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ABSTRACT 
Perovskite solar cells (PSCs) are solar cells that have intriguing characteristics such as 
environmental friendliness and the capability for high power conversion efficiency, which 
have attracted study from both scientific investigation and analytical standpoints. However, 
lead toxicity has become a significant barrier to the widespread use of PSCs. Due to the 
serious environmental implications of lead, an environmentally compatible perovskite is 
required. Tin-based perovskite has a considerable impact, showing that it is a good hole 
extraction material with good mobility and low effective mass. In this study, we explore the 
impacts of perovskite and hole transporting layer (HTL) thickness, and intensity of light 
limitations, in inverted PSCs based on the structure of FTO/NiO/MAPbI3/ZnO/Ag and FTO/
NiO/MASnI3/ZnO/Ag incorporating GPVDM (General-purpose Photovoltaic Device Model) 
to evaluate if MASnI3 is a viable substitute to MAPbI3. From the simulation results, the 
optimized parameters obtained for PCSs under 1 sun incorporating MASnI3 were 27.97%, 
0.88 a.u., 0.92 V, and 34.45 mA/cm2. Instead, the optimized parameters obtained for PCSs 
incorporating MAPbI3 were 24.94%, 0.88 a.u., 0.90 V, and 31.03 mA/cm2. The thickness 

of the film of both PSC architectures was 
optimized to provide the best suitable result. 
The findings show that MASnI3 is employed 
as a promising perovskite layer in PSCs 
instead of MAPbI3.
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INTRODUCTION

Solar energy offers several distinct benefits over other renewable energy sources, including 
the worldwide dispersion of sunshine and the decentralized nature of solar energy output 
(Mohtasham, 2015). Perovskite solar cells (PSCs) have emerged as the "third generation 
of solar cells," as alternative renewable energy to solve environmental implications such 
as global warming and greenhouse gases (Ibn-Mohammed et al., 2017). PSCs have been 
the most recent solar cell type and among the most promising thin-film PV technologies. 
Strong absorption coefficients, excellent charge carrier mobilities, diffusion duration, and 
solution processability are the desired properties that make perovskites a potentially new 
front-runner material for thin-film solar technology (Khadka et al., 2017). These qualities 
are required for their real implementation in semiconductor-based devices such as solar 
cells. Sustainable substitutes to present power-generating systems are critical to conserving 
the planetary environment by ensuring long-term economic prosperity. The recent discovery 
of halide perovskites as solar energy harvesting and hole-transport materials has contributed 
to the development of solar technology. Among the several types of PSCs, organic-inorganic 
metal halide PSCs have garnered substantial interest in recent years due to their high power 
conversion efficiency (PCE) and ease of fabrication at a cheap cost (Yongjin et al., 2020). 
The ABX3 perovskite framework is used in organic-inorganic hybrid perovskite substances 
depending on metal halides. This architecture comprises networks of corner-sharing BX6 
octahedra, whereby B is a metal cation (usually Sn2+ or Pb2+), and X is generally F-, Cl-, 
Br-, or I-. The A cation is used to equalize the overall charge or to represent a tiny molecular 
group (Hao et al., 2014). Methylammonium lead tri-iodide (MAPbI3) has often been known 
to be a perovskite content and is widely employed in PSCs. Even though the efficiencies 
have now exceeded 20%, long-term stability is the major obstacle to commercializing PSCs 
on a broader level. As the lead in MAPbI3 is extremely hazardous, industrial applications 
of MAPbI3-based PSCs are severely limited (Conings et al., 2015; Wang, Phung et al., 
2019; Wang, Mujahid et al., 2019), resulting in interest in lead-free PSCs in the sector of 
solar technologies. 

