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Integrating local and global 
information to identify influential 
nodes in complex networks
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Mohd Natashah Norizan 3, Wan Farah Wani Wan Fakhruddin 4, Wakisaka Minato 5, 
Amir Hamzah Abdul Rasib 1, Zaheera Zainal Abidin 1, Ahmad Fadzli Nizam Abdul Rahman 1 & 
Siti Haryanti Hairol Anuar 1

Centrality analysis is a crucial tool for understanding the role of nodes in a network, but it is unclear 
how different centrality measures provide much unique information. To improve the identification 
of influential nodes in a network, we propose a new method called Hybrid-GSM (H-GSM) that 
combines the K-shell decomposition approach and Degree Centrality. H-GSM characterizes the 
impact of nodes more precisely than the Global Structure Model (GSM), which cannot distinguish the 
importance of each node. We evaluate the performance of H-GSM using the SIR model to simulate the 
propagation process of six real-world networks. Our method outperforms other approaches regarding 
computational complexity, node discrimination, and accuracy. Our findings demonstrate the proposed 
H-GSM as an effective method for identifying influential nodes in complex networks.

Complex networks refer to intricate systems composed of interconnected elements, such as nodes and edges, 
where the interactions between these elements exhibit non-trivial  patterns1. To comprehensively analyze complex 
networks, researchers often explore them from four essential perspectives: path analysis, connectivity, com-
munity, and centrality. These analytical approaches shed light on the intricate pathways, structural connections, 
cohesive groups, and influential nodes within the network, enabling a holistic understanding of its dynamics and 
 characteristics2. One of the most essential and challenging research challenges in network science is determining 
and prioritizing the most important nodes. The process of discovering and ranking the most influential nodes 
(INs) is critical for gaining a thorough view of a network’s structure and operation 3. Several centrality metrics 
have been presented throughout the years to capture a network’s rank based on node degree and importance 
in the network’s  structure4–7. It is considered that the efficiency of a centrality measure in finding key nodes is 
dependent on its topological  significance8. Currently, a website (http:// www. centi server. org)9 has documented 
that there were approximately 403 centrality indices, providing a comprehensive resource for network analysis. 
However, despite this vast compilation, the exploration of identifying the most (INs) within complex networks 
remains an ongoing pursuit.

In latest years, methodologies for locating prominent nodes have gotten more targeted, relying only on global 
or local data. For example, K-shell decomposition (Ks)10,11 and the Degree Centrality (DC)12 approach is two 
of the most thoroughly explored interpretations of global and local information, respectively. Because of their 
simplicity, these two techniques have achieved broad use in networks of all sizes. However, Ks and DC have 
limits in determining the relative significance of nodes in a network.

In Ks, first and foremost, previous knowledge about the value of k is required, which may not be easily 
 accessible13. Second, since the Ks is based on local  connection14, it may not be useful in recognising the hierarchi-
cal structure of networks. Finally, it may not correctly represent the underlying structural aspects of the network 
since it may not capture the relevance of nodes that operate as bridges between various levels. It may be suscep-
tible to the particular technique used to calculate the Ks, making it less accurate for comparing  networks15–17.

On the other hand, DC is a standard network analysis metric that rates a node’s relevance based on the 
number of edges (links) it has in the network. One issue is that it does not consider how excellent or crucial the 
relationships  are18–20. Nodes with a high degree of centrality may have numerous connections, but those connec-
tions may be with nodes that are not central or significant in their own  right21. Moreover, degree centrality does 
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not take into account a node’s structural location in the  network22, which might influence its relevance. Lastly, 
degree centrality is less effective in directed networks with incoming and outward edges that need differentiation 
between in-degree and out-degree centrality  measurements20,22,23. Overall, degree centrality is a valuable metric 
for detecting INs; however, it should be used in conjunction with other measures that capture other characteristics 
of a node’s significance in a  network14,21,22.

Other common centrality methods, such as betweenness centrality (BC)24 and closeness centrality (CC)25, 
which estimate node impact based on global network information and may give higher ranking results, have a 
significant processing  cost26,27. Geographical information, both local and global, may have a substantial influence 
on the power of INs in a network.

