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Abstract: New formulations are produced for problems associated with multiple cracks in the upper
part of thermoelectric-bonded materials subjected to remote stress using hypersingular integral
equations (HSIEs). The modified complex stress potential function method with the continuity
conditions of the resultant electric force and displacement electric function, and temperature and
resultant heat flux being continuous across the bonded materials’ interface, is used to develop these
HSIEs. The unknown crack opening displacement function, electric current density, and energy
flux load are mapped into the square root singularity function using the curved length coordinate
method. The new HSIEs for multiple cracks in the upper part of thermoelectric-bonded materials can
be obtained by applying the superposition principle. The appropriate quadrature formulas are then
used to find stress intensity factors, with the traction along the crack as the right-hand term with the
help of the curved length coordinate method. The general solutions of HSIEs for crack problems in
thermoelectric-bonded materials are demonstrated with two substitutions and it is strictly confirmed
with rigorous proof that: (i) the general solutions of HSIEs reduce to infinite materials if G1 = G2,
K1 = K2, and E1 = E2, and the values of the electric parts are α1 = α2 = 0 and λ1 = λ2 = 0; (ii) the
general solutions of HSIEs reduce to half-plane materials if G2 = 0, and the values of α1 = α2 = 0,
λ1 = λ2 = 0 and κ2 = 0. These substitutions also partially validate the general solution derived from
this study.

Keywords: multiple cracks; thermoelectric; bonded materials; hypersingular integral equations;
modified complex stress potential

MSC: 74A45; 74G70; 74S70

1. Introduction

The stability and safety of materials represent critical issues in engineering structures,
where the presence of cracks may jeopardize the strength of materials. Many researchers
have been drawn to investigate the stability behavior of structures or materials subject
to remote stress by considering the types of materials such as infinite [1–3], finite [4,5],

Mathematics 2023, 11, 3248. https://doi.org/10.3390/math11143248 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11143248
https://doi.org/10.3390/math11143248
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0009-0004-8581-5352
https://orcid.org/0000-0003-0332-7853
https://orcid.org/0000-0002-9092-8288
https://orcid.org/0000-0001-9493-2631
https://doi.org/10.3390/math11143248
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11143248?type=check_update&version=1


Mathematics 2023, 11, 3248 2 of 20

half plane [6–8], and bonded materials [9–13]. These types of materials have several con-
ditions such as elasticity [14–16], thermoelasticity [17–19], magnetoelasticity [20–22], and
electricity [23–25]. One of the important structures in manufacturing are thermoelectric
materials. When exposed to a temperature difference, these materials generate an elec-
trical voltage. Cracks in thermoelectric materials can have a significant impact on their
performance and durability, so it is critical to carefully control the manufacturing process
and minimize crack formation to optimize their thermoelectric properties. Previous works
utilized a variety of methods to investigate crack problems in thermoelectric materials
subjected to remote stress.

Wang et al. [23] investigated the transient response of an arbitrarily located inner
finite-size crack in thermoelectric materials using singularity integral equations based on
the Fourier and Laplace transforms. Their investigation revealed that when the crack is
positioned at the vertical center, there is an amplification of the field concentrations at the
crack tip. Additionally, they observed that the electrical permeability of the crack exerts
only a minor influence on the efficiency of energy conversion. By utilizing the complex
function method and conformal mapping theory, Jiang et al. [24] successfully addressed a
two-dimensional problem. Their study focused on the behavior of infinite thermoelectric
materials, specifically a circular hole with two unequal cracks. The investigation considered
the impact of uniform electric current and thermal flux on the system. It was determined
that the variable of thermoelectric and stress intensity factors (SIFs) depends on the circular
hole radius and lengths of cracks. According to Zheng and Gao [25], when the interior of the
crack is filled with the same gas as at infinity, the applied electric field does not bear an effect
on crack growth. They used the complex variable method to obtain explicit solutions for the
complex potentials of a circular arc crack in an infinite electrostrictive solid under remote
electric fields. Zhang and Wang [26] employed a complex variable method to solve the
problem of a straight crack within a medium experiencing coupled thermoelectric effects
under thermal–electric loads. Their investigation revealed that the electric flux intensity
factor is influenced by the far-field electric flux loads, while the thermal flux intensity
factor is determined by the applied total energy flux loads. Through the utilization of the
complex variable method, Song et al. [27] investigated the SIFs pertaining to a crack in
thermoelectric materials in a two-dimensional context. Their research revealed that the heat
flow, electric current, and stress fields all exhibit the typical square-root singularity at the
crack tip. Furthermore, they discovered that SIFs exhibit a linear relationship with the heat
flux but a non-linear relationship with the electric current. The two-dimensional problem of
an elliptic hole or a crack in a thermoelectric material subjected to uniform electric current
density and energy flux at infinity was generalized by Zhang and Wang [28]. They used
the complex variable method and the conformal mapping technique, and their results
showed that the concentration factors of electric current density and stress at the hole rim
increase as the value of the elliptic hole’s major-to-minor axis ratio increase. Yu et al. [29]
presented a rigorous solution to the Hilbert arc problem for a circular-arc crack problem
in an infinite thermoelectric material subjected to electrical and thermal loading using
the complex potentials function. They discovered that SIFs at crack tips are affected by
the loading direction, electric conductivity, thermal conductivity, crack central angle, and
thermoelastic isotropy. By employing the complex variable method and conformal mapping
technique, Zhang et al. [30] successfully solved two-dimensional problems concerning
a thermoelectric material containing either an elliptic hole or a rigid inclusion. These
systems were subjected to uniform electric current density and energy flux at infinity. The
researchers found that when an electric field is applied to the surface of a hole or rigid
inclusion, the energy flux does not vanish due to the combined influence of the Joule heat
and the Seebeck effect. Yu et al. [31] utilized complex potential functions and Cauchy
integrals to solve the problem of a circular inhomogeneity embedded in thermoelectric
materials subjected to uniform electric current density and energy flux. It was revealed
that electrically and thermally induced stress has a linear relationship with the energy flux
applied at infinity but a nonlinear relationship with the remote electric current density.
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Liu et al. [32] used the electric field saturation model to investigate the energy flux intensity
factor, thermal flux intensity factor, and SIFs for a crack that is vertical to the applied
electric flux and energy flux loads in thermoelectric materials. They discovered that all of
these intensity factors at the electrically yielded crack tips are independent of the strength
and size of electrical saturation. Song et al. [33] analyzed the thermal SIFs at the crack
tips of an interface crack subjected to a remote electric current in thermoelectric bonded
materials using complex variable functions. They obtain that the electric current may either
intensify fact neutralize the thermal SIFs depending on the bonded material parameters.
Sladek et al. [34] used the finite element method with a collocation approach for kinematic
constraints between strains and displacements to analyze the nano-sized crack problems in
thermoelectric materials. They obtain the influence of the size effect on the variation of crack
opening displacements to SIFs at crack tips. Cui et al. [35] proposed an analytical model to
assess fatigue cracking and its impact on the power of a hybrid photovoltaic thermoelectric
device. They discovered that combining a thermoelectric module and a photovoltaic
cell with a low temperature coefficient can increase in total electric power. According to
Jiang and Zhou [36], SIFs are affected by crack length, crack spacing, and the bi-elastic
constant ratio for dual collinear interface cracks on the electric potential and temperature
of thermoelectric-bonded materials subjected to electric and thermal loads. Moreover, they
solved SIFs using Laplace equations and the driving forces of electric current density and
energy flux. HSIEs are widely presented in different fields of physics and engineering such
as crack problems in fracture mechanics because this method offers several advantages
over other methods commonly used in crack analysis. These advantages include increased
efficiency, flexibility in handling different crack types, accurate representation of crack
tip behavior, and COD can be obtained from the solution of the equation directly [37–40].
Given these advantages, this method also has some limitations. It can be more complex
to formulate and solve compared to simpler methods like the boundary element method.
Additionally, they may require careful treatment of crack tip singularities and integration
techniques to ensure accurate solutions. However, overall, HSIEs are a valuable tool in
crack analysis and have contributed significantly to the understanding and prediction of
crack behavior in various engineering applications.