Experts refer to the idea that inorganic halide perovskites, like Sn-, Ag-, Sb-, Bi-, Cu-, 
and Ge-based solar cells might be employed as lead substitutes (Green et al., 2014; Song et 
al., 2017). A tin-based perovskite, MASnI3, is a possible option for lead-free PSCs owing 
to its excellent bandgap of 1.3eV, which are even narrower than MAPbI3  (Baig et al., 
2018). It was reported that MASnI3 perovskite has high absorption efficiency with excellent 
optical features and the broadest light-absorption spectrum compared to MAPbI3  (Du et 
al., 2016). Sn-based perovskites are environmentally beneficial since they decompose to 
SnO2 (from Sn4+) when exposed to air. Sn-based perovskites and Pb-based perovskites are 
comparable in their fundamental physical features (Ke & Kanatzidis, 2019; Schileo & 
Grancini, 2021). Vishnuwaran et al. (2022) have compared the performance of MASnI3 
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and FASnI3 perovskite materials. Modification in thickness and temperature of the absorber 
layer revealed that MASnI3 had a higher cell efficiency (23.74%) than FASnI3 (23.11%). 
Germanium (Ge) is another possible replacement for lead. Recent computational and 
experimental research has demonstrated that Ge–Sn mixtures are an excellent candidate 
for enhancing the performance of Ge2+-based PSCs. Upon doping a tiny amount (5%) of 
Ge2+ into Ge–Sn mixed halide perovskites, an overall efficiency of 4.48% was attained 
(Vishnuwaran et al., 2022). The PCE grew to 6.9% after exposure to an N2 environment for 
72 hr. Simulation design and investigation of the performance of Sn-Ge-based perovskite in 
a planar inverter structure yield a PCE of 24.20%, such substantial enhancement established 
by trap density at the interface layers (Vishnuwaran et al., 2022). Furthermore, Pindolia et al. 
(2022) proposed an inorganic RbGeI3-based PSC that acquired an efficiency of 10.11% and 
a greater fill factor (FF) of 63.68% by analyzing alternative inorganic HTL and ETL layers. 
Like another example of Pb-free PSCs with great promise as light-absorbing perovskite, 
Cs2TiBr6, and Cs2PtI6 have a good absorption coefficient, a lengthy carrier lifespan, and 
outstanding stability with adequate bandgaps (1.8 eV and 1.4 eV, respectively). The value 
can be increased by refining the interface between perovskite and HTL. For this study, 
MASnI3 was chosen and tested further as a potential replacement for lead-based PSCs.

Aside from the performance of perovskite material, the functionality and maximum 
efficiencies of PSCs are heavily influenced by the HTL. In the optimization of PSC, HTL 
can improve the overall performance of PSC by reducing series resistance, enhanced fill 
factor (FF), and open-circuit voltage (VOC) while providing a transport medium for holes 
to the counter electrode (Yang et al., 2017). Owing to its improved chemical stability, 
cheap cost, and appropriate energy level, NiO, a direct bandgap inorganic material, has 
lately caught the scientific community's interest as a viable HTL for stable and efficient 
PSCs (Hossain et al., 2020). NiO is a significant transition metal oxide that may be easily 
deposited using a variety of processes, including spray pyrolysis (Danjumma, 2019), 
sputter deposition (Mulik, 2019), thermal decomposition (Guo et al., 2018), precipitation 
(Chowdhury et al., 2018), hot-casting (Abzieher et al., 2018), and electrodeposition (Xi 
et al., 2019). NiO demonstrated good potential in organic solar cells and has a work 
function of between 5 and 5.6 eV, which satisfies the criteria for an HTL (Nguyen, 2018). 
NiO, as a p-type semiconductor material, has been effectively used in PSCs with inverted 
architectures, according to its adequate carrier mobility and good work functionality, which 
can fit perovskite materials' energy (Chen et al., 2017). The energy band diagram reveals the 
good positioning of the NiO in such a way as to foster hole extraction from the perovskite 
material (Nkele et al., 2020). Besides that, there are already many research articles 
experimentally showing that NiO is a potential material for HTL with good efficiency of 
17.75% (Thakur et al., 2020), 19.10% (Mali et al., 2018) and 20.8% (Mahmoudi et al., 2021) 
which undergone different synthesis processes. In previous work, the General-Objective 
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Photovoltaic Devices Model (GPVDM) has been used to determine the optimal material 
parameter for PSCs. GPVDM is a research-leading electrical and optical solver that the 
electrical transfer characteristics and the optical model pattern of PSCs (MacKenzie, 2016). 
The PCE of PSC was reported to increase from 9.96 to 12.9% through optimization of the 
layer thickness using this model (Hima et al., 2018). On the other hand, the effect of the 
thickness of MAPbI3 as perovskite with Spiro-OMeTAD as HTL and different ETL material 
(TiO2 and SiO2) has a significant effect on overall PSC efficiency with reported values of  
5.6%, 14.5%, and 14.7%, respectively (Mishra & Shukla, 2020; Abdulsalam et al., 2018; 
Yasodharan et al., 2019). The best-reported efficiencies were obtained with optimal 200 nm 
and 300 nm ETL thicknesses, respectively. A comparative study on the effect of perovskite 
layer thickness and charge mobilities in PSCs was also observed with an efficiency of 
18.43% (Sittirak et al., 2019). The influence of light intensity has achieved an efficiency 
from 8.5 to 10%, which indicates that performance can be improved by maximizing the 
light falling on the solar cell’s surface (Mekky, 2020). 

