
INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
W. H. Tee et al., Vol.13, No.4, December, 2023 

Sizing of Battery Energy Storage System: A Multi-

Objective Optimization Approach in DIgSILENT 

PowerFactory 

 

Wei Hown Tee* , Khaldon Ahmed Qaid* , Chin Kim Gan*‡ , Joe Siang Keek*,** , Junainah 

Sardi*  

 

* Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka 

** Texas Instruments Electronics Malaysia Sdn. Bhd. 

 (weihowntee@gmail.com, khaldon603@gmail.com, ckgan@utem.edu.my, j-keek@ti.com, junainah@utem.edu.my) 

 
 

‡Corresponding Author; Chin Kim Gan, Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Jalan Hang 

Tuah Jaya, 76100 Durian Tunggal, Melaka Tel: +60 62701310, ckgan@utem.edu.my 

 

Received: 19.05.2023 Accepted:27.06.2023 

  
Abstract- In the paradigm of the increasing trend to prevent global warming, renewable energy sources applications integrated 

with battery energy storage system (BESS) are gaining attention for reducing the usage of fossil fuels in electrical power 

generation. In this regard, a multi-objective optimization script in DIgSILENT Programming Language (DPL) which links with 

software modelling and scripting simulation is developed in this study. Formulation for multiple objectives for optimization of 

BESS sizing with particle swarm optimization (MOPSO) and load flow simulation are applied in the DPL script. The considered 

objective functions aim to improve the network performance by reducing power loss, voltage deviations and system costs. Pseudo 

code of BESS optimal sizing with multi-objective algorithm is presented in this research. The BESS with optimal sizing was 

discovered for improving the network performance in the tested reference network. The optimal BESS size obtained is 2.94 MW 

with a system cost of MYR 2404.76. The total energy losses can be reduced by approximately 16% from the base case energy 

losses with the optimal BESS size. The findings of the research reveal that the BESS sizing with MOPSO is applicable in DPL 

operations alone to solve power system problems. 

Keywords Particle swarm optimization; multi-objective optimization; battery energy storage system; optimal sizing; 

DIgSILENT PowerFactory. 

 

Nomenclature 

Battery energy storage system BESS 

BloombergNEF BNEF 

DIgSILENT Programming Language DPL 

Genetic algorithm GA 

Improve particle swarm optimization IPSO 

Multi-objective optimization MOO 

Multi-objective particle swarm optimization MOPSO 

On-load tap charger OLTC 

Particle swarm optimization PSO 

Photovoltaic and Smart Grid PVSG 

Second order cone program SOCP 

Universiti Teknikal Malaysia Melaka UTeM 

1. Introduction 

Countries around the globe are currently facing 

challenges to reduce the electrical power generation 

generated by the burning of fossil fuels which contributes to 

global warming. As a result, the applications of renewable 

energy sources integrated with grid have received huge 

attention by researchers nowadays. In the recent 

BloombergNEF (BNEF) report, around half of the energy 

demand of the world is projected to be supplied by solar and 

wind energy by 2050 [1]. On top of that, renewable energy 

sources are expected to have a dominant power generation 

mix of almost 50% approaching 2050 [2][3]. However, the 

unpredicted characteristics of the renewable energy sources 

will cause instability of the power outputs [4][5]. Hence, 
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energy storage technologies have emerged as an effective 

solution for integrating the grid system with renewable 

energy sources because of their characteristics. Energy 

storage is widely applied to control the intermittency of 

renewable energy [6][7][8]. It has been demonstrated that 

energy storage improves the stability and reliability of 

renewable energy generation of the network [9][10]. Besides, 

the ideas have been also applied to both virtual and actual grid 

system with the benefit of self-consumption of renewable 

energy generation with storage systems [11][12]. 

Furthermore, studies showed that energy storage is playing a 

vital role to provide power quality improvement [13][14][15], 

frequency and voltage regulation [16][17], energy arbitrage 

as well as ancillary services [18][19]. 

