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ABSTRACT 

This research article presents a comprehensive study on the performance modeling of 3D printed parts 

using Artificial Neural Networks (ANNs). The aim of this study is to optimize the mechanical properties of 

3D printed components through accurate prediction and analysis. The study focuses on the widely 

employed Fused Deposition Modeling (FDM) technique. The ANN model is trained and validated using 

experimental data, incorporating input parameters such as temperature, speed, infill direction, and layer 

thickness to predict mechanical properties including yield stress, Young's modulus, ultimate tensile 

strength, flexural strength, and elongation at fracture. The results demonstrate the effectiveness of the 

ANN model with an average error below 10%. The study also reveals the significant impact of process 
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parameters on the mechanical properties of 3D printed parts and highlights the potential for optimizing 

these parameters to enhance the performance of printed components. The findings of this research 

contribute to the field of additive manufacturing by providing valuable insights into the optimization of 3D 

printing processes and facilitating the development of high-performance 3D printed components. 

Keywords-3D printing; Artificial Neural Networks (ANNs); predictive modeling; Fused Deposition Modeling 

(FDM); mechanical properties 

I. INTRODUCTION  

3D printing methods have revolutionized various industries 
by enabling faster product production and the fabrication of 
complex geometries. Additive Manufacturing (AM), also 
known as 3D printing, is a manufacturing technique that 
involves the layer-by-layer addition of material [1]. One 
commonly used method is Fused Deposition Modeling (FDM), 
which utilizes a liquefier nozzle to deposit the filament material 
in the X-Y direction, creating three-dimensional polymer 
components [2]. However, FDM-produced parts often exhibit 
poor mechanical performance, limiting their potential 
applications. The mechanical properties of FDM parts can be 
improved by optimizing their manufacturing parameters [3]. 
The selection of suitable process parameters significantly 
affects the mechanical characteristics of FDM components. 
Compared to traditional manufacturing methods like machining 
and injection moulding, FDM exhibits lower material strength 
due to its layer-by-layer formation process [4]. Polylactic Acid 
(PLA) is a commonly used biodegradable material derived 
from cornflour in 3D printing. PLA is preferred for its 
environmental sustainability and extrusion stability [5]. 
However, the mechanical properties of PLA-based prints are 
influenced by the injection moulding technique parameter and 
fast cooling, resulting in reduced material strength [6]. The 
physical and mechanical properties of FDM parts primarily 
depend on the manufacturing parameters [7]. While some 
studies have investigated the mechanical properties of PLA, 
including tensile, compressive, flexural, and impact strength, 
more parameters need to be evaluated to enhance the 
application scope and control of FDM-produced components 
[8]. Furthermore, the mechanical properties and bonding 
strength of thermoplastic composites created through additive 
manufacturing must be comprehensively defined to ensure 
optimal functionality for product manufacturers [9]. 

Machine learning techniques, such as Artificial Neural 
Networks (ANNs), have demonstrated effectiveness in various 
applications [10, 11]. In the field of materials science, ANN 
models have been employed for the prediction and optimization 
of mechanical properties. These models have exhibited superior 
performance compared to conventional approaches like 
dimensional analysis [12, 13]. ANN models can help improve 
process parameters, reduce the need for extensive 
experimentation, and facilitate problem-solving in additive 
manufacturing [14]. Recent research has highlighted the 
potential of ANN modeling to predict and optimize the 
mechanical properties of 3D-printed parts. For instance, ANN 
models were used to predict the tensile strength of ABS P400 
produced through FDM, demonstrating high accuracy in the 
majority of predictions [15]. Another study employed ANN 
techniques to create metamodels for optimizing the design 
parameters of hybrid components, showcasing their superior 

prediction capabilities compared to traditional methods like 
Design of Experiments (DOE) with RSM [16]. ANN models 
have the potential in optimizing 3D printing parameters such as 
layer height, thickness, fill density, temperature, and print 
speed for PLA materials [17]. ANNs have been also used to 
determine the optimal process parameters to improve creep 
compliance and recoverable compliance for the FDM parts 
[18]. However, most of the optimization techniques focus on 
experimental testing with the FDM parameters to investigate 
dimensions, tensile strength, flexural strength, and hardness 
[19-21]. In summary, ANN models have the potential in 
predicting additional mechanical properties with the process 
parameters for FDM 3D printing. Accurate mechanical 
properties predictions allow for a better understanding of the 
behavior and performance of 3D-printed materials. By 
predicting the mechanical properties, it becomes possible to 
optimize the 3D printing process parameters to achieve the 
desired material properties. Instead of relying solely on 
experimental testing, which can be time-consuming and 
expensive, using an ANN model for prediction allows quicker 
assessment of the mechanical properties, reducing development 
time and associated cost. 

