
 

 

 

 

 

Faculty of Electronics & Computer Technology and 

Engineering 

 
DESIGN OF AN EFFICIENT SPIKING NEURAL NETWORK FOR 

HUMAN ACTIVITY RECOGNITION 

 
Tan Yee Leong 

 
Master of Science in Electronic Engineering 

 
2024 

 

 

 

 

 

 



 

 

 

 

 

 

DESIGN OF AN EFFICIENT SPIKING NEURAL NETWORK FOR HUMAN 

ACTIVITY RECOGNITION 

 

 

 

 

 

 

TAN YEE LEONG 

 

 

 

 

 

 

A thesis submitted  

in fulfilment of the requirement for the degree of Master of Science  

in Electronic Engineering 

 

 

 

 

 

 

 

 

Faculty of Electronics & Computer Technology and Engineering 

 

 

 

 

 

 

 

 

UNIVERSITI TEKNIKAL MALAYSIA MELAKA 

 

 

 

 

 

 

2024



 

 

 

DECLARATION 

 

I declare that this thesis entitled “Design Of An Efficient Spiking Neural Network For 

Human Activity Recognition” is the result of my own research except as cited in the 

references. The thesis has not been accepted for any degree and is not concurrently 

submitted in candidature of any other degree.  

 

 

 

Signature : ………………………………… 

Author  :  ………………………………… 

Date  : ………………………………… 

 

 

TAN YEE LEONG 

22 NOVEMBER 2023 



 

 

 

 

APPROVAL 

 

I hereby declare that I have read this thesis and in my opinion, this thesis is sufficient in 

terms of scope and quality for the award of Master of Science in Electronic Engineering.   

 

 

Signature   : ………………………………… 

Supervisor Name  :  ………………………………… 

Date    : ………………………… ……… 

 

PM. Dr Wong Yan Chiew 

22 NOVEMBER 2023 



 

 

 

 

DEDICATION 

 

To my beloved mother and father, Ting Chiew Hiong and Tan Tze Ming, and also my 

supervisor, Associate Professor Wong Yan Chiew, your kindness and advice should never 

be forgotten. 

 

 

 



i 
 

 

ABSTRACT 

 

Human activity recognition (HAR) using Wi-Fi Channel State Information (CSI) has 

attracted significant interest as an alternative to conventional methods due to its potential 

to address human privacy concerns. While Long Short-Term Memory (LSTM) models 

have shown promising results in HAR, their resource-intensive nature and time-consuming 

computations limit their suitability for edge computing. The development of Spiking 

Neural Networks (SNNs) as a more power-efficient computational model presents a 

compelling alternative. However, a critical research gap exists as no prior study has 

explored the application of SNNs for time series data, particularly for Wi-Fi CSI analysis, 

within the context of the Industrial Revolution 4.0. This work addresses the research gap 

by proposing an SNNs model that involves preprocessing the CSI signals and encoding 

them into spike trains. The spike trains modulate the membrane potential at the 

postsynaptic neurons based on their respective weight values, enabled by the Spike-

Timing-Dependent Plasticity (STDP) learning rule during the training process. The 

combination of these techniques enables accurate class prediction. Additionally, with 

different preprocessing methods and different values on the model’s parameters, SNNs 

models can achieve varying accuracy results. The application of the majority vote method 

to the outputs of divided signal segments ensures a robust final class prediction. 

Experimental results demonstrate that the proposed SNNs model achieves accuracy levels 

comparable to those of the LSTM model while significantly reducing computational 

memory usage by up to 70%. Remarkably, the SNNs model exhibits consistent 

performance even with smaller datasets and varying train-test ratios, showcasing its 

robustness in the face of limited training data. This memory-efficient and resilient nature 

positions SNNs as a viable solution for edge computing within the scope of the Industrial 

Revolution 4.0. In conclusion, this study introduces a pioneering application of SNNs for 

HAR using Wi-Fi CSI, highlighting the efficacy of spike trains and the STDP learning rule 

in enabling efficient computation and precise predictions. The demonstrated memory 

savings and robustness of the SNNs model underscore its potential to address the 

challenges associated with HAR while upholding privacy concerns and optimising 

resource utilisation in the era of the Industrial Revolution 4.0.  
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REKABENTUK RANGKAIAN NEURAL PANCANG YANG CEKAP UNTUK 