At present, researchers show great interest in developing 

battery energy storage system (BESS) optimization to serve 

as an integrating option in power systems because of its 

attributions with rapid reaction. Authors in [20] proposed a 

second order cone program (SOCP) optimization method 

based on power flow equations to size the storage. In a study 

[21], the application of DIgSILENT and MATLAB are used 

in conjunction with improved particle swarm optimization 

(IPSO) to solve the voltage fluctuation problem with optimal 

BESS active power. However, the simulation requires 

dynamic data exchange file between the software. An optimal 

BESS control is proposed to reduce excessive on-load tap 

charger (OLTC) operation caused by renewable energy 

sources with PSO approach using MATLAB and 

DIgSILENT software [22]. However, a switch CSV file is 

needed for data communication between the software. The 

authors improved the network performance by combining the 

linkage between MATLAB and DIgSILENT with genetic 

algorithm (GA) linear programming method to size BESS 

[23]. However, these studies did not apply both optimization 

algorithm and loadflow simulation in a single software, for 

example in DIgSILENT alone.  

The studies showed that bio-inspired optimization 

approaches are widely applied by the researchers due to their 

flexibility, high accuracy rate and less computational time 

[24][25]. PSO is one of the established approaches due to its 

simplicity with coding implementation, short computational 

time as well as stable convergence properties [26]. It offers a 

certain appealing feature of good memory where the particles 

retain the knowledge of good solutions as compared to GA 

approach [27][28]. PSO is also proven to converge faster and 

able to escape from being trapped in local optima as 

compared to Bat algorithm and Tabu search. Moreover, PSO 

is effective to determine the pareto front in optimizing multi-

objective problems [29]. 

In light of the above, the information of applying multi-

objective optimization (MOO) in DIgSILENT DPL script 

alone is limited. To the best of authors’ knowledge, the 

structure of MOO scripting in DPL has not been reported so 

far. Hence, the major contributions of this work are 

1. To design MOO in programming script to apply both 

optimization algorithm and loadflow simulation in 

DIgSILENT without linkage between software. 

2. To improve the performance of the distribution network 

with optimal BESS sizing. 

2. Methodology 

DIgSILENT PowerFactory is used to apply the 

methodology developed in this research. Consequently, a 

series of operations to run the algorithm developed will be 

carried out in the DPL script. This study is a continuous work 

from [30], where the algorithm is developed to optimize two 

objective functions in the DPL script. The DPL script will be 

used to execute both network model in the simulation 

interface and script operation in the software at the same time. 

As a result, the DPL script will interface with the database of 

the network model object to access, record and perform 

operation based on the operation functions written in the 

script. 

1.1. Optimization Objectives and Constraints 

A multi-objective problem for the BESS sizing of the 

network is formulated in this study.  The first objective 

function aims to reduce the power loss and voltage deviations 

of the network with the integration of BESS which can be 

expressed as 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 1 = optimum (𝐵𝐸𝑆𝑆𝑠𝑖𝑧𝑒)                (1) 

optimum(𝐵𝐸𝑆𝑆𝑠𝑖𝑧𝑒) = [
∑ ∑ 𝑃𝑙𝑜𝑠𝑠𝑁

𝑖=1
𝐻
ℎ=1 𝐵𝐸𝑆𝑆

∑ ∑ 𝑃𝑙𝑜𝑠𝑠𝑁
𝑖=1

𝐻
ℎ=1 𝑏𝑎𝑠𝑒

] +

 [
∑ ∑ (𝑉𝑝𝑢

𝐵𝐸𝑆𝑆(𝑖))
2𝑁

𝑖=1
𝐻
ℎ=1

∑ ∑ (𝑉𝑝𝑢
𝑏𝑎𝑠𝑒(𝑖))

2𝑁
𝑖=1

𝐻
ℎ=1

]                                      (2) 

where 𝑃𝑙𝑜𝑠𝑠𝐵𝐸𝑆𝑆  is the power loss with BESS in 

MW,  𝑃𝑙𝑜𝑠𝑠𝑏𝑎𝑠𝑒  is the initial power loss without BESS in 

MW, 𝑉𝑝𝑢
𝐵𝐸𝑆𝑆 is the voltage magnitude with BESS in per unit 

at bus i, 𝑉𝑝𝑢
𝑏𝑎𝑠𝑒 is the base voltage magnitude in per unit, N 

denotes the total buses number, h denotes the study hours, and 

H denotes the total number of study hours. This objective 

function is a linear combination of two performance indices. 

