

Faculty of Electronics & Computer Technology and Engineering

Master of Science in Electronic Engineering

DESIGN OF AN EFFICIENT SPIKING NEURAL NETWORK FOR HUMAN ACTIVITY RECOGNITION

TAN YEE LEONG

Faculty of Electronics & Computer Technology and Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this thesis entitled "Design Of An Efficient Spiking Neural Network For Human Activity Recognition" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I hereby declare that I have read this thesis and in my opinion, this thesis is sufficient in terms of scope and quality for the award of Master of Science in Electronic Engineering.

DEDICATION

To my beloved mother and father, Ting Chiew Hiong and Tan Tze Ming, and also my supervisor, Associate Professor Wong Yan Chiew, your kindness and advice should never be forgotten.

ABSTRACT

Human activity recognition (HAR) using Wi-Fi Channel State Information (CSI) has attracted significant interest as an alternative to conventional methods due to its potential to address human privacy concerns. While Long Short-Term Memory (LSTM) models have shown promising results in HAR, their resource-intensive nature and time-consuming computations limit their suitability for edge computing. The development of Spiking Neural Networks (SNNs) as a more power-efficient computational model presents a compelling alternative. However, a critical research gap exists as no prior study has explored the application of SNNs for time series data, particularly for Wi-Fi CSI analysis, within the context of the Industrial Revolution 4.0. This work addresses the research gap by proposing an SNNs model that involves preprocessing the CSI signals and encoding them into spike trains. The spike trains modulate the membrane potential at the postsynaptic neurons based on their respective weight values, enabled by the Spike-Timing-Dependent Plasticity (STDP) learning rule during the training process. The combination of these techniques enables accurate class prediction. Additionally, with different preprocessing methods and different values on the model's parameters, SNNs models can achieve varying accuracy results. The application of the majority vote method to the outputs of divided signal segments ensures a robust final class prediction. Experimental results demonstrate that the proposed SNNs model achieves accuracy levels comparable to those of the LSTM model while significantly reducing computational memory usage by up to 70%. Remarkably, the SNNs model exhibits consistent performance even with smaller datasets and varying train-test ratios, showcasing its robustness in the face of limited training data. This memory-efficient and resilient nature positions SNNs as a viable solution for edge computing within the scope of the Industrial Revolution 4.0. In conclusion, this study introduces a pioneering application of SNNs for HAR using Wi-Fi CSI, highlighting the efficacy of spike trains and the STDP learning rule in enabling efficient computation and precise predictions. The demonstrated memory savings and robustness of the SNNs model underscore its potential to address the challenges associated with HAR while upholding privacy concerns and optimising resource utilisation in the era of the Industrial Revolution 4.0.

REKABENTUK RANGKAIAN NEURAL PANCANG YANG CEKAP UNTUK PENGECAMAN AKTIVITI MANUSIA

ABSTRAK

Pengecaman kegiatan manusia (HAR) menggunakan Maklumat Keadaan Saluran Wi-Fi (CSI) telah menarik minat yang ketara sebagai alternatif kepada kaedah konvensional kerana potensinya untuk mengelakkan kebimbangan privasi manusia. Walaupun model Long Short-Term Memory (LSTM) telah menunjukkan hasil yang menjanjikan dalam HAR, sifat intensif sumber dan pengiraan yang memakan masa mengehadkan kesesuaiannya untuk perkomputeran pinggir. Pembangunan saraf rangkaian pancang (SNNs) sebagai model pengiraan yang lebih cekap kuasa memberikan alternatif yang menarik. Walau bagaimanapun, jurang penyelidikan kritikal wujud kerana tiada kajian terdahulu telah meneroka aplikasi SNNs untuk data siri masa, terutamanya untuk analisis CSI Wi-Fi, dalam konteks Revolusi Perindustrian 4.0. Kerja ini menangani jurang penyelidikan dengan mencadangkan model SNNs yang melibatkan prapemprosesan isyarat CSI dan pengekodannya ke dalam spike train. Spike train memodulasi potensi membran pada neuron pascasinaptik berdasarkan nilai berat masing-masing, didayakan oleh peraturan pembelajaran Spike-Timing-Dependent Plasticity (STDP) semasa proses latihan. Gabungan teknik ini membolehkan ramalan kelas yang tepat. Selain itu, dengan kaedah prapemprosesan yang berbeza dan nilai yang berbeza pada parameter model, model SNNs boleh mencapai hasil ketepatan yang berbeza-beza. Penggunaan kaedah undi majoriti pada pengeluaran segmen isyarat yang dibahagikan memastikan ramalan kelas akhir yang mantap. Keputusan eksperimen menunjukkan bahawa model SNNs yang dicadangkan mencapai tahap ketepatan yang setanding dengan model LSTM sambil mengurangkan penggunaan memori pengiraan dengan ketara sehingga 70%. Hebatnya, model SNNs mempamerkan prestasi yang konsisten walaupun dengan set data yang lebih kecil dan nisbah ujian train-test yang berbeza-beza, menunjukkan kekukuhannya dalam menghadapi data latihan yang terhad. Sifat cekap ingatan dan berdaya tahan ini meletakkan SNNs sebagai penyelesaian yang berdaya maju untuk pengkomputeran tepi dalam skop Revolusi Perindustrian 4.0. Kesimpulannya, kajian ini memperkenalkan aplikasi perintis SNNs untuk HAR menggunakan Wi-Fi CSI, menonjolkan keberkesanan spike train dan peraturan pembelajaran STDP dalam membolehkan pengiraan yang cekap dan ramalan yang tepat. Penjimatan memori dan keteguhan model SNNs yang ditunjukkan menunjukkan potensinya untuk menangani cabaran yang berkaitan dengan HAR sambil mengekalkan kebimbangan privasi dan mengoptimumkan penggunaan sumber dalam era Revolusi Perindustrian 4.0.