PENGECAMAN AKTIVITI MANUSIA 

 

ABSTRAK 

 

Pengecaman kegiatan manusia (HAR) menggunakan Maklumat Keadaan Saluran Wi-Fi 

(CSI) telah menarik minat yang ketara sebagai alternatif kepada kaedah konvensional 

kerana potensinya untuk mengelakkan kebimbangan privasi manusia. Walaupun model 

Long Short-Term Memory (LSTM) telah menunjukkan hasil yang menjanjikan dalam HAR, 

sifat intensif sumber dan pengiraan yang memakan masa mengehadkan kesesuaiannya 

untuk perkomputeran pinggir. Pembangunan saraf rangkaian pancang (SNNs) sebagai 

model pengiraan yang lebih cekap kuasa memberikan alternatif yang menarik. Walau 

bagaimanapun, jurang penyelidikan kritikal wujud kerana tiada kajian terdahulu telah 

meneroka aplikasi SNNs untuk data siri masa, terutamanya untuk analisis CSI Wi-Fi, 

dalam konteks Revolusi Perindustrian 4.0. Kerja ini menangani jurang penyelidikan 

dengan mencadangkan model SNNs yang melibatkan prapemprosesan isyarat CSI dan 

pengekodannya ke dalam spike train. Spike train memodulasi potensi membran pada 

neuron pascasinaptik berdasarkan nilai berat masing-masing, didayakan oleh peraturan 

pembelajaran Spike-Timing-Dependent Plasticity (STDP) semasa proses latihan. 

Gabungan teknik ini membolehkan ramalan kelas yang tepat. Selain itu, dengan kaedah 

prapemprosesan yang berbeza dan nilai yang berbeza pada parameter model, model SNNs 

boleh mencapai hasil ketepatan yang berbeza-beza. Penggunaan kaedah undi majoriti 

pada pengeluaran segmen isyarat yang dibahagikan memastikan ramalan kelas akhir yang 

mantap. Keputusan eksperimen menunjukkan bahawa model SNNs yang dicadangkan 

mencapai tahap ketepatan yang setanding dengan model LSTM sambil mengurangkan 

penggunaan memori pengiraan dengan ketara sehingga 70%. Hebatnya, model SNNs 

mempamerkan prestasi yang konsisten walaupun dengan set data yang lebih kecil dan 

nisbah ujian train-test yang berbeza-beza, menunjukkan kekukuhannya dalam menghadapi 

data latihan yang terhad. Sifat cekap ingatan dan berdaya tahan ini meletakkan SNNs 

sebagai penyelesaian yang berdaya maju untuk pengkomputeran tepi dalam skop Revolusi 

Perindustrian 4.0. Kesimpulannya, kajian ini memperkenalkan aplikasi perintis SNNs 

untuk HAR menggunakan Wi-Fi CSI, menonjolkan keberkesanan spike train dan peraturan 

pembelajaran STDP dalam membolehkan pengiraan yang cekap dan ramalan yang tepat. 

Penjimatan memori dan keteguhan model SNNs yang ditunjukkan menunjukkan potensinya 

untuk menangani cabaran yang berkaitan dengan HAR sambil mengekalkan kebimbangan 

privasi dan mengoptimumkan penggunaan sumber dalam era Revolusi Perindustrian 4.0.  
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CHAPTER 1  

 

INTRODUCTION 

 

1.1 Background of Thesis 

In this research, a spiking neural networks (SNNs) model is designed and applied to 

Wi-Fi channel state information (CSI)-based human activity recognition (HAR). Wi-Fi 

CSI is a complex time series data that performs well on recurrent neural networks (RNNs) 

such as the long short-term memory (LSTM) model (Wang et al., 2019; Zhang et al., 

2021). However, the high hardware resource and time consumption by LSTM is a critical 

issue (Chen et al., 2019). SNNs are the third generation of neural networks when classified 

based on their computational units, which are McCulloch-Pitts neurons, activation 

function, and spiking neurons (Maass, 1997). SNNs can be a more power-efficient 

computational model with their spiking characteristic, but so far, none of the research on 

using SNNs for time series data such as Wi-Fi CSI data has been done. Therefore, this 

project will focus on designing an SNNs model which will be used to classify human 

activities from the Wi-Fi CSI data. The performance of the developed SNNs algorithm 

based on the neuron model, accuracy, and hardware resources for the application of HAR 

will be evaluated and optimized. 