The denominators in the expressions (2) indicate the sum of 

real power loss and the sum of the squares of the voltage 

deviations without the integration of BESS while the 

numerators are presenting the variables with the integration 

of BESS [31]. 

       Next, the algorithm aims to reduce the system costs. The 

equation can be expressed as 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 2 = min (𝐶𝑜𝑠𝑡𝑠𝑦𝑠𝑡𝑒𝑚)                      (3) 

min(𝐶𝑜𝑠𝑡𝑠𝑦𝑠𝑡𝑒𝑚) = 𝐶𝑣 + 𝐶𝑙 + 𝐶𝑝                                     (4) 

𝐶𝑣 = [∑ ∑ |𝑉𝑖 − 𝑉𝑟𝑒𝑓|𝑁
𝑖=1

𝐻
ℎ=1 ] × 𝜑𝑣                                      (5) 

𝐶𝑙 = ∑ ∑ |𝑃𝑙𝑜𝑠𝑠𝑖|𝑁
𝑖=1

𝐻
ℎ=1 × 𝜑𝑙                                                       (6) 

𝐶𝑝 = Peakload × 𝐻 × 𝜑𝑝                                                      (7) 

where 𝐶𝑣  is voltage regulation charge, 𝐶𝑙  is power loss 

charge, 𝐶𝑝 is peak demand charge, 𝑉𝑖 is the magnitude of the 

voltage per unit of the bus, 𝑉𝑟𝑒𝑓 is set as 1 p.u. base voltage 

reference, 𝜑𝑣  is the cost rate of voltage regulation at 0.63 

MYR/ p.u., 𝜑𝑙 is the cost rate of power loss at 1.26 MYR/ 

kWh and 𝜑𝑝 is the cost rate of peak demand at 2.43 MYR/ 

kW [32][33]. The objective functions are subjected to the 

following constraints 
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𝑃𝑔𝑟𝑖𝑑 = ∑ 𝐿𝑜𝑎𝑑𝑁
𝑖=1 + ∑ 𝐿𝑜𝑠𝑠𝑁

𝑖=1    𝑖 = 1,2, … , 𝑁                 (8) 

0 ≤ 𝐿𝑜𝑠𝑠𝐵𝐸𝑆𝑆 ≤ 𝐿𝑜𝑠𝑠𝑏𝑎𝑠𝑒                         (9) 

0 ≤ 𝑃𝐵𝐸𝑆𝑆 ≤ 𝑃𝑃𝑉                                     (10) 

0.95 ≤ 𝑉𝑖 ≤ 1.05                       (11) 

where 𝑃𝑔𝑟𝑖𝑑  is the total grid power in MW of the system, 

𝐿𝑜𝑠𝑠𝐵𝐸𝑆𝑆  is the power loss with BESS in MW, 𝐿𝑜𝑠𝑠𝑏𝑎𝑠𝑒  is 

the base power loss of the system in MW, 𝑃𝐵𝐸𝑆𝑆 is the BESS 

power in MW, 𝑃𝑝𝑣 is the peak PV power in MW, 𝑉𝑖 is the bus 

voltage. 

