confidence Level	211
4.50	Cooling Coil Thermal Parameter for AHU System Before Optimization	212
4.51	AHU Fan System Performance Parameter	212
4.52	Fan and Motor System Specification before Optimization	213
4.53	Fan System Operational Performance Parameter	214
4.54	Measured Fan Power (kW) Cooling Process Parameter	215
4.55	Calculated Fan and Motor System Performance	218
4.56	Pump System Specification before Optimization	219
4.57	BCSI Pump System Specification	221
4.58	Design Specification for Ducting System	225
4.59	Comparison of Ducting System Configuration	226
4.60	BCSI Thermal Measured and Simulated Ducting Conditions	227
4.61	BCSI Ducting System Measures Variable	227
4.62	BCSI Ducting System Pressure Loss	227
4.63	BCSI Air-Conditioning Pipe System Distribution Parameters	228
4.64	Building Monitoring Cooling Condition Parameters	231
4.65	Thermal Parameter of CAC System Cooling Process Performance	233
4.66	Thermal Parameter of Building and Insulating Materials	233
4.67	Cooling Process Parameter for CAC System	234
4.68	Thermodynamic Parameter for Cooling Process	235
4.69	Thermal Parameter Before Optimization of CAC System Performance	235
4.70	Details of BSCI Building Cooling Requirements	236
4.71	Average Conditions of Air Entering and Leaving the Cooling Tower	242
4.72	Cooling Process Parameters for Cooling Tower	242
4.73	Comparison of Cooling Tower Thermal Parameter	243

4.74	Evaluation for Indoor Air Quality (IAQ) Criteria for BCSI Building	247
4.75	Building Performance Score Indicator Result	248
4.76	Centralised Air Conditioning System Operational and	
	Cost Parameter	251
4.77	Reference Parameters for Estimation Operational Cost of Chiller System	253
4.78	Comparison of Optimization Operational Cost of Cooling TowerSystem	255
4.79	Comparison of Optimization Operational Cost of Fan System	256
4.80	Life Cycle Cost Parameters	257
4.81	Cost Assessment Analysis for CAC System Before Optimization	257
4.82	Life Cycle Cost Assessment for CAC System	258
4.83	Net Present Value Analysis for CAC System	259
4.84	Cost Analysis Results for CAC System	260
4.85	Cost Performance Score Indicator Result	261
4.86	Risk Performance Score Indicator Result	263
4.87	Evaluation of Building Cooling Criteria for BCSI Building	266
4.88	CAC System Performance Parameters	267
4.89	Technical Performance Score Indicator Result	269
5.1	Recommendations for Methodology Steps	280
5.2	اونيوم سيتي بيصحييكل مليسيا ملاك	281

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF FIGURES

FIGURE	TITLE PA	GE
2.1	Malaysia Energy Consumption by Sectors	18
2.2	Major Components of Building Electrical Energy Consumption	
	(Perez - Lombard et al., 2008)	19
2.3	Building Performance Factors	24
2.4	Determination of Electrical Energy Performance for CAC system	
	(Perez - Lombard et al., 2011)	25
2.5	A flowchart of the Building Energy Audit Procedure (Allab et al., 2017)	27
2.6	Schematic Diagram of Typical Building Cooling System Operation	30
2.7	Schematic Diagram for Central Cooling System (Lu et al., 2005)	31
2.8	Layout of Centralised HVAC System for Office Building	31
2.9	The Segmentation Concept of Building CAC System (Cho et al., 2018)	32
2.10	Generic Classifications of Centralised Air-Conditioning Systems	33
2.11	Typical CAC System Mechanical Equipment	34
2.12	CAC System Equipment Configurations	36
2.13	CAC System Configuration with Chiller Operation	37
2.14	Cooling Tower System Classification	38
2.15	CAC System Energy Saving Strategies (Vakiloroaya et al., 2014)	65
2.16	CAC System Cost Relationship with System Reliability (Gang et al., 2015)	67
2.17	Effects of Number of Chillers with Operational Cost	67
3.1	Research Methodology Procedure	75
3.2	Bangunan Canselari Sultan Ibrahim (BCSI)	77
3.3	Flow Chart of Building Energy Audit Procedures	78
3.4	Procedure for Building Energy Audit (BEA) and CAC	
	System Audit	79