ACKNOWLEDGEMENTS

The authors acknowledge the technical and financial support by Universiti Teknikal Malaysia Melaka (UTeM) and the Ministry of Higher Education, Malaysia, under the research grant no. FRGS/1/2020/ICT02/UTEM/02/1.

TABLE OF CONTENTS

DECI	LARA'	TION	
APPF		L	
DEDI		ON F	•
ABSI		1	1
ADSI	KAK NOWI	(EDCEMENTS	11 ;;;
TARI	F OF	CONTENTS	in iv
LIST	OF T	ARLES	vii
LIST	OF FI	IGURES	ix
LIST	OF A	CRONYMS	xiii
LIST	OF PI	UBLICATIONS AND PAPERS PRESENTED	XV
CHA	PTER		
1.	INTR	RODUCTION	1
	1.1	Background of Thesis	1
	1.2	Problem Statements	1
	1.3	Research Objectives	2
	1.4	Research Scopes	2
	1.5	Hypothesis / Research Questions	3
	1.6	Organization of Thesis	4
		8	_
2.		CRATURE REVIEW	5
	2.1	Indoor Human Activity Recognition	5
		2.1.1 Image or video recording using a camera	5
		2.1.2 Wedrable sensor	0
		2.1.5 Radio Frequency 2.1.3 L. Pacoived Signal Strangth	0
		21.3.2 Channel State Information	9
		2.1.5.2 Chamler State Information	10
	2.2	Machine Learning on CSI-based HAR LAYSIA MELAKA	10
		2.2.1 Related Works on Wi-Fi CSI-based HAR	14
		2.2.2 Session Summary	30
	2.3	Neural Network	30
		2.3.1 Biological Neuron	31
		2.3.2 Action potential	31
		2.3.3 Neural Network Generation	33
		2.3.4 Section Summary	34
	2.4	Spiking Neural Networks	36
		2.4.1 Spiking model	36
		2.4.1.1 Hodgkin-Huxley model	36
		2.4.1.2 Integrate-and-Fire model	38
		2.4.1.3 Linear Integrate-and Fire	38
		2.4.1.4 Nonlinear Integrate-and-Fire	40
		2.4.1.3 IZHIKEVICH HIODEI 2.4.2 Encoding Method	42
		2.4.2 Encouning Method 2.4.2.1 Binary coding	43 11
		2.4.2.1 Binary country 2.4.2.2 Rate coding	44 11
		2.4.2.3 Latency coding	45
		2.4.2.4 Poisson coding	45