1.2. Multi-Objective Algorithm 

Particle swarm optimization (PSO) is a heuristic method 

that was inspired by the birds’ behavior. In the algorithm, the 

particle has its own velocity as well as position property 

which is able to explore for a possible solution in search 

space. The velocity of the particle represents the fast or slow 

movement of the particle, whereas the position of the particle 

represents the particle’s direction. Each particle’s velocity 

can be revised based on its personal and global optimal 

position. These two properties can be calculated as 

𝑣𝑗
𝑖+1 = 𝜔𝑣𝑗

𝑖 + 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡
𝑖 − 𝑥𝑗

𝑖) + 𝑐2𝑟2(𝐺𝑏𝑒𝑠𝑡
𝑖 − 𝑥𝑗

𝑖)         (12) 

𝑥𝑗
𝑖+1 = 𝑣𝑗

𝑖+1 + 𝑥𝑗
𝑖                                                                 (13) 

where 𝜔 denotes to the inertia weight of the algorithm, 𝑟1 and 

𝑟2 are the values randomly ranged from 0 to 1, 𝑐1 and 𝑐2 are 

cognitive and social parameters,  𝑃𝑏𝑒𝑠𝑡
𝑖  and 𝐺𝑏𝑒𝑠𝑡

𝑖  are personal 

and global best solution respectively. 

The inertia weight of the algorithm influences the 

velocity and direction of the particle, which brings a big effect 

on the particle’s convergence. According to [34], PSO has a 

higher convergence speed to achieve local optimum with 

smaller inertia weight while higher possibility to have global 

search with greater inertia weight. However, the convergence 

speed is reduced and the number of iterations increases with 

greater inertia weight. In this study, the particles initially aim 

to search globally. After obtaining the swarm particle, the 

convergence speed increases to obtain the optimum value. 

Hence, the 𝜔 of this study is to decrease between 0.9 to 0.4 

and be calculated as 

𝜔 = 𝜔ℎ𝑖𝑔ℎ − (𝜔ℎ𝑖𝑔ℎ − 𝜔𝑙𝑜𝑤) ×
𝑖

𝑖𝑚𝑎𝑥
                                  (14) 

       MOPSO is popularly implemented in optimizing multi-

objective problems because of its simple structure, parameter 

settings as well as fast convergence characteristics [35][36]. 

MOPSO is relatively complex as compared to PSO in terms 

of selecting personal and global optimal solutions. It obeys 

the following principles 

1. When the solutions are non-dominated, the best 

individual position will be randomly selected from one 

of the particle solutions. 

2. Based on the crowding degree in Eq. (15), a leader in the 

non-dominated solutions is selected as global optimal. 

𝐶𝐷𝑖 =
|𝑓1(𝑥𝑖+1)−𝑓1(𝑥𝑖−1)|

𝑓1
𝑚𝑎𝑥−𝑓1

𝑚𝑖𝑛 +
|𝑓2(𝑥𝑖+1)−𝑓2(𝑥𝑖−1)|

𝑓2
𝑚𝑎𝑥−𝑓2

𝑚𝑖𝑛                                

(15) 

The maximum iteration (Ni) in this study is 30, with a 

population (Np) of 100. The repository size (Nr) is 50. The 

learning factors of the algorithm, 1c and 2c  are set as 0.5 and 

0.6. The operation of MOPSO is as follows: 

1. Define the objective function constraints and initialize 

the optimization parameters. 

2. Define swarm iteration i = 1 with random particle 

velocity and position. 

3. Create grid to store non-dominated solutions. 

4. Declare swarm particle j = 1. 

5. Objective function is executed for the respective particle 

and iteration. 

6. Select leader according to crowding degree. Explore and 

determine Pbest and Gbest of jth particle in ith iteration. If 

the objective function of jth dominates in jth population, 

the program stores Pbest = f1(xj). f2(xj). 

7. Add Pbest to repository. Determine domination in jth 

repository. 

8. Update grid. 

9. Update particle jth by 1. Next, the condition is validated: 

If particle jth +1 ≤ Np, go back to Step 5. 

10. If Pbest dominates in jth population, adjust Gbest of ith = Pbest 

at ith. 

11. Plot pareto solutions. 

12. Update iteration ith is by 1. Next, the condition is 

validated: If iteration ith +1 ≤ Ni, go back to Step 4 and 

the new particle velocity as well as position are updated 

for ith +1. Update new inertia weight. 

13. If iteration ith +1 ≥ Ni, the algorithm quits the operation 

and BESS size is acquired. 