To the best of the authors’ knowledge, there is little information on the formulation of
the multiple cracks problem in thermoelectric-bonded materials subjected to remote stress
using HSIEs. The problem is formulated into HSIEs using the modified complex stress
potential function method, with the help of continuity conditions of the resultant electric
force and displacement electric function, and temperature and resultant heat flux are con-
tinuous across the bonded materials’ interface. In addition, the findings obtained from this
study can be valuable for engineers when investigating the stability behavior of bonded
structures or materials exposed to electrical forces. By utilizing the obtained values of SIFs,
engineers can gain insights into the stability of such structures or materials under these
conditions. It provides engineers with an enhanced ability to predict crack behavior, en-
hance structural integrity, and design safer and more reliable engineering components and
structures especially for thermoelectric-bonded materials. Furthermore, the formulation
and investigation of crack problems have yielded substantial insights and comprehension
in the field of fracture mechanics. This knowledge has played a pivotal role in predicting
failures, optimizing designs, developing new materials, monitoring structural health, and
conducting non-destructive evaluations. Consequently, these advancements have had a
profound impact on various industries, enhancing safety measures and facilitating the
creation of structures and materials that are more resilient and efficient.

2. Preliminary Knowledge
2.1. Thermoelectric Material

Bergman and Levy [41] have outlined that, in the absence of electric charges and
heat sources, the governing equations for a thermoelectric material can be mathematically
represented as:
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∇ • J = 0 (1)

∇ • q + J • ∇V = 0 (2)

J = −λ∇V − λε∇T (3)

q = −λεT∇V − (κ + λε2T)∇T (4)

where V is electric potential, T is absolute temperature, λ is electric conductivity, κ is
thermal conductivity, ε is Seebeck coefficient, J is electric current density vector and q is
heat flux vector. Since energy is transported by both electrons and heat, then the energy
flux vector U can be derived from the electric current density and heat flux as

U = q + JV. (5)

According to Zhang and Wang [26], an analytic function F is defined as F = V + εT,
then we have

J = −λ∇F (6)

U = −λF∇F− κ∇T. (7)

Combining Equations (1), (2), (6) and (7), the constitutive equations become

∇2F = 0 (8)

κ∇2T + λ(∇F)2 = 0. (9)

For the two-dimensional thermoelectric problem considered here, the solutions of F
and T can be expressed as,

F = Re[ f (z)] (10)

T = Re[g(z)]− λ

4κ
f (z) f (z) (11)

where z = x + iy, f (z) and g(z) are unknown analytic functions for electric and thermal
fields, respectively, and "Re" stands for the real part of a complex number.

2.2. Complex Stress Potential Functions

According to Song et al. [33], the stresses (σx, σy, σxy), resultant electric force (X, Y)
and displacements electric functions (u, v) induced by the thermoelectric function can be
obtained as follows

σx + σy = 2[φ′(z) + ψ′(z)] +
Eαλ

κ
f (z) f (z) (12)

σy − σx + 2iσxy = 2[z̄φ′′(z) + ψ′(z)] +
Eαλ

κ
f ′(z)F(z) (13)

−Y + iX = φ(z) + zφ′(z) + ψ(z) +
Eαλ

4Gκ
F(z) f (z) (14)

u + iv =
1

2G
[Kφ(z)− zφ′(z)− ψ(z)] + α

∫
Ω(z)dz− Eαλ

4Gκ
F(z) f (z) (15)

where φ(z) and ψ(z) are complex stress potential functions, G is shear modulus,
K = (3 − µ)/(1 + µ), µ is Poisson’s ratio, E is Young’s modulus, α is the coefficient
of thermal expansion, Ω(z) = −(λ/κ) f (z)2 + (2/κ)g(z), and F(z) =

∫
f (z)dz.

The derivative in a specified direction of resultant force Function (14) with respect
to z yields the normal (N) and tangential (T) components of traction along the segment
z, z + dz, where dz̄/dz = −e−2iθ and θ is the tangential angle to the crack as follows

d
dz
{
−Y + iX

}
= φ′(z) + φ′(z) +

dz̄
dz

(
zφ′′(z) + ψ′(z)

)
+

Eαλ

4Gκ

(
f (z) f (z) + F(z) f ′(z)

dz̄
dz

)
= N + iT. (16)
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Note that the traction N + iT depends on the position of point z and the direction of
the segment dz̄/dz.

According to Nik Long and Eshkuvatov [1] and Song et al. [33], the complex stress
potential functions, and unknown analytic functions for electric and thermal fields in the
case of a crack in an infinite material can be expressed by

φ(z) =
1

2π

∫
L

g(t)dt
t− z

ψ(z) =
1

2π

∫
L

g(t)dt
t− z

+
1

2π

∫
L

g(t)
(

dt̄
t− z

− t̄dt
(t− z)2

)
f (z) =

iJ
2λ

√
z2 − a2

F(z) =
iJ
4λ

(
z
√

z2 − a2 − a2 ln(z +
√

z2 − a2)
)

g(z) =
iU
2

√
z2 − a2

Ω(z) =
J2

4λκ
(z2 − a2) +

iU
κ

√
z2 − a2

(17)

where 2a is the length of the crack and g(t) is the crack opening displacement (COD)
function defined as

g(t) =
2G

i(K + 1)

[
(u(t) + iv(t))+ − (u(t) + iv(t))−

]
, (t ∈ L) (18)

(u(t) + iv(t))+ and (u(t) + iv(t))− denote the displacements at a point t of the upper and
lower crack faces, respectively. Note that the COD function has the following properties

g(t) = O
[√

t− tAj

]
at the crack tip Aj,

where j = 1, 2.