		2.4.3 Spike timing dependent plasticity learning algorithms2.4.4 Related works of Spiking Neural Networks	46 48		
		2.4.5 Section Summary	58		
	2.5	Signal Denoising and Signal Enhancement methods	58		
	2.6	Chapter Summary	61		
3.	ME	THODOLOGY			
	3.1	Overview	62		
	3.2	Channel State Information data	62		
	3.3	Data Pre-processing	68		
	3.4	Spike Train Encoder	70		
	3.5	Spiking Neural Networks Model	73		
		3.5.1 Initializing weight and threshold	75		
		3.5.2 Model Training	76		
		3.5.2.1 Weight Update	79		
		3.5.2.2 Spike-Timing-Dependent-Plasticity Learning Rules	80		
	26	3.5.3 Data Testing	81		
	3.6	Classification process	81		
	3.7	Chapter Summary	82		
4.	RES	ULTS AND DISCUSSION	84		
	4.1	Overview	84		
	4.2	First Dataset	84		
		4.2.1 Pre-processing	84		
		4.2.1.1 Single signal denoising	85		
		4.2.1.2 Multiple Signal Processing	87		
		4.2.1.3 Results using different pre-processing methods	90		
		4.2.1.4 Discussion	91		
		4.2.2 Encoding	91		
		4.2.2.1 Receptive Field and <i>Overlap</i>	91		
		4.2.2.2 Parameter <i>Pre</i> and <i>Post</i> AVSIA MELAKA Discussion	94 97		
		4.2.3 Initialize weight layer and threshold	98		
		4.2.4 Weight Training	101		
		4.2.5 Output layer	103		
		4.2.5.1 Effect of <i>tau</i> parameters	103		
		4.2.5.2 Effect of <i>stdp</i> value on the model	109		
		4.2.5.3 Effect of weight <i>update</i> on the model	110		
		4.2.5.4 Spike time boundary, <i>tm</i>	112		
		4.2.5.5 Parameter <i>Desired</i>	114		
		4.2.5.6 Discussion	116		
		4.2.6 PCA results	117		
		4.2.6.1 Low epoch for SNNs model	118		
		4.2.6.2 Majority Vote	119		
		4.2.6.3 Different Train-Test ratio	121		
		4.2.6.4 Discussion	123		
		4.2.7 Long Short-Term Memory	124		
		4.2.8 Result 125			
	4.3	Second Dataset	126		
		4.3.1 Pre-processing	128		

		4.3.2 SNNs model on the second dataset	130
		4.3.3 Long Short-Term Memory	131
		4.3.4 Result 132	
	4.4	Chapter Summary	133
5.	CON	NCLUSION AND FUTURE WORKS	135
5.	CO 5.1	NCLUSION AND FUTURE WORKS Conclusion	135 135
5.	CON 5.1 5.2	NCLUSION AND FUTURE WORKS Conclusion Future Works	135 135 136

LIST OF TABLES

Table 2.1: Advantages and disadvantages of different HAR methods	11
Table 2.2: Related works on Wi-Fi CSI-based HAR	27
Table 2.3: Comparison between three neural network generation	35
Table 2.4: Related works of SNNs	54
Table 3.1: Comparison between the first and second datasets	63
Table 4.1: Effect of smooth, dwt, and moving mean on raw data	86
Table 4.2: Effect of PCA on 30 subcarriers data on a different class	87
Table 4.3: Effect of PCA on first 10 subcarriers data on a different class	89
Table 4.4: Different preprocessing	90
Table 4.5: Effect of <i>RF</i> and <i>overlap</i> during the encoding process	92
Table 4.6: Result of spike train with different overlap value	93
Table 4.7: Testing accuracy using different receptive fields, RF	93
Table 4.8: Effect of <i>Pre</i> -Value on the encoding method	95
Table 4.9: Spike Train Output using different Pre value	96
Table 4.10: Testing accuracy using different Pre and Post value	97
Table 4.11: Different numbers of datasets are used to set the threshold	99
Table 4.12: Different <i>desired</i> values used to set the threshold	99
Table 4.13: LIF contribution and STDP normalization with the different <i>desired</i> value	100
Table 4.14: Effect of tau	105
Table 4.15: Spike train of analogue value 0.864	106
Table 4.16: Value of variable s	106
Table 4.17: Different stdp parameters with their normalised result	109