There are more solar cell models besides GPVDM that investigate PSC-based structures 
with MAPbI3, MASnI3, NiO, and ZnO Rahman et al. (2019) used SCAPS-1D to construct 
a p-i-n structure with three distinct ETL layers (TiO2, ZnO, and SnO2) and compared their 
properties to that of MAPbI3 as the perovskite layer and NiO as the HTL layer. The research 
proved that using ZnO as the ETL allowed for the highest possible PCE of 17.84%. The 
identical model was also used to simulate a MASnI3-based PSC along with NiO as the HTL 
and PCBM as the ETL to study the details of the device by changing the layer thickness, 
defect density at junctions, density of states, and metalwork efficiently (Shamna et al., 
2020). It is estimated from the simulation result that the designed structure has attained an 
efficiency of 22.95% with the optimal absorber layer thickness of 600 nm. Another study 
used the Silvaco ATLAS device model to construct a lead-free titanium PSC (Cs2TiBr6) 
using TiO2 as the ETL and comparison of three HTLs (CuPc, P3HT, and NiO), in which 
NiO gaining the maximum PCE of 8.5% (Samanta et al., 2020). Although the efficiency 
of Cs2TiBr6 based-PSC is poor compared to lead-based PSCs, its long-term stability and, 
most significantly, its eco-friendly nature are predicted to drive it to the forefront of future 
solar cell application. In addition, Karimi et al. (2020) performed a comparative analysis 
of the SCAPS and AMPS software applications to explore the impact of ZnO and SnO2 
on PSC performances. 

Aside from NiO as HTL, many inorganic materials are discovered as HTL layers to 
study the performance of lead-free PSCs. Anand Kumar Singh et al. (Singh et al., 2021) 
conducted a simulation study that focuses on MASnI3 perovskite sandwiched between CuO2 
as HTL and TiO2 as ETL, achieving maximum efficiency of 27.43% by varying various 
parameters with the aid of SCAPS-1D simulator. CZTS has recently been analyzed as HTL 
in tin-based PSC by optimizing layer thickness, energy bandgap, and operating temperature 
that acquire the best PCE of 20.28% (Reyes et al., 2021). For the first time, the inorganic 
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material CuSbS2 was employed as HTL in alignment with the MASnI3 as the active layer, 
and the resulting device achieved an efficiency of 24.1% and further boosting the doping 
concentration of MASnI3 contributed to an increase in PCE value. (Devi & Mehra, 2019). 
According to the literature review, inorganic materials are now well-equipped to replace the 
costly Spiro-MeOTAD and demonstrate the potential to become the ideal alternative for use 
in the future. Several solvers programs are available, including open source and subscription 
to model and simulate solar cells. At the same time, certain simulation software shares a 
common module but varies in terms of speed, features, the quality of the user interfaces, 
and how easy or difficult to use (Kowsar et al., 2019). It is important to note that this study 
used an optimized configuration that achieved the highest possible efficiency of 27.43%, 
the maximum value documented for this configuration by GPVDM simulation software.

From previous work, factors such as the thickness of the film, carrier mobilities, 
defect density, and light intensity influence device performance optimization. This work 
investigated the effect of PSCs on the configuration of MASnI3, which was investigated 
through GPVDM simulations. During the simulations, the thickness of perovskite, the 
thickness of HTL, and the light intensity were varied to attain the optimal values to 
maximize the PCE. A comprehensive analysis of the electrical and optical characteristics 
affecting each performance of MASnI3 and MAPbI3 as perovskite with NiO as HTL has 
never been described. Furthermore, the results of this inquiry may be extremely valuable 
and give excellent direction for the understanding of the acquired data, which will aid in 
revealing the primary processes of PCE rise in the structure of MASnI3 as perovskite and 
NiO as HTL.