3. Thermoelectric-Bonded Materials
3.1. Modified Complex Stress Potential Function

Consider two cracks that lie in both the upper and lower parts of thermoelectric-
bonded materials subjected to remote stress, as shown in Figure 1. The modified complex
stress potential functions were discussed by Chen and Hasebe [42]. The crack L1 lies in the
upper part of thermoelectric-bonded materials and can be expressed by:

φ1(z) = φ1p(z) + φ1c(z), ψ1(z) = ψ1p(z) + ψ1c(z) (19)

where φ1p(z) and ψ1p(z) are the principal part of the complex stress potential functions
and the elementary solution for isotropic medium (infinite materials), whereas φ1c(z) and
ψ1c(z) are the complement part of the complex stress potential functions. The complex
stress potential functions for the crack L2 lie in the lower part of thermoelectric-bonded
materials represented by φ2(z) and ψ2(z). The continuity condition of the resultant electric
force (14) is defined as follows.

[−Y + iX]+ = [−Y + iX]−,[
φ1(t) + tφ′1(t) + ψ1(t) +

E1α1λ1

4G1κ1
F1(t) f1(t)

]+
=

[
φ2(t) + tφ′2(t) + ψ2(t) +

E2α2λ2

4G2κ2
F2(t) f2(t)

]−
Applying the modified complex stress potential Functions (19) then yields:
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[
φ1p(t) + φ1c(t) + tφ′1p(t) + ψ1p(t) + tφ′1c(t) + ψ1c(t) +

E1α1λ1

4G1κ1

(
F1p(t) f1p(t) + F1c(t) f1c(t)

)]+
=

[
φ2(t) + tφ′2(t) + ψ2(t) +

E2α2λ2

4G2κ2
F2(t) f2(t)

]−
. (20)

Whereas the continuity condition of displacement electric Function (15) is defined
as follows:

[u + iv]+ = [u + iv]−,[
1

2G1
[K1φ1(t)− tφ′1(t)− ψ1(t)] + α1

∫
Ω1(t)dt− E1α1λ1

4G1κ1
F1(t) f1(t)

]+
=

[
1

2G2
[K2φ2(t)− tφ′2(t)− ψ2(t)] + α2

∫
Ω2(t)dt− E2α2λ2

4G2κ2
F2(t) f2(t)

]−
Applying the modified complex stress potential Functions (19) then yields:

G2

[
K1φ1p(t) + K1φ1c(t)−

(
tφ′1p(t) + ψ1p(t)

)
−
(
tφ′1c(t) + ψ1c(t)

)
+ 2G1α1

( ∫
Ω1p(t)dt +

∫
Ω1c(t)dt

)
− E1α1λ1

2κ1

(
F1p(t) f1p(t) + F1c(t) f1c(t)

)]+
= G1

[
K2φ2(t)− tφ′2(t)− ψ2(t) + 2G2α2

∫
Ω2(t)dt− E2α2λ2

2κ2
F2(t) f2(t)

]−
. (21)

Note that t ∈ Lj, (j = 1, 2) along the crack interface, and the + and − signs represent
the upper and lower parts of thermoelectric-bonded materials, respectively.

1x
p  

1x
p  

2x p  
2x p  

2 2 2, ,G  

1 1 1, ,G  

1y
p  

2y p  

1 1x y p  

2 2x y p  

A2

A1

Lb

B2

B1

L2

L1

t1

t10

t2

t20

2a1

2a2

Figure 1. Two cracks L1 and L2 in thermoelectric-bonded materials subjected to remote stress.

For problems involving steady-state electric conduction in two dimensions, the temper-
ature functions associated with bonded materials can be derived by utilizing two complex
potentials, namely f1(z) and f2(z). These potentials satisfy the Laplace equation in the
respective upper and lower parts. To establish the boundary conditions, the complex
potentials are employed to express the resultant heat flux Qj and temperature Tj for each
medium. The formulations for these quantities are provided as follows
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f j(z) = Tj(x, y) + iQj(x, y)

Qj =
∫
(qxjdy− qyjdx) = −λjIm[ f j(z)] (22)

Tj = Re[ f j(z)] (23)

In the given context, the quantities qxj and qyj represent the heat flux components
in the x and y directions, respectively. Additionally, λj denotes the electric conductivity,
where j = 1 for the upper part and j = 2 for the lower part.

If there exists a crack L in the upper part of the thermoelectric-bonded materials, it is
convenient to express the electric complex potential f1(z) as

f1(z) = f1p(z) + f1c(z) (24)

where f1p and f1c are the principal and complementary parts of the electric complex
function, respectively. Since the temperature and resultant heat flux are continuous across
the crack bonded materials interface, it implies:

[ f1(t) + f1(t)]+ =[ f2(t) + f2(t)]−, t ∈ L (25)

λ1[ f1(t)− f1(t)]+ =λ2[ f2(t)− f2(t)]−, t ∈ L (26)

where a bar is used to indicate a conjugate complex quantity, while superscripts + and −
are used for the boundary values of the temperature potentials for the upper and lower
parts, respectively. Substituting Equation (24) into Equations (25) and (26), then it is satisfied
by the following complex potentials:

[ f1p(t) + f1c(t) + f1p(t) + f1c(t)]+ =[ f2(t) + f2(t)]− (27)

λ1[ f1p(t) + f1c(t)− f1p(t)− f1c(t)]+ =λ2[ f2(t)− f2(t)]−. (28)

Applying analytical continuation to Equations (27) and (28), the following expressions
are obtainable:

f1c(z) =
λ1 − λ2

λ1 + λ2
f1p(z), z ∈ S1 + Lb (29)

f2(z) =
2λ1

λ1 + λ2
f1p(z), z ∈ S2 + Lb. (30)

Once the principle part of the complex potentials, f1p(z), is determined, the electric
functions associated with the thermoelectric-bonded materials’ problem can be obtained.
Similar to the thermal complex potentials function, it yields:

g1c(z) =
κ1 − κ2

κ1 + κ2
g1p(z), z ∈ S1 + Lb (31)

g2(z) =
2κ1

κ1 + κ2
g1p(z), z ∈ S2 + Lb. (32)

Note that Lb is the boundary of thermoelectric-bonded materials, S1 and S2 are the
upper and lower parts of thermoelectric bonded materials, respectively. Applying analytical
continuation to Equations (20) and (21), and substituted with Equations (29)–(32) the
following expressions are obtainable:
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φ1c(z) = Γ1
(
zφ′1p(z) + ψ1p(z)

)
+ Γ2F1p(z) f1p(z) + Γ3

∫
f1p

2
(z)dz− Γ4

∫
g1p(z)dz (33)