In this study, an ANN model is designed to model the 
relationship between process parameters and mechanical 
properties in 3D printing using the inputs of temperature, 
speed, infill direction, and layer thickness. The goal of the 
model is to predict the values of several mechanical properties, 
including Young modulus, ultimate tensile strength, yield 
stress, fracture elongation, and flexural strength, as the outputs. 

II. EXPERIMENTAL METHOD 

A. Experimental Parameter Determination 

To assess the performance of 3D printing, experimental 
parameters were determined using a full factorial method. Two 
ranges, representing higher and lower values, were selected for 
each parameter. The specific conditions and corresponding 
levels used in the experiments are shown in Table I. The 
control parameters are temperature, speed, infill direction, and 
layer thickness. Temperature setting during the 3D printing 
process directly impacts the material's molecular structure and 
bonding, potentially affecting ultimate tensile strength, Young 
modulus, and mechanical performance. The printing speed 
affects the cooling rate and material deposition time. The infill 
direction determines the orientation of the internal structure of 
the printed part. Different infill patterns can affect the part's 
anisotropy, influencing properties such as yield stress, ultimate 
tensile strength, and flexural strength. The layer thickness 
directly impacts the resolution and structural integrity of the 
printed object, which potentially affects the mechanical 
properties due to the increased exposure to heat during the 
printing process. A two-level, full-factorial design of 
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experiments was employed, requiring a total of 16 
experimental runs. In this study, a feed-forward Neural 
Network (NN) utilizing the backpropagation (BP) algorithm 
was developed to construct multiple models for optimizing 
inputs and outputs. The process parameters used as inputs for 
the ANN model were temperature, speed, infill direction, and 
layer thickness. The ANN model aimed to predict the Young 
modulus, ultimate tensile strength, yield stress, fracture 
elongation, and flexural strength as the outputs. The operational 
parameters for 3D printing performance utilized in the ANN 
are summarized in Table II. Developing this ANN model with 
multiple inputs and outputs ultimately contributes to an 
adaptive system capable of continuously controlling various 
parameters. 

TABLE I.  CONTROL PARAMETERS AND THEIR LEVELS  

Factor Low High 

Temperature (°C) 210 225 
Speed 40 90 

Infill direction (°) 0 45 
Layer thickness (mm) 0.1 0.3 

 

B. Developing the ANN using Experimental Data 

The development of the ANN system involved data 
collection, network configuration, weight and bias 
initialization, network testing, network validation, and data 
analysis. Specific algorithms for intelligent analysis, such as 
ANN architectures, facilitated the utilization of stored data 
available in software libraries. The research flow is illustrated 
in Figure 1. All collected data, including input (temperature, 
speed, infill direction, and layer thickness) and output (Young 
modulus, yield stress, fracture elongation, ultimate tensile 
strength, and flexural strength) parameters, were imported into 
MATLAB. Prior to that, the layout of the ANN was 
established, determining the number of neurons and layers. The 
ANN architecture for this study is depicted in Figure 2. During 
the implementation of the ANN structure using MATLAB, the 
data sets were divided into a 70% training set and a 30% testing 
set. The training set, consisting of randomly selected data 

points from the 16 experimental runs, comprised 11 data 
points. The subsequent step involved training the network 
using the training data. The programming involved propagating 
the information through the network, calculating the error, and 
adjusting the neural connections iteratively to minimize the 
error. Once the ANN was successfully trained, the trained 
output data were tested using the reserved testing data. The 
same code was employed to determine the performance of the 
NN based on the empirical requirements. 

 

 
Fig. 1.  Methodology flowchart of the ANN model development and 
validation. 