Table 4.18: Effect of the update parameter	110
Table 4.19: Different spike time boundary with testing accuracy	113
Table 4.20: LIF contribution with the different <i>desired</i> value	114
Table 4.21: Normalised STDP with the different <i>desired</i> value	115
Table 4.22: Testing accuracy with different <i>desired</i> values	115
Table 4.23: Confusion table for a majority vote of PCA 30 subcarriers	120
Table 4.24: PCA 10 subcarriers using the same parameters on all SNNs model	120
Table 4.25: PCA 10 subcarriers using optimized SNNs model parameter	121
Table 4.26: Confusion table for 7:3 Train-Test ratio	122
Table 4.27: Confusion table for 6:4 Train-Test ratio	122
Table 4.28: Confusion table for 5:5 Train-Test ratio	123
Table 4.29: Overall Testing accuracy again different Train-Test ratio	125
Table 4.30: Training time and peak memory used on the different train-test ratio	126
Table 4.31: Training time, peak memory used and testing accuracy of SNNs and	LSTM
اونيوس سيتي تيڪنيڪل ملاtaset dataset	133

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF FIGURES

Figure 2.1: Image capture or recording using camera devices	6
Figure 2.2: Connection of sensor blocks	8
Figure 2.3: Detection of humans using Radar technology	9
Figure 2.4: Machine learning model a) LSTM b) Bi-LSTM c) GRU	13
Figure 2.5: System architecture of the DFLAR system (Gao et al., 2017)	15
Figure 2.6: Leverage multiple links on CARM (Wang et al., 2017)	17
Figure 2.7: WmFall system architecture (Yang et al., 2018)	18
Figure 2.8: Overall architecture of the HARNN (Ding and Wang, 2019)	19
Figure 2.9: ABLSTM framework (Chen et al., 2019)	20
Figure 2.10: Architecture of Wireless ID (Zhang and Jing, 2021)	22
Figure 2.11: Architecture of GMM-HMM (Cheng, Huang and Zong, 2021)	24
Figure 2.12: Structure of 2D-CNN (Fard Moshiri et al., 2021)	25
Figure 2.13: NeuronERSITI TEKNIKAL MALAYSIA MELAKA	31
Figure 2.14: Phases of an action potential with the membrane voltage	e over time
(Anon, n.d. e)	32
Figure 2.15: 1st Generation of Neuron Model (Anon, n.d. c)	33
Figure 2.16: 2nd Generation of Neuron Model (Anon, n.d. g)	33
Figure 2.17: 3rd Generation of Neuron Model (Anon, n.d. k)	34
Figure 2.18: Hodgkin-Huxley model	37
Figure 2.19: Linear Integrate-and-Fire model	39
Figure 2.20: Every input spike causes EPSP	39
Figure 2.21: Repetitive output when having a constant direct current	39

Figure 2.22: Nonlinear Integrate-and-Fire model	40
Figure 2.23: Motion of potential when having a constant direct current	41
Figure 2.24: Results of Izhikevich pattern using different values of the parameters a, b,	c, d
	43
Figure 2.25: Rate coding	44
Figure 2.26: Latency coding	45
Figure 2.27: Poisson coding	46
Figure 2.28: STDP learning rule	47
Figure 2.29: Excitatory and Inhibitory Post-Synaptic Potential	47
Figure 2.30: Concept of discrete wavelet transform	60
Figure 3.1: Process of HAR	62
Figure 3.2: Illustration for (a)Bed (b)Fall (c)Pickup (d)Run (e)Sit (f)Stand and (g)Walk	63
Figure 3.3: CSI signals and their activity occur period	65
Figure 3.4: Wifi signals captured are reflected from the surroundings including human	66
Figure 3.5: Architecture of CSI data	66
Figure 3.6: The amplitude of CSI data used by the SNNs model	67
Figure 3.7: Example using Bed Data	67
Figure 3.8: Original, DWT, and Reconstructed DWT signal of a bed dataset	69
Figure 3.9: Overview of Spike Train Encoder	70
Figure 3.10: Example of an encoder with $RF=6$	72
Figure 3.11: Example of 0.7 analogue value	72
Figure 3.12: Direct relationship between input and spike train	73
Figure 3.13: Flow Chart of SNNs Model	74
Figure 3.14: Pseudocode	75
Figure 3.15: Overview of the SNNs model	78