ψ1c(z) = Γ5φ1p(z)− zφ′1c(z) + Γ6F1p(z) f1p(z) + Γ7

∫
Ω1p(z)dz + Γ8

∫
f1p

2
(z)dz− Γ9

∫
g1p(z)dz (34)

φ2(z) = Γ10φ1p(z) + Γ11F1p(z) f1p(z) + Γ12F1p(z) f1p(z) + Γ7

∫
Ω1p(z)dz + Γ8

∫
f 2
1p(z)dz

− Γ9

∫
g1p(z)dz (35)

ψ2(z) = Γ13
(
zφ′1p(z) + ψ1p(z)

)
− zφ′2(z) + Γ14F1p(z) f1p(z) + Γ15

∫
f 2
1p(z)dz− Γ16

∫
g1p(z)dz (36)

where φ1p(z) = φ1p(z̄), and Γj are bi-elastic constants ratio defined as

Γ1 =
G2 − G1

G1 + G2K1
, Γ2 =

(2G2 − 1)E1α1λ1

4κ1(G1 + G2K1)

(
λ1 − λ2

λ1 + λ2

)2

, Γ3 =
2G1G2α1λ1

κ1
(
G1 + G2κ1

)(λ1 − λ2

λ1 + λ2

)2

,

Γ4 =
4G1G2α1

κ1
(
G1 + G2κ1

)(κ1 − κ2

κ1 + κ2

)
, Γ5 =

G2K1 − G1K2

G1K2 + G2
, Γ6 =

(
E2α2λ2(2G1G2 + G1K2)

4G2κ2(G1K2 + G2)

)(
2λ1

λ1 + λ2

)2

,

Γ7 =
2G1G2α1(

G1K2 + G2
) , Γ8 =

2G1G2α2λ2

κ2
(
G1K2 + G2

)( 2λ1

λ1 + λ2

)2

, Γ9 =
8G1G2α2κ1

κ2(κ1 + κ2)
(
G1K2 + G2

) ,

Γ10 =

(
K1 + 1

)
G2

G1K2 + G2
, Γ11 =

E2α2λ2(2G1 − 1)
4κ2(G1K2 + G2)

(
2λ1

λ1 + λ2

)2

, Γ12 =
G2E1α1λ1(1− 2G1)

4G1κ1(G1K2 + G2)
,

Γ13 =
G2
(
1 + K1

)
G1 + G2K1

, Γ14 =
(K1 + 2G1)G2E1α1λ1

4G1κ1(G1 + G2K1)

(
λ1 − λ2

λ1 + λ2

)2

, Γ15 =
2G1G2α1λ1

κ1
(
G1 + G2K1

)(λ1 − λ2

λ1 + λ2

)2

,

Γ16 =
4G1G2α1

κ1
(
G1 + G2K1

)(κ1 − κ2

κ1 + κ2

)
3.2. HSIEs for a Crack in the Upper Part of Thermoelectric-Bonded Materials

Consider a crack L with length 2a that lies in the upper part of thermoelectric-bonded
materials subjected to remote stress, as shown in Figure 2.

1x
p  =

1x
p  =

2x p  =
2x p  =

2 2 2, ,G  

1 1 1, ,G  

1y
p  =
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2 2x y p  =
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Lb

L
2a

t

t0

h

α

Figure 2. A crack L in the upper part of thermoelectric-bonded materials subjected to remote stress.
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In order to formulate the HSIEs for a crack in the upper part of thermoelectric-bonded
materials, we need to define two traction components which are [N(t0) + iT(t0)]1p and
[N(t0) + iT(t0)]1c for the principle and complementary parts, respectively. These traction
components are obtained when the observation point is placed at the point, t0 (t0 ∈ L),
caused by COD function g(t) at t ∈ L, which gives:

[N(t0) + iT(t0)]1 = [N(t0) + iT(t0)]1p + [N(t0) + iT(t0)]1c. (37)

To obtain the principal part [N(t0) + iT(t0)]1p, substitute Equation (17) into Equa-
tion (16), then let point z approach t0 on the crack and change dz̄/dz into dt̄0/dt0. Mean-
while, to obtain the complementary part [N(t0) + iT(t0)]1c, substitute Equations (33) and
(34) into Equation (16), and then apply Equation (17). The sum between these two parts
then represents the HSIEs as follows:

[N(t0) + iT(t0)]1 =
1
π

=
∫

L

g(t)dt
(t− t0)2 +

1
2π

∫
L

M1(t, t0)g(t)dt +
1

2π

∫
L

M2(t, t0)g(t)dt + M3(a, t0) (38)

where

M1(t, t0) = −
1

(t− t0)2 +
1

(t̄− t̄0)2
dt̄
dt

dt̄0

dt0
+ Γ1

[
1

(t− t̄0)2 +
2(t̄0 − t̄)
(t− t̄0)3 +

(
1

(t̄− t0)2 +
1

(t− t̄0)2

)
dt̄
dt

+

(
2(2t0 − 3t̄0 + t̄)

(t− t̄0)3 − 6(t̄0 − t̄)(t̄0 − t0)

(t− t̄0)4 −
(

1
(t− t̄0)2 +

2(t̄0 − t0)

(t− t̄0)3

)
dt̄
dt
− 1

(t− t̄0)2

)
dt̄0

dt0

]
+ Γ5

1
(t− t̄0)2

dt̄0

dt0

M2(t, t0) =
1

(t̄− t̄0)2
dt̄
dt

+

(
1

(t̄− t̄0)2 +
2(t0 − t)
(t̄− t̄0)3

dt̄
dt

)
dt̄0

dt0
+ Γ1

[
1

(t̄− t0)2 +
1

(t− t̄0)2

+

(
1

(t̄− t0)2 +
2(t0 − t)
(t̄− t0)3

)
dt̄
dt

+

(
2(t0 − t̄0)

(t− t̄0)3 −
1

(t− t̄0)2

)
dt̄0

dt0

]

M3(a, t0) = Γ2
J2

4λ2
1

(
t2
0 − a2 +

t0

2
√

t2
0 − a2

(
t0

√
t2
0 − a2 − a2 ln(t0 +

√
t2
0 − a2)

))

+

(
Γ2 + (Γ6 − Γ2)

dt̄0

dt0

)
J2

4λ2
1

(
t̄2
0 − a2 +

t̄0

2
√

t̄2
0 − a2

(
t̄0

√
t̄2
0 − a2 − a2 ln(t̄0 +

√
t̄2
0 − a2)

))

+ Γ2
J2

4λ2
1
(t0 − t̄0)

(
3t̄0 +

(
t̄0

√
t̄2
0 − a2 − a2 ln(t̄0 +

√
t̄2
0 − a2)