METHODOLOGY

In Figure 1, the device comprises a layered configuration made from an inverted planar 
structure (FTO/NiO/Perovskite/ZnO/Ag). Two absorbance layers were compared as the 
primary carrier producer (MASnI3 and MAPbI3). P-type (HTL = NiO) and n-type (ETL = 
ZnO) were placed on the top and bottom perovskite layers. The close boundary conditions 
were applied to the simulation environment, where fluorine tin oxide (FTO) was selected 
as a glass substrate and silver (Ag) was chosen as the back-electrode layer designated as 
anode and cathode, respectively. The simulation studies in this work were performed using 
the GPVDM tool, a freeware solar cell modeling software for photovoltaic systems. The 
model captures the joint movement of electrons, holes, and transport momentum equation 
in the orientated area to reflect the movement of loads within the device. The GPVDM 
software often only provides specialized simulation materials. The NiO, MAPbI3, and 
MASnI3 material was manually introduced to the GPVDM software following the technique 
in (MacKenzie, 2016). The absorption and refractive index data of NiO, MAPbI3, and 
MASnI3 were extracted from the previous work reported by Bakr et al. (2015) and Sun et 
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al. (2016). This work focuses much on the perovskite and HTL layer, which were largely 
set to evaluate their effectiveness as active layers. 

Both device structure was simulated under one sun AM 1.5G illumination (1 kW/m2; 
T = 300°K). Table 1 summarizes the designed default GPVDM software variables used 
during the simulation. The physical parameters of MAPbI3 and MASnI3, such as bandgap 
(Eg), electron affinity (Xi), density electron states (cm-3), density hole states (cm-3), electron 
mobility (cm2/Vs), hole mobility (cm2/Vs) and relative permittivity (Ɛr) were taken from 
previous experimental and simulation studies (Ahmed et al., 2019; Mohammadi et al., 2021; 
Hima et al., 2018; Then et al., 2021). Three different approaches were performed to find 
the optimum parameters of the solar cell, which are (1) different thicknesses of perovskite 
layer ranging from 50 to 500 nm, (2) different thicknesses of HTL layer varying from 100 
to 800 nm, and (3) different values of light intensity. The activated perovskite layer and 
HTL layer have quite a significant effect on the efficiency of the cells.

Figure 1. Schematic representation of inverted 
PSCs with MASnI3 and MAPbI3 perovskite material

Table 1 
Simulation parameter of both perovskite layers and 
NiO (Ahmed et al., 2019; Du et al., 2016; Hao et 
al., 2014)

No. Parameters
Layers

MAPbI3 MASnI3 NiO

1. Bandgap 
energy, Eg 
(eV)

1.55 1.3 1.46

2. Electron 
affinity, Xi 
(eV)

3.93 4.17 3.80

3. Density 
electron 
states 
(cm-3)

1.3x1026 1x1018 -

4. Density 
hole states 
(cm-3)

9.1x1026 1x1018 1x1018

5. Electron 
mobility 
(cm2/Vs)

2x10-1 2x10-2 2.8

6. Hole 
mobility 
(cm2/Vs)

2x10-1 2x10-4 2.8

7. Relative 
permittivity, 
Ɛr

6.5 8.2 11.7

RESULTS AND DISCUSSION	
Optimization of the perovskite layer 
thickness is one of the approaches for 
increasing the PCE. A sufficient thickness is 
necessary for a successful perovskite device 
to achieve enough light absorbance and 
effective charge carrier capture. A perovskite 
is sufficiently thick in the region of its 
absorption; then, it leads to an excellent 
photovoltaic performance (Iakobson et al., 
2021; Rai et al., 2020). The thickness of the 
perovskite film plays an essential part in the 
device for optimal carrier generation. The 
influence of perovskite film thickness on cell 
efficiency was evaluated by computational 
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models, with a thickness range of 50 to 500 nm (Yasodharan et al., 2019). According to 
Figures 2(a) and 2(d), the PSC with the MASnI3 has the maximum PCE of 12.88% and 
JSC of 16.74 (mA/cm2), whereas the PSC with the MAPbI3 has the greatest PCE of 16.96% 
and JSC of 22.53 (mA/cm2). The higher the thickness of the perovskite layer, the greater 
the performance of PCE produced. 