Figure 3.16: Overview of LIF postsynaptic neuron	78
Figure 3.17: a) STDP learning rule b) Excitatory and Inhibitory Post Synaptic Potential	l 80
Figure 3.18: Membrane Potential and their firing time	82
Figure 3.19: Classification Process	82
Figure 4.1: Spike Timing for different <i>Pre</i> Value	97
Figure 4.2: Weight Layer and membrane potential	102
Figure 4.3: Weight Value Before and After Training of one neuron from one weight	layer
class	102
Figure 4.4: Overview of assembled membrane potential	103
Figure 4.5: Presynaptic spike located a) after b) on c) before current simulation time,	t 104
Figure 4.6: Contribution of spike train with <i>tau</i> value 50	107
Figure 4.7: Contribution of spike train with <i>tau</i> value 300	107
Figure 4.8: Membrane potential of each postsynaptic neuron with tau value 50	108
Figure 4.9: Membrane potential of each postsynaptic neuron with <i>tau</i> value 300	108
Figure 4.10: Time-varying function with an <i>update</i> value of 10	111
Figure 4.11: Time-varying function with an <i>update</i> value of 300	112
Figure 4.12: Overview of the effect of spike time boundary	113
Figure 4.13: Spike time boundary VS Testing Accuracy	113
Figure 4.14: Figure of <i>desired</i> , <i>tm</i> and test accuracy	116
Figure 4.15: Several Types of input using PCA from 30 subcarriers	117
Figure 4.16: Several Types of input using PCA from 10 subcarriers	118
Figure 4.17:Training accuracy with its max	118
Figure 4.18: Testing accuracy with its max	119
Figure 4.19: LSTM Model for the first dataset	124
Figure 4.20: LSTM network architecture for the first dataset	124

Figure 4.21: Raw Signal of Empty, Sit, Stand, and Walk activities	128
Figure 4.22: Graph of all subcarriers and the divisions of Walk activity	130
Figure 4.23: First PCA results of the normalised input	130
Figure 4.24: SNNs Model on Second Dataset	131
Figure 4.25: LSTM network architecture for the second dataset	132

LIST OF ACRONYMS

AGC	-	Automatic Gain Control
ANNs	-	Artificial Neural Networks
BCM	-	Bienenstock-Cooper-Munro
Bi-LSTM / BLSTM	-	Bidirectional Long Short-Term Memory
CFO	-	Carrier Frequency Offset
CNN / CNNs	-	Convolutional Neural Networks
CPV	L-AY	Channel Power Variation
CSI	-	Channel State Information
DFB	-=	Device-free Biometric
DWT	-	Discrete Wavelet Transform
EPSP	n _	Excitatory Postsynaptic Potential
GRU	Lu.	ويور سيتي بي Gated Recurrent Units
HAR UNIVE	RSI	Human Activity Recognition SIA MELAKA
HMM	-	Hidden Markov Model
IF	-	Integrate-and-Fire
IPSP	-	Inhibitory Postsynaptic Potential
LIF	-	Leaky Integrate-and-Fire
LSTM	-	Long Short-Term Memory
NIC	-	Network Interface Card
NN	-	Neural Network
PCA	-	Principal Component Analysis
PSD	-	Power Spectral Density

RF	-	Receptive Field
RNNs	-	Recurrent Neural Networks
RSS	-	Received Signal Strength
SAC	-	Sparse Approximation based Classification
SAE	-	Sparse autoencoder
SFO	-	Sampling Frequency Offset
SNNs	-	Spiking Neural Networks
SRM	-	Spike Response Model
STDP	-	Spike-Timing-Dependent Plasticity
STFT	A AY	Short-Time Fourier Transform
SVM	AP' MACAN	Support Vector Machine
TFA	TEKII	Time-Frequency Analysis
	سيا ملاك	اونيۆمرسىتى تيكنىكل مليس
	UNIVERS	TI TEKNIKAL MALAYSIA MELAKA

LIST OF PUBLICATIONS AND PAPERS PRESENTED

- Tan, Y. L., Wong, Y. C. and Radzi, S. A., (2021). Brain-Inspired Spiking Neural Networks For Wi-Fi Based Human Activity Recognition. *Jordanian Journal of Computers and Information Technology* (JJCIT), 07(04), 363–372. doi:10.5455/jjcit.71-1629096728.
- 2. Tan, Y.L. and Wong, Y.C., 2022. Wireless sensing for human activity using lightweight spiking neural networks., *The 7th International Conference and Exhibition on Sustainable Energy and Advanced Materials (ICE-SEAM '21)*, pp.32–34.
- 3. Tan, Y. L., Wong, Y. C., Radzi, S. A. and Chuah, J. H., (2022). Wi-Fi Based Human Activity Recognition using Lightweight LSTM. *4th International Conference on Telecommunication, Electronic and Computer Engineering (ICTEC'22).*