) (t̄2
0 − t̄0 − a2)

2
(√

t̄2
0 − a2

)3

)
dt̄0

dt0

+ Γ3
J2

4λ2
1

(
2a2 − t2

0 − t̄2
0 + (3t̄2

0 − 2t0 t̄0 − a2)
dt̄0

dt0

)
+ Γ4

iU
2

(√
t2
0 − a2 −

√
t̄2
0 − a2 +

2t̄2
0 − t̄0t0 − a2√

t̄2
0 − a2

dt̄0

dt0

)

+

[(
Γ7

κ1
− Γ8

λ1

)
J2

4λ1
(t̄2

0 − a2) +

(
Γ7

κ1
− Γ9

2

)
iU
√

t̄2
0 − a2

]
dt̄0

dt0

+ (Γ17 + Γ18)
J2

4λ2
1

[√
t2
0 − a2

√
t̄2
0 − a2 +

(
t0

√
t2
0 − a2 − a2 ln(t0 +

√
t2
0 − a2)

)
t̄0

2
√

t̄2
0 − a2

dt̄0

dt0

]

and

Γ17 =
E1α1λ1

4G1κ1
, Γ18 =

E1α1λ1

4G1κ1

(
κ1 − κ2

κ1 + κ2

)2

.

Note that the first integral with the equal sign in Equation (38) represents the hyper-
singular integral and must be defined as a finite part integral. If G1 = G2, K1 = K2, and
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E1 = E2, and the values of α1 = α2 = 0 and λ1 = λ2 = 0, then Equation (38) reduces to
HSIEs for a crack in an infinite material as follows [1,9]:

[N(t0) + iT(t0)]1 =
1
π

=
∫

L

g(t)dt
(t− t0)2 +

1
2π

∫
L

1
(t− t0)2

(
(t− t0)

2

(t̄− t̄0)2
dt̄
dt

dt̄0

dt0
− 1
)

g(t)dt

+
1

2π

∫
L

t− t0

(t̄− t̄0)3

(
t̄− t̄0

t− t0

(
dt̄
dt

+
dt̄0

dt0

)
− 2

dt̄
dt

dt̄0

dt0

)
g(t)dt (39)

If G2 = 0, and the values of α1 = α2 = 0, λ1 = λ2 = 0 and κ2 = 0, then Equation (38)
reduces to HSIEs for a crack in half-plane materials as follows [6,43]

[N(t0) + iT(t0)]1 =
1
π

=
∫

L

g(t)dt
(t− t0)2 +

1
2π

∫
L

[
− 1

(t− t0)2 −
1

(t− t̄0)2 −
2(t̄0 − t̄)
(t− t̄0)3 +

1
(t̄− t̄0)2

dt̄
dt

dt̄0

dt0

−
(

1
(t− t̄0)2 +

1
(t̄− t0)2

)
dt̄
dt

+

(
2(3t̄0 − 2t0 − t̄)

(t− t̄0)3 +
6(t̄0 − t̄)(t̄0 − t0)

(t− t̄0)4

)
dt̄0

dt0

+

(
1

(t− t̄0)2 +
2(t̄0 − t0)

(t− t̄0)3

)
dt̄
dt

dt̄0

dt0

]
g(t)dt +

1
2π

∫
L

[
− 1

(t̄− t0)2 −
1

(t− t̄0)2

+

(
1

(t̄− t̄0)2 −
1

(t̄− t0)2 −
2(t0 − t)
(t̄− t0)3

)
dt̄
dt

+

(
1

(t̄− t̄0)2 +
1

(t− t̄0)2 +
2(t̄0 − t0)

(t− t̄0)3

+
2(t0 − t)
(t̄− t̄0)3

dt̄
dt

)
dt̄0

dt0

]
g(t)dt (40)

Therefore, if G1 = G2, K1 = K2, and E1 = E2, and the values of α1 = α2, λ1 = λ2
and κ1 = κ2, then Equation (38) reduces to HSIEs for a crack in an infinite thermoelectric
material as follows:

[N(t0) + iT(t0)]1 =
1
π

=
∫

L

g(t)dt
(t− t0)2 +

1
2π

∫
L

D1(t, t0)g(t)dt +
1

2π

∫
L

D2(t, t0)g(t)dt + D3(a, t0) (41)

where

D1(t, t0) = −
1

(t− t0)2 +
1

(t̄− t̄0)2
dt̄
dt

dt̄0

dt0

D2(t, t0) =
1

(t̄− t̄0)2
dt̄
dt

+

(
1

(t̄− t̄0)2 +
2(t0 − t)
(t̄− t̄0)3

dt̄
dt

)
dt̄0

dt0

D3(a, t0) =
J2E1α1λ1(2G1 + K1)

16G1κ1λ2
1(K1 + 1)

(
t̄2
0 − a2 +

t̄0

2
√

t̄2
0 − a2

(
t̄0

√
t̄2
0 − a2 − a2 ln(t̄0 +

√
t̄2
0 − a2)

))dt̄0

dt0

+

[(
2G1α1

κ1(K1 + G1)
− 2G1α1λ1

κ1λ1
(
K1 + 1

)) J2

4λ1
(t̄2

0 − a2) +

(
2G1α1

κ1(K1 + G1)
− 2G1α1

κ1
(
K1 + 1

))iU
√

t̄2
0 − a2

]
dt̄0

dt0

+
J2E1α1λ1

16G1κ1λ2
1

[√
t2
0 − a2

√
t̄2
0 − a2 +

(
t̄0

2
√

t̄2
0 − a2

(
t0

√
t2
0 − a2 − a2 ln(t0 +

√
t2
0 − a2)

))dt̄0

dt0

]

Whereas, if G2 = 0 and the values of α2 = 0, λ2 = 0, and κ2 = 0, then Equation (38)
reduces to HSIEs for a crack in half-plane thermoelectric materials as follows:

[N(t0) + iT(t0)]1 =
1
π

=
∫

L

g(t)dt
(t− t0)2 +

1
2π

∫
L

W1(t, t0)g(t)dt +
1

2π

∫
L

W2(t, t0)g(t)dt + W3(a, t0) (42)

where
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W1(t, t0) = −
1

(t− t0)2 −
1

(t− t̄0)2 −
2(t̄0 − t̄)
(t− t̄0)3 +

1
(t̄− t̄0)2

dt̄
dt

dt̄0

dt0
−
(

1
(t− t̄0)2 +

1
(t̄− t0)2

)
dt̄
dt

+

(
2(3t̄0 − 2t0 − t̄)

(t− t̄0)3 +
6(t̄0 − t̄)(t̄0 − t0)

(t− t̄0)4

)
dt̄0

dt0
+

(
1

(t− t̄0)2 +
2(t̄0 − t0)