(a) (b)

(c) (d)
Figure 2. The optimized outcome of perovskite thickness generated by the GPVDM software focusing on the 
comparison between MASnI3 and MAPbI3 produced at 400 nm of (a) PCE, (b) FF, and (c) VOC, and (d) JSC

The thickness of the perovskite layer increases slowly from 50 to 100 nm, and after that, 
it decreases when approaching to 200 to 300 nm thickness range. It causes an abrupt drop 
in the VOC for both perovskite layers (Figure 2c). In contrast, the PCE and JSC showed the 
highest value at the thickness of 400 nm. It explains how, after the perovskite has reached 
its ideal thickness, it regulates the interfacial structuring to improve light trapping, resulting 
in a greater carrier concentration and, as an outcome, a higher JSC (Rai et al., 2020). It is 
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important to mention that even though the computed JSC for the MASnI3 perovskite device 
is less efficient than that for the MAPbI3 device, the greatest current density above 15 mA/
cm2 can be achieved when integrating MASnI3 perovskite under the bandgap of the 1.30 
eV. However, at the thickness of 500 nm, there is also a small significant decrease in PCE 
and VOC. In contrast to PCE and VOC, the outcome of FF keeps increasing with perovskite 
thicknesses from 50 to 500 nm (Figure 2b). It is due to the thicker perovskite layer that 
absorbs more significant photons using broader wavelengths, thus increasing the production 
of electron and hole pairs (Lin et al., 2017). 

Although the PCE of MASnI3 is lower compared to MAPbI3, the FF of MASnI3 is larger, 
which implies lower recombination at the interface. The VOC also constantly increased as 
the thickness of the perovskite layer increased but dropped when it reached 500 nm, as 
shown in Figure 2(c). It is also the same case with the simulation study made by Hima 
et al. (2019), which shows that the PCE drops after the thickness of the perovskite layer 
reaches the optimal value at 600 nm. As the thickness of the perovskite approached its 
optimal value, the recombination rate increased, and the efficiency of the cell decreased 
as a consequence. 

In addition, the current simulation study shows much better results than the preceding 
simulation results using MAPbI3 as a perovskite in GPVDM, which were obtained about 
12.83% at 200 nm (Hima et al., 2018) and 14.7% at 300nm (Abdulsalam et al., 2018). 
Instead, Ahmed et al. (2019) reported that the performance hit as much as 20% at a 
thickness of 850 nm. A thicker layer of perovskite causes it difficult for charge carriers 
created by photons to be carried away, reducing the device's effectiveness. This statement 
also agreed with the report by Nam et al. (2010) about bulk heterojunction organic solar 
cells and Sievers et al. (2006) regarding polymer bulk-heterojunction solar cells. The 
optimal thickness should be determined by a balance between the absorption range and the 
diffusion length of the material (Ragb et al., 2021). Besides that, the obtained result showed 
higher efficiency than the experimental result of Srivastava et al. (2021), using MAPbI3 
perovskite with obtained PCE of 14.44%. Another report also focuses on fabricating 
MAPbI3 perovskite achieved an efficiency of 14.79% with regulated moisture of 35% in 
ambient air using a one-step spin coating method (Soucase et al., 2022). In conjunction, 
solution-processed PSCs based on MASnI3 as the light-absorbing material achieved a 
PCE of 5.8% (Hao et al., 2014). Based on the analysis between MAPbI3 and MASnI3, the 
thickness of the perovskite layer plays a major role in increasing the performance of the 
photovoltaic device (Bag et al., 2020). Additionally, this work obtained efficiency much 
higher than the experimental outcome, which recently studied NiO nanocrystal film as 
HTL for Sn-Pb-based PSCs with PCE up to 18.8% (Chen et al., 2021).  
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Figure 3. The optimized thickness of NiO as HTL generated by the GPVDM software focusing on the 
comparison of MASnI3 and MAPbI3 obtained at 500 nm of (a) PCE, (b) FF, (c) VOC, and (d) JSC