TABLE II.  PROCESS PARAMETERS 

Exp. 

No 

Controlled parameters Responses 

Temperature 

(°C) 
Speed 

Infill direction 

(°) 

Layer thickness 

(mm) 

Yield stress 

(MPa) 

Ultimate tensile 

strength (MPa) 

Young’s 

modulus 

Elongation at 

fracture (%) 

Flexural 

strength (MPa) 

1 210 40 0 0.1 40.25 45.43 3243.00 2.15 75.64 
2 210 40 0 0.3 49.94 53.33 3209.67 2.71 92.03 
3 210 40 45 0.1 44.45 47.93 2995.00 2.17 86.49 
4 210 40 45 0.3 42.12 47.28 3338.67 2.29 95.23 
5 210 90 0 0.1 32.73 37.52 2460.33 2.04 65.39 
6 210 90 0 0.3 33.01 35.21 2648.67 1.86 76.96 
7 210 90 45 0.1 28.85 31.21 2333.33 2.43 70.04 
8 210 90 45 0.3 31.80 35.61 2566.67 2.91 73.46 
9 225 40 0 0.1 28.16 32.47 2441.00 1.91 63.20 

10 225 40 0 0.3 40.71 42.47 3351.33 1.94 79.10 
11 225 40 45 0.1 32.05 35.24 2483.33 2.61 70.83 
12 225 40 45 0.3 38.14 41.51 3043.67 2.35 74.10 
13 225 90 0 0.1 33.33 36.25 2571.67 2.07 68.09 
14 225 90 0 0.3 37.52 40.53 2815.67 2.06 75.09 
15 225 90 45 0.1 46.15 50.00 3589.33 2.03 74.01 
16 225 90 45 0.3 52.08 55.46 3307.67 2.13 93.30 
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Fig. 2.  The designed ANN architecture. 

Finally, after the completion of the training process, the 
model was tested with additional experimental data. The 
evaluation of ANNs relies on the determination of errors, for 
which various error equations were employed. The Mean 
Absolute Percentage Error (MAPE), Root Mean Square Error 
(RMSE), and coefficient of determination (R2) were calculated 
for performance evaluation. 

C. ANN Optimization for Prediction 

The MATLAB ANN toolbox offers a range of training and 
learning capabilities. In this analysis, the training functions 
TRAINLM and TRAINSG were utilized, with the architectural 
parameters specified in Table III. LEARNGDM was employed 
to adapt the network using the gradient descent momentum 
weight and bias learning function. The ANN model in this 
study was configured with 10 neurons and 2 layers. Network3 
was identified as the best-performing network, as it achieved a 
percentage loss factor of 5.14%, which was below the threshold 
of 10%. The comparison between the experimental data and the 
predictions from the ANN and for mechanical properties such 
as yield stress, ultimate tensile stress, Young's modulus, 
elongation, and flexural strength are presented in Figure 3 and 
Tables IV-VI. In the study, the correlation between the 
predicted ultimate tensile stress and yield stress with the 
corresponding experimental stresses was found to be 
significant, as indicated in Figure 3. The error analysis revealed 
that the discrepancies between the experimental and the 
predicted results were below 10% for Young modulus and 

flexural strength data. Additionally, the error associated with 
elongation was found to be less than 2.53%. The data 
collectively demonstrate an average error below 10%, 
showcasing the effectiveness of the ANN model in accurately 
predicting the mechanical properties based on the input 
parameters. 

III. RESULTS AND DISCUSSION 

A. Performance Analysis of the ANN Predictions 

The results obtained from the ANN predictions 
demonstrated a high level of accuracy in estimating the 
mechanical properties of the 3D-printed parts. The ANN model 
effectively captured the complex relationships between the 
input parameters (temperature, speed, infill direction, and layer 
thickness) and the output mechanical properties. This indicates 
the capability of the ANN to learn and generalize from the 
training data to provide accurate predictions for unseen data. 