(t− t̄0)3

)
dt̄
dt

dt̄0

dt0

W2(t, t0) = −
1

(t̄− t0)2 −
1

(t− t̄0)2
1

(t̄− t̄0)2
dt̄
dt

+

(
1

(t̄− t̄0)2 +
2(t0 − t)
(t̄− t̄0)3

dt̄
dt

)
dt̄0

dt0

−
(

1
(t̄− t0)2 +

2(t0 − t)
(t̄− t0)3

)
dt̄
dt

+

(
1

(t− t̄0)2 +
2(t̄0 − t0)

(t− t̄0)3

)
dt̄0

dt0

W3(a, t0) = −
J2E1α1λ1

16κ1λ2
1G1

[
t2
0 − a2 +

t0

2
√

t2
0 − a2

(
t0

√
t2
0 − a2 − a2 ln(t0 +

√
t2
0 − a2)

)
−
(

t̄2
0 − a2 +

t̄0

2
√

t̄2
0 − a2

(
t̄0

√
t̄2
0 − a2 − a2 ln(t̄0 +

√
t̄2
0 − a2)

))(dt̄0

dt0
− 1
)

+ (t0 − t̄0)

(
3t̄0 +

(
t̄0

√
t̄2
0 − a2 − a2 ln(t̄0 +

√
t̄2
0 − a2)

) (t̄2
0 − t̄0 − a2)

2
(√

t̄2
0 − a2

)3

)
dt̄0

dt0

− 1
2

√
t2
0 − a2

√
t̄2
0 − a2 −

(
t̄0

4
√

t̄2
0 − a2

(
t0

√
t2
0 − a2 − a2 ln(t0 +

√
t2
0 − a2)

))dt̄0

dt0

]

3.3. HSIEs for Multiple Cracks in the Upper Part of Thermoelectric-Bonded Materials

Consider two cracks, L1 and L2, in the upper part of thermoelectric-bonded materials
subjected to remote stress as shown in Figure 3.

1x
p  

1x
p  

2x p  
2x p  

2 2 2, ,G  

1 1 1, ,G  

1y
p  

2y p  

1 1x y p  

2 2x y p  

A2

A1

Lb

B2

B1

L2
L1

t1

t10

t2

t20

2a1 2a2

Figure 3. Two cracks L1 and L2 in the upper part of thermoelectric-bonded materials subjected to
remote stress.

In order to formulate the HSIEs for two cracks in the upper part of thermoelectric-
bonded materials, we need to define two groups of N + iT which consist of four traction
components [N(t10) + iT(t10)]11, [N(t10) + iT(t10)]12, [N(t20) + iT(t20)]22 and [N(t20)+
iT(t20)]21 by using Equation (16). By then using the superposition principle, we can obtain
the HSIEs for two cracks in the upper part of thermoelectric-bonded materials as follows.
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[N(t10) + iT(t10)]1 = [N(t10) + iT(t10)]11 + [N(t10) + iT(t10)]12 (43)

[N(t20) + iT(t20)]2 = [N(t20) + iT(t20)]22 + [N(t20) + iT(t20)]21. (44)

First, we need to find the equation of the first crack L1 that lies in the upper part of
thermoelectric-bonded materials as shown in Figure 4.

1x
p  

1x
p  

2x p  
2x p  

2 2 2, ,G  

1 1 1, ,G  

1y
p  

2y p  

1 1x y p  

2 2x y p  

A2

A1

Lb

L1

t1

t10

2a1

Figure 4. First crack L1 in the upper part of thermoelectric-bonded materials subjected to
remote stress.

By applying Equation (38), the first crack L1 is obtained when the observation point is
placed at the point z = t10 and dz = dt10, caused by COD function (g1(t1)) along the crack
L1 gives:

[N(t10) + iT(t10)]11 =
1
π

=
∫

L1

g1(t1)dt1

(t1 − t10)2 +
1

2π

∫
L1

M1(t1, t10)g1(t1)dt1 +
1

2π

∫
L1

M2(t1, t10)g1(t1)dt1

+ M3(a1, t10). (45)

Second, we need to find the equation of the second crack L2 that lies in the upper part
of thermoelectric-bonded materials, as shown in Figure 5.

Then, the second crack L2 is obtained when the observation point is placed at the point
z = t10 and dz = dt10, caused by COD function (g2(t2)) along the crack L2 gives:

[N(t20) + iT(t20)]22 =
1
π

=
∫

L2

g2(t2)dt2

(t2 − t20)2 +
1

2π

∫
L2

M1(t2, t20)g2(t2)dt2 +
1

2π

∫
L2

M2(t2, t20)g2(t2)dt2

+ M3(a2, t20). (46)

By considering both cracks that lie in the upper part of thermoelectric-bonded ma-
terials as shown in Figure 4, the equation of the crack L1 that is influenced by the COD
function (g2(t2)) along the crack L2 gives:

[N(t10) + iT(t10)]12 =
1
π

∫
L2

g2(t2)dt2

(t2 − t10)2 +
1

2π

∫
L2

E1(t2, t10)g2(t2)dt2 +
1

2π

∫
L2

E2(t2, t10)g2(t2)dt2

+ M3(a2, t10). (47)
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Figure 5. Second crack L2 in the upper part of thermoelectric-bonded materials subjected to
remote stress.

By using superposition principle of the COD function g1(t1) along the crack L1 (45)
and COD function g2(t2) along the crack L2 (47), the HSIEs for crack L1 are obtained
as follows.

[N(t10) + iT(t10)]1 =
1
π

=
∫

L1

g1(t1)dt1

(t1 − t10)2 +
1

2π

∫
L1

M1(t1, t10)g1(t1)dt1 +
1

2π

∫
L1

M2(t1, t10)g1(t1)dt1

+ M3(a1, t10) +
1
π

∫
L2

g2(t2)dt2

(t2 − t10)2 +
1

2π

∫
L2

M1(t2, t10)g2(t2)dt2

+
1

2π

∫
L2

M2(t2, t10)g2(t2)dt2 + M3(a2, t10). (48)

Then, similar to the HSIEs for the crack L2 is obtained as follows.

[N(t20) + iT(t20)]2 =
1
π

=
∫

L2

g2(t2)dt2

(t2 − t20)2 +
1

2π

∫
L2

M1(t2, t20)g2(t2)dt2 +
1

2π

∫
L2

M2(t2, t20)g2(t2)dt2

+ M3(a2, t20) +
1
π

∫
L1

g1(t1)dt1

(t1 − t20)2 +
1

2π

∫
L1

M1(t1, t20)g1(t1)dt1

+
1

2π

∫
L1

M2(t1, t20)g1(t1)dt1 + M3(a1, t20). (49)

Note that the first integral with the equal sign in Equations (48) and (49) represents
the hypersingular integral and must be defined as a finite part integral.