Additionally, the impact of light intensity on each solar cell affects all electrical 
parameters. The quantity of 1 Suns indicates the normal AM1.5 or 1 (kW/m2) lighting on a 
PSC. Equally, a solar cell system with 10 (kW/m2) could run at 10 suns. The PCE of MASnI3 
is much higher than that of MAPbI3, which is at 29.90% and 26.67%, as seen in Figure 
4(a). The growing levels of PCE were seen for both materials as the intensity of the light 
increased up to 10 (kW/m2), which has been previously found in Mekky (2020) utilizing a 
hybrid perovskite-based solar cell employing a GPVDM model. The above findings indicate 
that the PCE relies on light-intensity instances and exhibits an extraordinary increase in 
light-intensity energy transformation. The same trend was also observed in the graph of 
Figure 4(c); as the intensity of the light increased, the VOC also kept increasing, which is 
similarly reported by Liu et al. (2017) using MAPbI3 as a perovskite layer. 

(a) (b)

(c) (d)
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In contrast, the FF is mainly influenced by the amount of light intensity (Figure 4b). 
Both structure FF rise when the light intensity is less than 1 kW/m2. However, when the 
intensity of the light hits more than 1 kW/m2, the FF decreases owing to the impact of 
series resistance (Mekky, 2020). Figure 4(d) illustrates that the JSC from a solar cell depends 
linearly on the light intensity, such that a device operating under 10 suns would have 10 
times the JSC as the same device under one sun operation. However, this effect does not 
increase efficiency since the incident power also increases linearly. Instead, the efficiency 
benefits arise from the dependence of the VOC on short circuits. Subsequently, the same 
trend of JSC was observed by Kassahun Lewetegn Damena through GPVDM in which the 
light intensity was varied from 1 sun to 40 suns (Damena, 2019).

The J–V curves of the devices were illustrated in Figure 5, recorded the MASnI3 
perovskite-based solid-state device exhibits the highest mean JSC of 32.05 mA/cm2 and 
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VOC of 1.6 V under AM 1.5G solar illumination. Meanwhile, the MAPbI3 device showed 
a slightly lower JSC of 27.93 mA/cm2 and VOC of 1.2 V. A substantial rise in VOC was 
detected in the MASnI3 device compared to the MAPbI3 device. The current analysis 
also demonstrates the potential ability of tin-based perovskite contrasted with lead-based 
perovskite. Previously, Mandadapu et al. (2017) presented a simulation regarding MASnI3 

PSC with the thickness of 600 nm obtained PCE, JSC, and VOC of 24.82 %, 25.67 mA/cm2 
and 1.04 V correspondingly. Nevertheless, another simulation study of MASnI3 compared 
to MAPbI3 reported by Shyma and Sellappan (2021) gained an efficiency of 24.3 % with 
JSC of 32.30 mA/cm2, which is higher than the current study yet still shows a lower VOC of 
1.2 V. Regardless of the simulation studies, Li et al. (2019) demonstrated an experimental 
result of MASnI3 developed using a two-step technique for the deposition of solid and 
homogeneous perovskite layers, reaching the optimum value of PCE at 7.13 %, JSC at 22.91 
mA/cm2 and VOC at 0.486 V. 

It is well known that the present simulation result of MASnI3 PSC has enhanced the 
photovoltaic performances of the devices compared to the MAPbI3 PSC. It can be supported 
by the fact that by integrating the AM 1.5G solar spectrum below the bandgap of MASnI3 

(1.30 eV) perovskite, the greatest current density that can be produced, despite the lower 
JSC found for MAPbI3 perovskite (Hao et al., 2014). Besides that, this could be owing to 
the perovskite's wide optical absorbance cross-section and the well-developed interstitial 
pore opening by the hole conductor, which allowed for this tremendous current density 
produced by MASnI3 (Cao & Yan, 2021; Du et al., 2016). Additionally, the insertion of 
the NiO HTL in the structure significantly improves the PCE of the solar cells, which is 
attributed due to the suitable band alignment of the NiO and perovskite.
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Figure 5. The optimized curve of photocurrent 
density-voltage (J-V) achieved higher by MASnI3 at 
JSC of 32.05 mA/cm2 and VOC of 1.6 V in parallel with 
MAPbI3 obtained at JSC of 27.93 mA/cm2 and VOC of 
1.2 V as perovskite