 

1.2 Problem Statements 

LSTM is a well-known method for classifying temporal datasets in HAR due to its 

ability to automatically select features. However, high hardware resource requirements are 
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a significant issue for LSTM. To address this, Spiking Neural Networks (SNNs) have been 

developed as a more power-efficient computational model that can perform similar tasks as 

LSTM with lower hardware requirements. Further research is needed to optimize SNN 

algorithms based on neuron model, accuracy, and hardware resources on the application of 

HAR. 

 

1.3 Research Objectives 

The objectives of this research project are summarized as follows: 

i. To investigate the architecture of SNNs for CSI-based human activity 

recognition applications. 

ii. To design an efficient spiking neural network model for time series data 

processing and classification. 

iii. To evaluate the performance measure in terms of accuracy and hardware 

resources on the application of human activity recognition. 

 

1.4 Research Scopes 

This research aims to design a SNNs model that can do HAR on Wi-Fi CSI data 

and achieve good performance on both accuracy and hardware resource consumption. The 

details of the research scope and the limitations of this work are as follows: 

i. The HAR dataset utilised in this research focuses on Wi-Fi Channel State 

Information (CSI). This choice is motivated by the absence of human privacy 

concerns associated with Wi-Fi CSI and its user-friendly nature, as it eliminates the 

need for worn sensors or line-of-sight considerations. Consequently, CSI emerges 

as an effective method for collecting data on human activities. 
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ii. The datasets employed in this study are not self-collected. Two established CSI 

datasets, featuring human activity data from diverse individuals and various room 

environments, have been utilised. The distinct originators of these datasets ensure 

differences in both individuals and room environments. 

iii. The selection of these two datasets aims to enhance the robustness of the Spiking 

Neural Networks (SNNs) model. The first dataset comprises both pre- and post-

activity data, while the second dataset exclusively covers activity periods. 

Furthermore, the datasets vary in size, with one having a limited number and the 

other a substantial number. Importantly, these datasets are sourced from different 

individuals. 

iv. In this research, the Spike-Timing-Dependent Plasticity (STDP) learning rule is 

employed to train the weight layer between the presynaptic and postsynaptic spikes 

of the output neuron. This approach is adopted due to the SNNs model being 

trained with reference output spiking time. 

v. All the models in this study are executed using MATLAB on a lab desktop lacking 

a graphics card. This configuration extends the running time of the SNNs models, 

which have the potential for parallel execution. 

 

1.5 Hypothesis / Research Questions 

1. How to model SNN in object detection and classification. 

2. Which neuron models have better energy efficiency? 

3. What is the learning method for SNN? 

4. What is the input and output of an SNN? 
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1.6 Organization of Thesis 

The thesis comprises five chapters. Chapter 1 presents the introduction of this 

project, which includes the background, problem statement, research objectives, scope or 

limitations of the research, research questions, and the organization of the thesis. 

Chapter 2 describes the literature review on human activity recognition (HAR) 

technology and existing machine learning models applied to the HAR dataset. 

Additionally, this chapter reviews the differences between three generations of neural 

networks, encoding methods, learning rules, and related works on SNNs. 

Chapter 3 depicts the methodology for the proposed SNNs model. This chapter 

explains the research flow and provides details about the SNNs model. 

Chapter 4 presents the impact of several important model parameters that can affect 

the performance of the proposed SNNs model. Furthermore, it includes the results of the 

SNNs model and its performance compared to the existing machine learning LSTM model. 

Two different Wi-Fi CSI datasets are used to evaluate the performance of the proposed 

SNNs model. 

Chapter 5 discusses the conclusion of this research, including the research 

outcomes, the contribution of this study, and recommendations for future research based on 

the study. 

  