4. Solutions for Crack Problems in Thermoelectric-Bonded Materials
4.1. Quadrature Formulas

In order to solve the HSIEs, the curved length coordinate method is used and defined
as follows.

H(s) =
g(t)√
a2 − s2

. (50)

Therefore, the HSIEs (38) for a crack in the upper part of thermoelectric-bonded
materials give:
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[N(t0) + iT(t0)]1 =
1
π

=
∫

L

√
a2 − s2H(s)dt
(t− t0)2 +

1
2π

∫
L

M1(t, t0)
√

a2 − s2H(s)dt

+
1

2π

∫
L

M2(t, t0)
√

a2 − s2H(s)dt + M3(a, t0) (51)

By applying the following quadrature formulas, [44–47]

1
π

=
∫ a

−a

√
a2 − s2H(s)ds
(s− s0)2 '

M+1

∑
j=1

Wj(s0)H(sj), (52)

1
π

∫ a

−a

√
a2 − s2H(s)ds ' 1

M + 2

M+1

∑
j=1

(a2 − s2
0)H(sj), (53)

Equation (51) then yields:

[N(t0) + iT(t0)]1 =
M+1

∑
j=1

Wj(s0)H(sj)
(s− s0)

2

(t− t0)2
dt
ds

+
1

2M + 4

M+1

∑
j=1

(a2 − s2
0)H(sj)M1(t, t0)

dt
ds

+
1

2M + 4

M+1

∑
j=1

(a2 − s2
0)H(sj)M2(t, t0)

dt
ds

+ M3(a, t0) (54)

where H(sj) is a given function, M ∈ Z+ is subdivision numbers of the cracks,

sj = a cos
(

jπ
M + 2

)
, j = 1, 2, ..., M + 1,

and

Wj(s0) = −
2

M + 2

M

∑
n=0

(n + 1) sin
(

jπ
M + 2

)
sin
(
(n + 1)jπ

M + 2

)
Un

( sj0

a

)
,

and the observation points

s0 = s0,k = a cos
(

kπ

M + 2

)
, k = 1, 2, ..., M + 1.

Here, Un(t) is a Chebyshev polynomial of the second kind, defined by

Un(t) =
sin((n + 1)θ)

sin θ
, where t = cos θ. (55)

Similar to the HSIEs (48) and (49) two cracks in the upper part of thermoelectric-
bonded materials give:

[N(t10) + iT(t10)]1 =
M+1

∑
j=1

Wj(s10)H1(sj)
(s1 − s10)

2

(t1 − t10)2
dt1

ds1
+

1
2M + 4

M+1

∑
j=1

(a2
1 − s2

10)H1(sj)M1(t1, t10)
dt1

ds1

+
1

2M + 4

M+1

∑
j=1

(a2
1 − s2

10)H1(sj)M2(t1, t10)
dt1

ds1
+ M3(a1, t10)

+
1

M + 2

M+1

∑
j=1

(a2
2 − s2

10)H2(sj)
1

(t2 − t10)2
dt2

ds2
+

1
2M + 4

M+1

∑
j=1

(a2
2 − s2

10)H2(sj)M1(t2, t10)
dt2

ds2

+
1

2M + 4

M+1

∑
j=1

(a2
2 − s2

10)H2(sj)M2(t2, t10)
dt2

ds2
+ M3(a2, t10). (56)
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[N(t20) + iT(t20)]2 =
M+1

∑
j=1

Wj(s20)H2(sj)
(s2 − s20)

2

(t2 − t20)2
dt2

ds2
+

1
2M + 4

M+1

∑
j=1

(a2
2 − s2

20)H2(sj)M1(t2, t20)
dt2

ds2

+
1

2M + 4

M+1

∑
j=1

(a2
2 − s2

20)H2(sj)M2(t2, t20)
dt2

ds2
+ M3(a2, t20)

+
1

M + 2

M+1

∑
j=1

(a2
1 − s2

20)H1(sj)
1

(t1 − t20)2
dt1

ds1
+

1
2M + 4

M+1

∑
j=1

(a2
1 − s2

20)H1(sj)M1(t1, t20)
dt1

ds1

+
1

2M + 4

M+1

∑
j=1

(a2
1 − s2

20)H1(sj)M2(t1, t20)
dt1

ds1
+ M3(a1, t20). (57)

4.2. Stress Intensity Factors

In order to investigate the behavior of non-dimensional SIFs for crack problems in
thermoelectric-bonded materials subjected to remote stress, we define the SIFs at the crack
tips Aj and Bj as follows:

KAj = (K1 − iK2)Aj =
√

2π lim
t→tAj

√
|t− tAj |g

′
1(t1), j = 1, 2, (58)

KBj = (K1 − iK2)Bj =
√

2π lim
t→tBj

√
|t− tBj |g

′
2(t2), j = 1, 2, (59)

where g′1(t1) and g′2(t2) are defined as follows:

g′k(tk)|tk=tk(sk)
=
−sk Hk(sk)√

a2
k − s2

k

e
−iθAj , H′k(sk) = 0, (60)

and k = 1, 2. Therefore, the non-dimensional SIFs at crack tips Aj and Bj are defined
as follows.

KAj = (K1 − iK2)Aj =
√

2π lim
s→sAj

√
|s− sAj |

[
−s1H1(s1)√

a2
1 − s2

1

e
−iθAj

]
=
√

a1πFAj , (61)

KBj = (K1 − iK2)Bj =
√

2π lim
s→sBj

√
|s− sBj |

[
−s2H2(s2)√

a2
2 − s2

2

e
−iθBj

]
=
√

a2πFBj , (62)

where

FAj = H1(−a1)e
−iθAj = F1Aj + iF2Aj ,

FBj = H2(−a2)e
−iθBj = F1Bj + iF2Bj .

At crack tips Aj and Bj, F1Aj and F1Bj represent the Mode I non-dimensional SIFs,
which characterize the intensity of the normal stress singularity. In contrast, F2Aj and
F2Bj represent the Mode II non-dimensional SIFs at the same crack tips, describing the
magnitude of the shear stress singularity.

Table 1 displays convergence test results on the Mode I (F1) dimensionless SIFs versus
h/a at the crack tips A1 and A2 for an inclined crack in the upper part of thermoelectric-
bonded materials for α = 90◦, J = 20, and U = 0 as illustrated in Figure 2 using material
parameters in Table 2.
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Table 1. Convergence test result on dimensionless SIFs at the crack tips A1 and A2 for an inclined
crack as illustrated in Figure 2.