3.5	Metering Diagrams with Different Points of Measurement for CAC	
	System Energy Audit	81
3.6	Structure for Points of Measurement for CAC System Energy Audit	82
3.7	Tree Diagram Method for Building Energy Analysis using One	
	Bottom – Up CIBSE TM22 method (CIBSE, 2012)	85
3.8	Schematic Configuration of CAC System for BCSI Office Building	90
3.9	Configuration BCSI Primary and Secondary CAC System	91
3.10	Schematic Diagram of Cooling Distribution Flow for BCSI Building	92
3.11	Chiller Arrangement in BCSI CAC System	94
3.12	Chiller System Measurement Point at BSCI CAC System	95
3.13	Air-Handling Equipment and Components	99
3.14	Flow Diagram of AHUs System	99
3.15	BCSI Building Cooling Tower Schematic Measurements	101
3.16	BCSI Building Cooling Tower Conditions Before Optimization	101
3.17	Cooling Tower Fan and Fan Motor System at the top of the Cooling	
	Tower (Left) Installation of the Pipe for the Cooling Tower Water	
	Inlet (Right)	102
3.18	Implemented Digital Electric Meter in the ENERGY-base	103
3.19	Various Sensors to Measure the System Operation	104
3.20	Control Devices in BCSI CAC System Before Optimization	106
3.21	Control System Structure for BCSI CAC System	107
3.22	Schematic of an Ultrasonic Flow Meter	107
3.23	Cooling Tower Piping System Before Optimization	108
3.24	Inside Building CAC Piping System Before Optimization	109
3.25	Relationship Between Building's Cooling Load and Water-Cooled	
	System	110
3.26	Relationship between Building and CAC System Operation	114
3.27	Estimation of CAC System Energy Consumption	117
3.28	Performance-Based Evaluation Indicator For CAC Optimization	
	Framework	121
3.29	Present Value Method	127
3.30	Cost-Optimal and Cost-Effective Range in Investments	
	(Corgnati et al., 2013)	129

4.1	BCSI Building Orientation	146	
4.2	Comparison of Energy Intensity Breakdown for BCSI Building System		
4.3	Percentage Distribution of Electrical Energy Consumption of		
	BCSI Building	156	
4.4	Distribution of Total Electrical Energy Consumptions in kW for		
	2008 to 2018	157	
4.5	Distribution of Annual Electrical Energy Consumptions for		
	2008 to 2018	158	
4.6	Percentage of Electrical Energy Consumption of Individual		
	Equipment of CAC System	163	
4.7	Percentage of Major Components Energy Consumption of CAC system	164	
4.8	Comparison between Energy Consumption and Energy Cost for		
	BCSI Building	166	
4.9	Comparison between Actual and Estimated Energy Consumption		
	Cost for BCSI	167	
4.10	Comparison of CAC System Efficiency between Before Optimization		
	and Baseline	176	
4.11	Cooling Process Cycles of BCSI Chiller System	183	
4.12	BCSI Chiller Coefficient of Performance	187	
4.13	Simulated Chiller COPs as a Function of Cooling Loads, kW	188	
4.14	Evaluation of Cooling Tower Parameter Variation	198	
4.15	Evaluation of Cooling Tower Performance Parameters	203	
4.16	Cooling Tower Water Compensation	204	
4.17	BCSI Cooling Tower Operation Diagram	205	
4.18	Cooling Tower Cold Water Supply and Return Temperature	206	
4.19	Cooling Tower Performance for Different Flow Rates After Optimization	207	
4.20	Effect of Cooling Tower Leaving Water temperature on Chiller		
	Power Rating	207	
4.21	Cooling Process Performance Parameters for AHU System Performance	211	
4.22	Distribution of Fan System Load Profile	215	
4.23	Distribution of Fan System Part Load Performance Profile		
4.24	Distribution of Simulated Different Fan System Control Performance	217	
4.25	Fan System Performance of Full Load, Performance Factor,		
	and Efficiency with Load Performance Before Optimization	218	