CHAPTER 1

INTRODUCTION

1.1 Background of Thesis

In this research, a spiking neural networks (SNNs) model is designed and applied to Wi-Fi channel state information (CSI)-based human activity recognition (HAR). Wi-Fi CSI is a complex time series data that performs well on recurrent neural networks (RNNs) such as the long short-term memory (LSTM) model (Wang et al., 2019; Zhang et al., 2021). However, the high hardware resource and time consumption by LSTM is a critical issue (Chen et al., 2019). SNNs are the third generation of neural networks when classified based on their computational units, which are McCulloch-Pitts neurons, activation function, and spiking neurons (Maass, 1997). SNNs can be a more power-efficient computational model with their spiking characteristic, but so far, none of the research on using SNNs for time series data such as Wi-Fi CSI data has been done. Therefore, this project will focus on designing an SNNs model which will be used to classify human activities from the Wi-Fi CSI data. The performance of the developed SNNs algorithm based on the neuron model, accuracy, and hardware resources for the application of HAR will be evaluated and optimized.

1.2 Problem Statements

LSTM is a well-known method for classifying temporal datasets in HAR due to its ability to automatically select features. However, high hardware resource requirements are a significant issue for LSTM. To address this, Spiking Neural Networks (SNNs) have been developed as a more power-efficient computational model that can perform similar tasks as LSTM with lower hardware requirements. Further research is needed to optimize SNN algorithms based on neuron model, accuracy, and hardware resources on the application of HAR.

1.3 Research Objectives

The objectives of this research project are summarized as follows:

- i. To investigate the architecture of SNNs for CSI-based human activity recognition applications.
- ii. To design an efficient spiking neural network model for time series data processing and classification.
- iii. To evaluate the performance measure in terms of accuracy and hardware resources on the application of human activity recognition.

ي تيڪند

1.4 Research Scopes

This research aims to design a SNNs model that can do HAR on Wi-Fi CSI data and achieve good performance on both accuracy and hardware resource consumption. The details of the research scope and the limitations of this work are as follows:

i. The HAR dataset utilised in this research focuses on Wi-Fi Channel State Information (CSI). This choice is motivated by the absence of human privacy concerns associated with Wi-Fi CSI and its user-friendly nature, as it eliminates the need for worn sensors or line-of-sight considerations. Consequently, CSI emerges as an effective method for collecting data on human activities.

- ii. The datasets employed in this study are not self-collected. Two established CSI datasets, featuring human activity data from diverse individuals and various room environments, have been utilised. The distinct originators of these datasets ensure differences in both individuals and room environments.
- iii. The selection of these two datasets aims to enhance the robustness of the Spiking Neural Networks (SNNs) model. The first dataset comprises both pre- and post-activity data, while the second dataset exclusively covers activity periods. Furthermore, the datasets vary in size, with one having a limited number and the other a substantial number. Importantly, these datasets are sourced from different individuals.
- iv. In this research, the Spike-Timing-Dependent Plasticity (STDP) learning rule is employed to train the weight layer between the presynaptic and postsynaptic spikes of the output neuron. This approach is adopted due to the SNNs model being trained with reference output spiking time.
- v. All the models in this study are executed using MATLAB on a lab desktop lacking a graphics card. This configuration extends the running time of the SNNs models, which have the potential for parallel execution.

1.5 Hypothesis / Research Questions

- 1. How to model SNN in object detection and classification.
- 2. Which neuron models have better energy efficiency?
- 3. What is the learning method for SNN?
- 4. What is the input and output of an SNN?

1.6 Organization of Thesis

The thesis comprises five chapters. Chapter 1 presents the introduction of this project, which includes the background, problem statement, research objectives, scope or limitations of the research, research questions, and the organization of the thesis.

Chapter 2 describes the literature review on human activity recognition (HAR) technology and existing machine learning models applied to the HAR dataset. Additionally, this chapter reviews the differences between three generations of neural networks, encoding methods, learning rules, and related works on SNNs.

Chapter 3 depicts the methodology for the proposed SNNs model. This chapter explains the research flow and provides details about the SNNs model.

Chapter 4 presents the impact of several important model parameters that can affect the performance of the proposed SNNs model. Furthermore, it includes the results of the SNNs model and its performance compared to the existing machine learning LSTM model. Two different Wi-Fi CSI datasets are used to evaluate the performance of the proposed SNNs model.

Chapter 5 discusses the conclusion of this research, including the research outcomes, the contribution of this study, and recommendations for future research based on the study.