G2/G1 M SIFs
h/a

1.2 1.4 1.6 1.8 2.0

0.25

10 F1A1 1.2241 1.1302 1.0888 1.0659 1.0517
F1A2 1.0835 1.0622 1.0498 1.0418 1.0365

15 F1A1 1.2254 1.1316 1.0904 1.0677 1.0538
F1A2 1.0862 1.0651 1.0531 1.0456 1.0408

20 F1A1 1.2267 1.1330 1.0920 1.0695 1.0559
F1A2 1.0888 1.0680 1.0564 1.0493 1.0451

22 F1A1 1.2267 1.1330 1.0920 1.0695 1.0559
F1A2 1.0888 1.0680 1.0564 1.0493 1.0451

2.00

10 F1A1 0.9102 0.9499 0.9704 0.9835 0.9933
F1A2 0.9844 0.9966 1.0063 1.0148 1.0226

15 F1A1 0.9139 0.9545 0.9761 0.9906 1.0019
F1A2 0.9939 1.0082 1.0201 1.0310 1.0415

20 F1A1 0.9175 0.9592 0.9819 0.9978 1.0108
F1A2 1.0036 1.0199 1.0342 1.0476 1.0609

22 F1A1 0.9175 0.9592 0.9819 0.9978 1.0108
F1A2 1.0036 1.0199 1.0342 1.0476 1.0609

Table 2. Parameters for the thermoelectric-bonded materials.

λ1 = λ2 κ1 = κ2 E1 = E2 α1 = α2 µ1 = µ2

4 × 104 10 196 5.2 × 10−6 0.283

The accuracy of the numerical results relies on the level of subdivision for the cracks,
denoted as M. To assess result convergence, we systematically increase the value of M,
starting from M = 10 and progressing to M = 15, 20. Eventually, we halt at M = 22 as
the dimensionless SIFs values align with the previous M as presented in Table 1. Notably,
it is observed that smaller values of M yield convergent numerical results. In addition to
the HSIEs approach discussed in this study, the dimensionless SIFs with J = U = 0 are
validated using the body force method approach introduced by Isida and Noguchi [48].
These results, along with the SIFs from the HSIEs approach, are listed in Table 3. It is
noteworthy that the disparity between the results obtained from these two approaches is
minimal. It is found that the maximum percentage error (%ε) is 0.0809% which is a very
minimal percentage of error between the results of the current study and previous study.

Table 3. Validation test result and percentage error (%ε) on dimensionless SIFs at the crack tips A1

and A2 compared with Isida and Noguchi [48].

G2/G1 M SIFs and %ε
h/a

1.2 1.4 1.6 1.8 2.0

0.25 20

F1A1 * 1.2213 1.1274 1.0857 1.0623 1.0476
F1A1 ** 1.2220 1.1280 1.0860 1.0630 1.0480

%ε F1A1 0.0573 0.0532 0.0276 0.0659 0.0362

F1A2 * 1.0783 1.0563 1.0432 1.0344 1.0281
F1A2 ** 1.0790 1.0570 1.0430 1.0350 1.0280

%ε F1A2 0.0649 0.0662 0.0192 0.0580 0.0097
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Table 3. Cont.

G2/G1 M SIFs and %ε
h/a

1.2 1.4 1.6 1.8 2.0

0.50 20

F1A1 * 1.1111 1.0653 1.0444 1.0324 1.0249
F1A1 ** 1.1120 1.0660 1.0450 1.0330 1.0250

%ε F1A1 0.0809 0.0657 0.0574 0.0581 0.0097

F1A2 * 1.0394 1.0289 1.0223 1.0179 1.0147
F1A2 ** 1.0400 1.0290 1.0220 1.0180 1.0150

%ε F1A2 0.0577 0.0097 0.0294 0.0097 0.0296

2.00 20

F1A1 * 0.9032 0.9410 0.9592 0.9699 0.9767
F1A1 ** 0.9030 0.9410 0.9590 0.9700 0.9770

%ε F1A1 0.0221 0.0000 0.0209 0.0103 0.0307

F1A2 * 0.9656 0.9740 0.9795 0.9834 0.9863
F1A2 ** 0.9660 0.9740 0.9790 0.9830 0.9860

%ε F1A2 0.0414 0.0000 0.0511 0.0407 0.0304

4.00 20

F1A1 * 0.8291 0.8944 0.9266 0.9455 0.9579
F1A1 ** 0.8290 0.8940 0.9270 0.9450 0.9580

%ε F1A1 0.0121 0.0447 0.0431 0.0529 0.0104

F1A2 * 0.9393 0.9535 0.9631 0.9701 0.9752
F1A2 ** 0.9390 0.9540 0.9630 0.9700 0.9750

%ε F1A2 0.0319 0.0524 0.0104 0.0103 0.0205
* Current study, ** Isida and Noguchi [48].

5. Concluding Remarks

In this study, we have dealt with crack problems in the upper part of thermoelectric-
bonded materials subjected to remote stress. Although the problem is an ancient one, we
insist on several novelties in this study. First, even though the modified complex potential
method used in this work is a traditional technique for solving crack problems in bonded
materials, it is, however, new for cases that involve crack problems in thermoelectric
materials. The present approach leads to HSIEs in which the COD function, electric current
density, and energy flux load between the crack tips are taken as the main unknown. The
general solution of HSIEs for the single- and two-crack problems have been obtained. The
validation of the HSIEs has been proved by reducing them to infinite materials where
G1 = G2, K1 = K2, and E1 = E2, and the values of α1 = α2 = 0 and λ1 = λ2 = 0.
Meanwhile, HSIEs reduce to half-plane materials if G2 = 0, and the values of α1 = α2 = 0,
λ1 = λ2 = 0 and κ2 = 0. In the context of the test problems, our numerical findings
demonstrate faster convergence, and the results obtained from our analysis align with
those from the previous study with a very minimal percentage of error. On the basis of this
study, we believe that several extensions are possible, such as cohesive models, cracks at
the interface-bonded materials, cracks issued by inclusions, problems of three-dimensional
cracks in thermoelectric-bonded materials, and so on. Based on the current study, a detailed
formulation with numerical analysis will be published elsewhere. More research is being
conducted to broaden the application field of the developed concept.
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Abbreviations
The following abbreviations are used in this manuscript:

COD Crack Opening Displacement
HSIEs Hypersingular Integral Equations
SIFs Stress Intensity Factors
φ(z), ψ(z), f (z), g(z) Complex stress potential functions
φ1(z), ψ1(z), f1(z), g1(z) Upper part of complex potential functions
φ1p(z), ψ1p(z), f1p(z), g1p(z) Principal part of complex potential functions
φ1c(z), ψ1c(z), f1c(z), g1c(z) Complementary part of complex potential functions
φ2(z), ψ2(z), f2(z), g2(z) Lower part of complex potential functions
σx, σy, σxy Stress components
G Shear modulus
µ Poisson’s ratio
E Young’s modulus
g(t) Crack opening displacement function
Γi Elastic constant
KAj Stress Intensity Factors at crack tip Aj
FAj Dimensionless Stress Intensity Factors at crack tip Aj
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