17,18,28–31Researchers have focused on local and global network information to solve the problem of identify-
ing  INs17,18,28–30. Unfortunately, past traditional identification approaches frequently missed critical information, 
failing to account for global and local network information  simultaneously7,31. As a result, the outcomes are 
often skewed. Information about the neighbour nodes do increase the accuracy and correctness of a  method32. 
Researchers discovered that combining both in a network improved the identification of influential nodes. This 
integration enhanced detection at both the local (in community or cluster) and global  levels7,33–35. Taking the 
coreness and shortest distance between nodes into account might improve the discovery of INs.

Recently, an innovative approach is being introduces which is the Global Structure Model (GSM)29 and its 
improved version,  IGSM18, to identify INs in these networks. These approaches apply local and global informa-
tion, which are Ks and DC, respectively. Yet, one key weakness of both methodologies is their inability to quantify 
the significance of individual nodes, leaving a large vacuum in our knowledge of complex networks. As the need 
for more accurate and extensive network research grows, new approaches that may overcome this constraint and 
give deeper insights into the structure of complex networks must be developed.

The primary contributions of this paper lie in the development and application of the Hybrid Global Struc-
ture Model (H-GSM). The H-GSM algorithm addresses the deficiencies of current techniques by considering 
both local and global information of each node, resulting in a more comprehensive understanding of the overall 
structure of complex networks. Specifically, our contributions are as follows:

A) Introducing a technique for identifying influential nodesThe H-GSM algorithm combines local information 
(DC) and global influence (Ks), overcoming the limitations of single-measure centrality approaches. By 
integrating local and global influences, our method significantly enhances the accuracy of identifying INs, 
surpassing traditional centrality measures such as DC, BC, PR, CC, GSM, and IGSM.

B) High performance of the algorithmThrough extensive experiments conducted on six real complex networks, 
our technique demonstrates superior performance in identifying INs. The results surpass those obtained 
using the widely used SIR model and Kendall’s correlation coefficient, showcasing the effectiveness and reli-
ability of the H-GSM algorithm.

C) Superior scalability compared to other algorithmsThe H-GSM algorithm exhibits excellent scalability, mak-
ing it suitable for larger networks. Its low computational complexity and straightforward implementation 
further enhance its applicability, providing a practical and efficient solution for analyzing complex network 
structures.

Overall, the H-GSM algorithm contributes to the advancement of network analysis by offering a novel 
approach that combines local and global influences, outperforming existing centrality measures, and providing 
superior scalability for large-scale network analysis.

The rest of this paper is organised as follows: In the section titled "Method", a brief introduction of numerous 
baseline approaches and the suggested H-GSM method are explained in detail. Next, a total of six actual networks 
data from the real-world case study have been adopted and used to validate the proposed method, which are 
described in the sections titled "Datasets and evaluation criteria" and "Results and discussions" respectively. This 
study’s findings and recommendations for the future work are presented in the final section, titled "Conclusion 
and Future Recommendations".

Methods
Background analysis. Suppose a network is denoted as G = (V ,E) where V is the set of nodes and E rep-
resents the edges. If there is an edge between node i and node j, then aij = 1 they are directly connected, while 
if there is no edge, then aij = 0 they are not directly connected. The total number of nodes in the network is 
denoted as n. The indices that use in this study are introduced in this section.

Degree centrality (DC). The number of nodes close to or directly linked to a node is denoted by DC, which 
is the most basic form of centrality. DC reflects on node information at the most local level, which is straightfor-
ward and intuitive. The higher the degree, the bigger the effect of the node. A node’s degree centrality formula 
is as follows:

(1)DC(i) =

n
∑

j=1

aij
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Betweenness centrality (BC). The BC of a node is the ratio of the shortest pathways via the node to the 
total number of quickest routes. BC computes INs based on global data. A node with a high BC value serves an 
important function in linking various areas of the network. BC stands for

where gjk indicates the number of paths and gjk(i) represents the shortest paths between nodes j and k through 
a node i.

Closeness centrality (CC). CC also computes prominent nodes based on global data. CC indicates a node’s 
proximity to all other nodes in the network. It uses the shortest distance ( dij ) between each pair of nodes to iden-
tify the influence of each node. CC of a node is defined as

K-shell decomposition (Ks) method. Ks is one of the global centrality approaches for determining the 
core location of a network. Ks gives an index to each network node by deleting nodes repeatedly depending on 
their degree. Nodes with one connection are removed, and the network’s degree value is recalculated. Stripping 
additional degree nodes continues until no more nodes can be stripped. A node with a higher Ks-value is more 
significant in the network and should be given more attention or consideration when interpreting the model or 
making choices based on its predictions. The Ks metric indicates that a cluster of nodes will exhibit comparable 
significance within a  network11, yet it falls short in equitably distinguishing the nodes that possess greater influ-
ences.