The photon density distribution 
corresponding wavelength as a function of 
the position of the MAPbI3 device layers 
was presented in Figure 6(a). Most photons 
are absorbed in the perovskite absorbance 
layer. Therefore, massive electrons and 
holes have promoted the device’s efficiency 
(Said & Woon, 2019). The same trend was 
also observed for the MASnI3 PSC in Figure 
6(b). The photon of both PSCs was more 
significant from FTO and decreased after the 
Ag electrode was incorporated. When the 
light penetrates an absorber layer of the film, 
the process of pumping electrons through 
the valence band into the conduction band 
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occurs. The electrons quickly start to move to the ETL of the n-type ZnO, whereas the 
holes begin to migrate to the HTL of the p-type NiO. The ZnO has a lower work function 
(−4.4 eV) which matches with the lowest unoccupied molecular orbital (LUMO) energy 
level of MAPbI3 perovskite film (LUMO = −3.9 eV) and MASnI3 perovskite film (LUMO 
= −4.2 eV). The band structure of perovskite/ZnO further accelerates the electron transport 
to the Ag cathode (LUMO = −4.3 eV). NiO work function (-5.3 eV) must be aligned as 
closely as possible with the highest molecular orbital (HOMO) energy level of the ITO 
(HOMO = −4.0 eV) to deliver accurate hole direction. The minority and majority carriers 
are generated when a photon is absorbed. Absorbed photons at the HTL interface (NiO) 
showed that the MASnI3 structure absorbs higher than the MAPbI3 structure but decreases 
in time. It indicates that the stored charge at the hole-extracting interface of NiO could have 
a strong downward band bending on the perovskite side at the perovskite/HTL interface 
(Ravishankar et al., 2019). It is consistent with that tin-based perovskite produces the 
highest efficiency levels. The resulting shift of NiO in the work function leads to a more 
beneficial energy level alignment with the MASnI3 perovskite, which is believed to facilitate 
charge extraction. Therefore, the photovoltaic performance is enhanced by an appropriate 
work function in relation to the perovskite interfaces. The downward band bending is 
potentially detrimental to charge extract and recombination kinetics because it sends holes 
back to the perovskite surface, which could increase the device's performance. The driving 
energy for hole injection happens from the valence band maximum of the HTL and should 
be greater in energy than the valence band maximum of the perovskite (Haider et al., 2022). 

However, the photon density produced at the MAPbI3 interface is higher than at the 
MASnI3 interface. The MAPbI3 perovskites have much higher radiative recombination 
coefficients, leading to the situation that MASnI3 is much less charge carrier densities 
faced in photovoltaic at intensities around 1 sun (Kirchartz, 2019). Therefore, only a small 
percentage of photons will be created within the interface of MASnI3.
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Figure 6. Photon density distributions (a) MAPbI3 and (b) MASnI3 as perovskite with the AM 1.5G solar 
spectrum interfaced with the thickness of the device

CONCLUSION

In summary, tin-based perovskites have excellent optoelectronic properties which lead to a 
promising candidate for efficient lead-free PSCs. Under 1 sun light intensity the tin-based 
perovskites have achieved the highest PCE of 27.97% while the lead-based perovskite 
achieved PCE at 24.94% using GPVDM software. During the optimization of perovskite 
layer thickness both perovskite material found at 400 nm in which the higher efficiency 
was attained by lead-based perovskite. Nevertheless, after the evaluation made on the HTL 
thickness the highest efficiency was noticed on tin-based perovskites at 500 nm with high 
JSC and VOC value. The findings imply that lead-free MASnI3 has a huge potential as an 
absorber layer when combined with a robust inorganic hole transport material like NiO. 
Moreover, further increase of light intensity in each structure implies a progressive increase 
in PCE. Encouragingly, simulation models produced a maximum PCE of more than 20% 
that can be achieved from tin-based PSCs under optimized conditions. A deeper study on 
the previous simulation and experimental of each of the photovoltaic parameters such as 
PCE, JSC, VOC, and FF reveals that the Sn-based devices perform better for high efficiency 
in lead-free PSC. In comparison to, lead-based counterparts, tin-based PSCs have a higher 
VOC with a record value of 1.6 V, which consider higher than previous studies. Importantly, 
these computational results demonstrate that the absorber and HTL layers significantly 
impact system efficiency. The construction of a high-efficiency tin-based PSCs will be 
aided by this simulation study.
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