TABLE III.  ANN TRAINING AND ARCHITECTURAL 
PARAMETERS 

Network name Network1 Network2 Network3 

Network type FeedForward FeedForward FeedForward 
Training func TRAINLM TRAINLM TRAINLM 

Adaptive learning LEARNGDM LEARNGDM LEARNGDM 
No of neurons 8 9 10 
Transfer func TANSIG TANSIG TANSIG 

Goal 0 0 0 
min_grad 0.0001 0.0001 0.0001 

Mu 0.0001 0.0001 0.0001 

 

 
Fig. 3.  Comparison between the experimental and ANN predicted results 
of training data for yield stress and ultimate tensile stress. 

TABLE IV.  COMPARISON BETWEEN EXPERIMENTAL AND ANN PREDICTED RESULT OF TRAINING DATA FOR YOUNG MODULUS  

Exp. 

No. 

Controlled parameters Response 
Error 

(%) 
Temperature 

(°C) 
Speed 

Infill direction 

(°) 

Layer thickness 

(mm) 

Young modulus 

Experimental value Predicted value 

1 210 40 0 0.1 3243.00 3242.96 0.00 
2 210 40 0 0.3 3209.67 3209.76 0.00 
3 210 40 45 0.1 2995.00 2969.53 0.85 
4 210 40 45 0.3 3338.67 3339.04 0.01 
5 210 90 0 0.1 2460.33 2460.43 0.00 
6 225 40 45 0.1 2441.00 2441.43 0.02 
7 225 90 45 0.3 3043.67 3307.67 8.67 
8 225 90 0 0.1 2571.67 2500.21 2.78 
9 225 90 0 0.3 2815.67 2815.69 0.00 
10 225 90 45 0.1 3589.33 3589.27 0.00 
11 225 90 45 0.3 3307.67 3307.67 0.00 
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TABLE V.  COMPARISON BETWEEN EXPERIMENTAL AND ANN PREDICTED RESULT OF TRAINING DATA FOR ELONGATION  

Exp. 

No. 

Controlled parameters Response 
Error 

(%) 
Temperature 

(°C) 
Speed 

Infill direction 

(°) 

Layer thickness 

(mm) 

Flexural strength 

Experimental value Predicted value 

1 210 40 0 0.1 75.64 75.64 0.00 
2 210 40 0 0.3 92.03 92.03 0.00 
3 210 40 45 0.1 86.49 88.68 2.53 
4 210 40 45 0.3 95.23 95.15 0.08 
5 210 90 0 0.1 65.39 65.37 0.03 
6 225 40 45 0.1 63.20 64.25 1.66 
7 225 90 45 0.3 74.10 75.30 1.62 
8 225 90 0 0.1 68.09 68.60 0.74 
9 225 90 0 0.3 75.09 75.08 0.01 

10 225 90 45 0.1 74.01 74.02 0.01 
11 225 90 45 0.3 93.30 93.30 0.00 

TABLE VI.  COMPARISON BETWEEN EXPERIMENTAL AND ANN PREDICTED RESULT OF TRAINING DATA FOR FLEXURAL 
STRENGTH  

Exp. 
No. 

Controlled parameters Response 
Error 
(%) 

Temperature 
(°C) 

Speed 
Infill direction 

(°) 
Layer thickness 

(mm) 

Elongation (mm) 

Experimental value Predicted value 

1 210 40 0 0.1 2.15 1.97 8.32 
2 210 40 0 0.3 2.71 2.69 0.73 
3 210 40 45 0.1 2.17 2.33 7.59 
4 210 40 45 0.3 2.29 2.27 0.78 
5 210 90 0 0.1 2.04 2.13 4.31 
6 225 40 45 0.1 1.91 2.02 5.76 
7 225 90 45 0.3 2.35 2.38 1.28 
8 225 90 0 0.1 2.07 2.09 0.89 
9 225 90 0 0.3 2.06 2.07 0.60 

10 225 90 45 0.1 2.03 2.03 0.15 
11 225 90 45 0.3 2.13 2.08 2.33 

 
The ANN model consistently exhibited lower error values, 

as indicated by the MAPE and RMSE metrics. The higher 
accuracy of the ANN model can be attributed to its ability to 
capture non-linear relationships and handle complex data 
patterns, which are often present in additive manufacturing 
processes. The ANN predictions align closely with the 
experimental data, demonstrating the reliability and 
effectiveness of the developed model. The R2 values, which 
measure the goodness of fit, were consistently high for the 
ANN predictions, indicating a strong correlation between the 
predicted values and the experimental data. Overall, the results 
highlight the potential of ANN modeling in accurately 
predicting the mechanical properties of 3D-printed parts. The 
ANN model offers significant advantages over traditional 
statistical tools, enabling improved process optimization, 
reduced trial-and-error experimentation, and enhanced control 
over product quality. 