The flowchart of MOPSO BESS sizing operation 

between DPL script and DIgSILENT environment is 

presented in Figure 1. The detailed process of the MOPSO is 

presented in the Pseudo code, as illustrated in Figure 2. 
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Fig. 1. The flowchart of MOPSO in DIgSILENT. 
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Fig. 2. The Pseudo code of MOPSO in DIgSILENT. 

 

3. Case Study 

The normalized PV and load profiles of the study are 

presented in Figure 3. The modified urban reference network 

with 33 & 11 kV feeders of Malaysia as shown in Figure 4 

[37] is applied as the test system. The PV and BESS were 

installed at the end of each feeder. The parameters of the 

reference network are presented in Table 1. The PV data are 

collected from the PV system installed at the Research 

Laboratory of Photovoltaic System and Smart Grid, 

Universiti Teknikal Malaysia Melaka (UTeM) [7]. 

 

 

 

 

Fig. 3. PV power and load demand profile used in this study. 
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Fig. 4. Urban reference network with 33 & 11 kV feeders. 

 

Table 1. Parameters of urban reference network with 33 & 11 feeders. 

Parameters 

 

Average Value 

F1 F2 F3 F4 

PV capacity (MW) 4.00  3.50 3.00 2.50 

Maximum load demand (MW) 3.59 3.01 2.77 2.26 

Transformer     

33/11 kV capacity (MVA) 30.00 

132/33 kV capacity (MVA) 45.00 

Number of 11/0.4 kV transformers 7.00 6.00 5.00 3.00 

11/0.4 kV loading (MVA) 0.58 0.50 0.55 0.76 

11/0.4 kV capacity (MVA) 1.00  1.00 1.00 1.00 

11/0.4 kV transformer loading (MW) 0.52 0.45 0.50 0.76 

Feeder     

33 kV length (km) 4.43 

11 kV length (km) 4.25 2.88 1.70 0.94 

Distances between 11/0.4 kV transformers (km) 0.61 0.48 0.34 0.31 

4. Results and Discussions 

MOPSO is implemented to take into account the BESS 

sizing with the beneficial objectives of reducing power loss, 

voltage deviation and system costs. The simulation is 

conducted in DIgSILENT. The fitness function values and 

optimal BESS size for F1 feeder are shown in Table 2 with 

computation time of 4312.02s. Figure 5 presents the pareto 

optimal front with a variety of leader selections for various 

objective function 1 (OF1) values correspond to the system 

costs obtained in the study. The ideal compromise position 

obtained by the MOPSO is with OF1 value of 3.04 and 

objective function 2 (OF2) cost of MYR 2404.76, with 

optimal BESS solution of 2.94 MW. Besides, boundary 

solutions can be observed also from the pareto fronts. Firstly, 

the maximum OF1 can be obtained at 3.12, with the increase 

of 2.65% from the best compromise solution, followed by 

MYR 2404.11. Next, the minimum OF1 is with MYR 

2406.07, with a reduction percentage of 2.04% from OF1 

value of the best compromise solution.  

      The power losses for the solutions in comparison to the 

base case are presented in Figure 6. The results reveal that the 

BESS sizing through MOPSO is able to reduce the power loss 

of the system. For the base case, the losses are the highest 
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when there is no PV power (during midnight, and from late 

evening to 12.00 a.m.) with maximum value of 0.51 MW 

losses, as well as when PV power is available (from morning 

until evening) with the maximum value of 0.45 MW losses. 

This can be explained that the demands are high when the 

consumers are back from work in the late evening until early 

morning. Low power usage during the afternoon when PV 

power is highly available will also lead to power losses 

because of the excess power generated by PV that flows back 

to the grid. The optimal solution with 2.94 MW BESS size 

can reduce the losses of the base case by storing excessive PV 

power during afternoon hours with low demand, and 

discharging power to support the load when demand is high 

during nighttime. The base case has the highest energy losses 

per day, which is 7.30 MWh, followed by the maximum OF1 

(3.29 MW BESS) of 6.22 MWh, optimal solution (2.94 MW 

BESS) of 6.13 MWh and lastly minimum OF1 (2.94 MW 

BESS) with 6.04 MWh.  