4.26	BCSI Pump System Configuration	220	
4.27	Breakdown of Pump System Performance Before Optimization	221	
4.28	Comparison of Pump System Performance	222	
4.29	Distribution of Pump System Performance based on Water Flow		
	Rate Percentage	222	
4.30	Distribution of Simulated Various Pump System Performance	223	
4.31	Chiller Water Pump System Performance		
4.32	Friction loss for 3 in. Pipe Diameter		
4.33	Friction loss for 4 in. Pipe Diameter	230	
4.34	Friction loss for 5in. Pipe Diameter	230	
4.35	Simulated Thermal Process in the Condenser Water Temperature	238	
4.36	Cooling Process Parameters After Optimization of CAC System	239	
4.37	Effect of Air Mass-Flow Rate on the Performance of Cooling Tower		
4.38	Relationship between Approach and Wet Bulb Temperature	243	
4.39	Relationship Between Cooling Range with different Cooling Tower		
	Performance Load at Constant Wet Bulb Temperature	244	
4.40	Relationship Between L/G ratio and NTU with Different		
	Water Inlet Temperature	245	
4.41	Distribution of Electrical Energy Consumption Cost for BCSI		
	Building Before Optimization	250	
4.42	Evaluation of Centralised Air-Conditioning System Energy		
	Consumption and Operational Costs	252	
4.43	Distribution of Operational Cost for Cooling Tower System	254	
4.44	Net Present Value Analysis	259	
4.45	Estimated Modification of Energy Consumption and CAC System		
	Operational Costs	260	
4.46	Risk Priority Factor Assessment	261	

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

A-1	BCSI Building Energy Audit Assessment		
A-2	BCSI Central Air-Conditioning System Audit Assessment		
A-3	Evaluation of Central Air Conditioning System Equipment		
	Performance	336	
B-1	Chiller System Specification	352	
B-2	Optimization of Chiller Performance Assessment		
C-1	Cooling Tower Specification	365	
C-2	Optimization of Cooling Tower System Performance Parameters	366	
D-1	Fan, Pump and Motor System Parameters	368	
E-1	Piping System Distribution	374	
F-1	Optimization of CAC System Performance Assessment Other Building	375	
F-2	Configuration of New Chiller System for BCSI Building	387	
F-3	Configuration of New CAC-Piping System for BCSI Building	389	
G	Systematic Framework for Optimization of Central Air-		
	Conditioning System Performance for University Office Building	390	

LIST OF ABBREVIATIONS

BCSI	-	Bangunan Canselori Sultan Ibrahim
CAC	-	Central / Centralised Air Conditioning
AEMAS	-	ASEAN Energy Management Scheme
AHU	-	Air Handling Unit
UTM	-	Universiti Teknologi Malaysia
AC	-	Air-Conditioning
kWh	- 14	Kilowatt - Hour
BEM	E.	Building Energy Management
SAS	EK	Statistical Analysis System
SPSS	T.	Statistical Package for the Social Sciences
NEMS	-0430	National Energy Modelling System
ANN		Artificial Neural Network
HVAC	ملاك	Heat Ventilation Air Conditioning
SRM		Simple Regression Model
MLR	UNIVE	Multiple Linear Regression
DT	-	Decision Trees
SVM	-	Support Vector Machine
ASHRAE	-	American Society of Heating, Refrigerating, and Air Conditioning
		Engineers
BMS	-	Building Management System
BEA	-	Building Energy Audit
PAC	-	Packaged Air-Conditioning
ACMV	-	Centralised Air Conditioning and Mechanical Ventilation
VAV	-	Variable Air Volume
CAV	-	Constant Air Volume

NPLV	-	Non-Standard Part Load Valve
COP	-	Coefficient of Performance
EER	-	Energy Efficiency Ratio
SEF	-	Supply Exhaust Fan
EF	-	Exhaust Fan
NV	-	Natural Ventilation
VFD	-	Variable Frequency Drives
ST	-	Steel
PVC	-	Polyvinyl Chloride
HDPE	-	High-Density Polyethylene
CI	-	Cast Iron
AC	-	Asbestos Cement
CPP	-	Concrete Pressure Pipe
cfm	- W	Cubic Feet per Minute
FDD		Fault Detection and Diagnosis
SBS	TEX	Sick Building Syndrome
DDS	E	Daily Discomfort Score
DR	- 301	Demand Response
M&V	del	Measurement and Verification
IPM & VP	ملاك	International Performance Measurement and Verification Protocol
IEA		International Energy Agency
ECBCS	-	Energy Conservation in Buildings and Community Systems
EPI	-	Energy Performance Indices
SCOP	-	Seasonal Coefficient of Performance
SEER	-	Seasonal Energy Efficiency Ratio
BEA	-	Building Energy Audit
DBT	-	Dry Bulb Temperature
WBT	-	Wet Bulb Temperature
RH	-	Relative Humidity
RTD	-	Resistance Temperature Detectors
VAV	-	Variable Air Volume
EUI	-	Energy Utilization Index