B. ANN Optimization for Performance 

The ANN model was optimized using a feed-forward 
process with a 4-10-5 architecture, consisting of 4 input 
neurons, 10 hidden neurons, and 5 output neurons. Out of the 
experimental results, 11 data points were utilized for training 
the ANN model, while the remaining data points were reserved 
for validation. The selection of training and evaluation data was 
performed randomly to ensure unbiased representation. The 
training process of the ANN model was monitored, and based 
on the validation error as shown in Figure 4, training was 
stopped at epoch 14. It was observed that the best validation 
performance, achieved at epoch 8, was 612.534. This indicates 

that the model was able to accurately capture the underlying 
patterns in the training data.  

 

 
Fig. 4.  Performance plot of mechanical properties. 

The regression plots shown in Figure 5 demonstrate the 
performance of the trained ANN model. The regression values 
for training, validation, testing, and all data, which are 1, 
0.99993, 0.99895, and 0.99954, respectively, indicate the 
goodness of fit between the predicted and the actual values of 
the target variable (mechanical properties in this case). A 
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regression value, also known as the coefficient of 
determination (R2), measures the proportion of the variance in 
the target variable that is explained by the model. It ranges 
from 0 to 1, where 1 signifies a perfect fit, indicating that the 
model's predictions align perfectly with the actual data. In other 
words, an R2 value of 1 implies that the model can account for 
100% of the variance in the target variable. For the validation 
and testing datasets, the acquired R2 values of 0.99993 and 
0.99895, respectively, indicate that the model's predictions are 
highly accurate and are very close to the actual values in those 
datasets. These high R2 values suggest that the model's 
generalization capability is robust, as it performs exceptionally 
well on unseen data (validation and testing datasets). 

 

 

Fig. 5.  Regression plot of mechanical properties. 

Finally, the R2 value for all data was 0.99954, which 
includes training, validation, and testing datasets, and indicates 
that the model's performance is consistent across the entire 
dataset. This means that the model's predictions are reliable and 
consistent across various scenarios and data points, providing 
further confidence in its accuracy and effectiveness. Overall, 
the high R2 values demonstrate that the ANN model is capable 
of accurately predicting the mechanical properties based on the 
process parameters for 3D printing, and it offers a strong and 
reliable representation of the relationship between the input 
parameters and the target variable. 

C. Validation of the Performance Model  

The performance of the developed ANN model was 
validated by comparing its outputs with the experimental data. 
The regression coefficients, RMSE and MAPE were calculated 
with (1) and (2) to compute the accuracy of the model 
predictions. After the successful completion of the training 
cycle, the trained network was evaluated using additional 
experimental tests.  

RMSE =  �∑ ∑ 	O�� − d�� ���
�������    (1) 

MAPE = �
� ∑ i |�����|

��
× 100   (2) 

The MAPE values presented in Table VII are essential 
indicators of the accuracy and reliability of the developed ANN 
model in predicting the mechanical properties of 3D-printed 
parts. The MAPE values range between 1% to 3.55% for all the 
mechanical properties in the training dataset. A low MAPE 
indicates that the model's predictions are very close to the 
actual values in the training dataset. In this case, the MAPE 
values being below 3.55% suggest that, on average, the model's 
predictions deviate by only around 1% to 3.55% from the true 
values for the respective mechanical properties. A low MAPE 
for training data signifies that the ANN model has successfully 
learned the underlying patterns and relationships within the 
data it was trained on, implying that the model has captured the 
complexities of the relationships between the input parameters 
and the mechanical properties, enabling it to make accurate 
predictions when faced with similar data points during training. 