       The voltage profile for the base case and optimal solution 

with respect to BESS power is shown in Figure 7. The BESS 

improves the voltage profile during high demand hours by 

discharging power into the network. Moreover, the voltage 

deviations are reduced with the charging of excess PV power 

into the BESS during low load demand hours in the afternoon 

period.  Table 3 shows the summary of optimal BESS sizing 

of MOPSO with F1, F2, F3 and F4. It can be observed that 

the deployment of BESS at F1 has the highest energy losses 

reduction as compared to the remaining feeders. This is 

because F1 feeder has the largest load demand with the 

greatest PV capacity. Besides, F1 feeder has the longest 11 

kV feeder that contributes to the highest losses among F1 to 

F4 feeders. Hence, the implementation of optimal BESS size 

at F1 feeder will have the highest impact on the network 

performance. Initially, there will be losses in the feeder due 

to the power transmitted from the main transformer to the end 

of the feeder. When the PV is connected, the voltage 

magnitude will increase at the end of the feeder due to the 

reverse power flow caused by the excess PV power. This 

issue can be solved by the installation of BESS at the location 

where BESS can reduce the reverse power flow by charging 

the excess power generated by PV into the feeder and hence 

reduce the power losses across the feeder. 

Table 2.  Solutions of MOPSO obtained for F1. 

Item Minimum 

OF1 

Best 

Compromise 

Maximum 

OF1 

PV size 

(MW) 

4.00 4.00 4.00 

BESS size 

(MW) 

2.52 2.94 3.29 

OF1 

magnitude 

2.97 3.04 3.12 

System cost 

(OF2) 

(MYR) 

2406.07 2404.76 2404.11 

 

 

 

 

 

 
Fig.5. Pareto optimal solutions produced by MOPSO. 
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Table 3. Summary of optimal BESS sizing in the feeders. 

 F1 F2 F3 F4 

PV size 

(MW) 

4.00 3.50 3.00 2.50 

BESS size 

(MW) 

2.94 2.67 2.05 1.93 

OF1 

magnitude 

3.04 3.01 3.07 2.99 

System cost 

(OF2) 

(MYR) 

2404.76 2343.3 2286.24 2250.33 

Energy 

losses 

reduction 

(MWh) 

6.13 5.98 5.47 5.21 

 

       By taking into account the network performance, it is 

also demonstrated that the overall improved voltage profile in 

one day is sustained within the operating voltage, with 

reduced power losses by implementing the optimal sizing of 

BESS through MOPSO. This enhances the power quality and 

improves the reliability of the network. The MOPSO shown 

in this study can offer optimal BESS sizing integrated with 

PV in the distribution network as well as benefit in terms of 

cost. Moreover, it can also be effectively deployed to other 

real networks connected to grid systems with more updated 

problem formulation or objectives to optimize the BESS size 

based on the idea and Pseudo code provided in this study. 

 
Fig. 6. Power losses comparison of the solutions. 

 

 
Fig. 7. Voltage profiles that correspond to BESS power. 

 

5. Conclusion 

This study presented optimal BESS sizing with MOPSO 

in the DPL script of DIgSILENT PowerFactory. The 

developed MOPSO reduced the total power losses, improved 

the voltage profile as well as the costs associated with the 

distribution network. In the MOPSO, various candidate 

solutions of OF1 and OF2 are acquired with optimal BESS 

size through the pareto optimal front. The best solution 

identified is OF1 value of 3.04 and OF2 of MYR 2404.76 

with optimal BESS size of 2.94 MW. Besides, the optimal 

BESS size can reduce the total energy losses by 6.13 MWh, 

which is approximately 16% reduction from 7.30 MWh. The 

findings reveal that the network has enhanced voltage profile 

with BESS deployment, resulting in more system costs that 

can be saved. However, it is noted that this work does not 

consider the smoothing of solar PV output with optimal BESS 

sizing. Hence, the future potential of this study consists of the 

development of objective functions in MOPSO that focus on 

the limitation of renewable energy intermittency, the impact 

of BESS applications and techno-economic areas. 
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