MAPE values less than 2.6% for all the mechanical 
properties in the validation data indicate the model's ability to 
generalize well to unseen data. The validation data represent 
new, independent data points that were not used during the 
training process. A low MAPE on validation data demonstrates 
that the model's predictions remain accurate and consistent 
when applied to data it has not encountered before. Having 
MAPE values below 2.6% in the validation data showcases the 
model's robustness and generalization capabilities, implying 
that the ANN model is not overfitting to the training data and 
can effectively handle variations in the input parameters and 
their impact on the mechanical properties. Such low MAPE 
values on validation data are crucial for ensuring that the 
model's predictions are reliable and applicable to real-world 
scenarios beyond the training dataset. 

TABLE VII.  MAPE VALUES FOR TRAINING AND 
VALIDATION DATA 

Response 
MAPE for 

training data (%) 

MAPE for 

validation data (%) 

All 2.98 2.61 
Yield stress 3.55 2.01 

Ultimate tensile strength 3.48 0.49 
Young modulus 1.08 1.66 

Elongation 3.21 8.03 
Flexural strength 3.56 0.86 

 

Table VIII presents the RMSE values for the designed 
responses, indicating strong model predictions for the 
remaining 5 experiments which were used for validation. The 
significance of RMSE lies in its ability to measure the average 
magnitude of the errors between the predicted values and the 
actual experimental data. Lower RMSE values indicate that the 
model's predictions are closer to the true values, reflecting a 
higher level of accuracy. In this case, the RMSE values for 
yield stress, ultimate tensile strength, Young modulus, 
elongation, and flexural strength fall within the range of 0.21 to 
0.62. These values suggest that the model's predictions have 
relatively small errors when compared to the actual 
experimental data for these mechanical properties. 

The performance validation further reinforces the reliability 
and effectiveness of the developed ANN model in predicting 
the mechanical properties of 3D-printed parts. The close 
agreement between the model outputs and the experimental 
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data, as indicated by the low RMSE values, demonstrates the 
accuracy of the ANN predictions. By validating the model with 
additional experimental tests, the robustness of the ANN model 
was confirmed. The ability of the model to accurately capture 
the complex relationships between the input parameters and the 
mechanical properties provides confidence in its predictive 
capabilities. Overall, the validation results affirm the successful 
development and optimization of the ANN model for 
predicting the performance of 3D-printed parts. The strong 
predictive performance of the model highlights its potential for 
guiding process optimization and improving the quality of 3D-
printed components.  

TABLE VIII.  RSME AMONG RESPONSES   

RMSE 

Yield 

stress 

Ultimate tensile 

strength 

Young 

modulus 
Elongation 

Flexural 

strength 

0.53 0.11 0.34 0.30 0.25 
0.21 0.62 0.38 0.39 0.41 
0.60 0.20 0.25 0.32 0.39 
0.33 0.27 0.31 0.41 0.33 
0.58 0.51 0.28 0.29 0.38 

 

IV. CONCLUSION 

In this study, an Artificial Neural Network (ANN) model 
was developed to quantitatively predict the mechanical 
properties of 3D-printed parts, including yield stress, Young's 
modulus, ultimate tensile strength, flexural strength, and 
elongation at fracture. The results demonstrate the potential of 
ANN models to enhance existing optimization techniques, 
revolutionizing the field of structural and material design. The 
optimized ANN model achieved excellent performance in 
predicting the mechanical properties of 3D-printed parts. The 
ANN predictions exhibited a remarkable accuracy, with an 
average error significantly below the expected error threshold 
of 10%, validating the reliability of the simulation forecasts. 
The successful development of the ANN model provides 
valuable insights into the performance optimization of 3D 
printing processes. The model's ability to accurately predict the 
mechanical properties based on input parameters opens up new 
possibilities for optimizing the design and production of 3D-
printed components. The ANN model serves as a powerful tool 
for engineers and researchers to achieve better control over 
material properties and improve the overall quality of 3D-
printed parts. 

In conclusion, the ANN model presented in this study 
demonstrated its effectiveness in predicting the mechanical 
properties of 3D-printed parts. By leveraging the capabilities of 
ANNs, significant advancements can be made in many fields 
[22-24], and in this case, the field of additive manufacturing, 
leading to enhanced product performance and increased 
efficiency. Future research can explore further applications of 
ANNs in optimizing other aspects of the 3D printing process, 
such as material selection, geometry optimization, and process 
parameter tuning, to unlock the full potential of this innovative 
technology. 
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