Global structure model (GSM). GSM considers the node’s self-influence and global influence. The influ-
ence of node i can be expressed as

where Ks(i) and Ks
(

j
)

 denote the k-shell of node i and node j, respectively.

Improved global structure model (IGSM). IGSM is an improved GSM model considering DC instead 
of the Ks method.

Proposed method. The approach suggested in this study outperforms the GSM and IGSM methods already 
in use to identify INs in a network. The algorithm employs two indices: DC and Ks, and the suggested technique 
takes into account node position information. This is due to the fact that node placement is important in data 
distribution, and nodes in crucial places may have a stronger effect on the flow of information or resources 
within the network. The suggested technique offers a more complete approach to identifying INs in a network by 
combining these measurements and including location information.

To enhance the notion of node influence, we used the GSM’s concept of self- and global impact, but applied 
it in a creative way. By increasing a node’s DC by its Ks value, we established enhanced self-influence (iSI). This 
iSI factor was then used to calculate enhanced global impact (iGI), which takes into account all nodes that are 
directly or indirectly related to a node. The iGI factor is the sum of the neighbour ratios of the shortest route 
lengths for directed and undirected nodes with Ks and DC values. Its shortest route length is calculated by the 
average iSI value and is also referred to as information loss. In assessing node impact, the proposed H-GSM 
method takes into account both iSI and iGI parameters.

This suggested approach is significant because it can more accurately quantify how nodes in a network impact 
one another. Our strategy considers a node’s local and global impacts, as well as how it affects other nodes in 
the network and the network as a whole. Consequently, including node position information aids in better 
understanding of data dispersion throughout the network. The new technique is likely to outperform current 
methods in terms of node determination, making it an important contribution to the area of network analysis. 
The complete equation is as follows:

(2)BC(i) =
∑

j,k �=1

gjk(i)

gjk

(3)CC(i) =
N − 1
∑

j �=1

dij

(4)GSM(i) = SI(i) × GI(i) = e
Ks(i)/n ×

∑

i �=j

Ks(j)

dij

(5)IGSM(i) = improved_SI(i) × improved_GI(i) = e
DC(i)/n ×

∑

i �=j

DC(j)

d
ceil(log2(ave_DC))
ij

(6)iSI(i) = e
Ks(i) × DC(i)

N
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Computation process. Figure 1 depicts a basic network with 7 nodes and 10 edges segregated by its k-shell 
territory to further clarify the specific calculation procedure of the H-GSM algorithm. As indicated in the net-
work, we consider the H-GSM approach by using node 3 as an example of the targeted node, hence i = 3. Node 
3 is positioned on the third layer, designated by Ks = 3, as are nodes 0, 1, and 2. In terms of DC value, node 3 
obviously has five edges attached to it, resulting in DC-value = 5. We begin by computing the Ks, DC, and short-
est distance between each node.

Step 1: Determine Ks and DC value.

Step 2: Calculate improved self-influence (iSI).

Step 3: Calculate improved global influence (iGI).

Step 4: Calculate node influence of H-GSM.

(7)iGI(i) =
∑

i �=j

iSI(j)

d
cell(log2 (ave_iSI))
ij

(8)

H - GSM(vi) = iSI(i) × iGI(i)

= e
Ks(i) × DC(i)

N ×
∑

i �=j

e
Ks(j) × DC(j)

N

d
cell(log2 (ave_iSI))
ij

Ks(3) = 3 DC(3) = 5

iSI(3) = e

[

Ks(3)×DC(3)
n

]

= e

[

3×5
7

]

= 8.523756

iGI(3) =
∑

i �=j

kSI(j)

d
cell(log2 (kSI))
ij

=
kSI(0)

d
cell(log2 (ave_kSI))
ij

+
kSI(1)

d
cell(log2 (ave_kSI))
ij

+
kSI(2)

d
cell(log2 (ave_kSI))
ij

+
kSI(4)

d
cell(log2 (ave_kSI))
ij

+
kSI(5)

d
cell(log2 (ave_kSI))
ij

+
kSI(6)

d
cell(log2 (ave_kSI))
ij

=
3.617251

1cell(log2 (3.903478))
+

5.552708

1cell(log2 (3.903478))
+

5.552708

1cell(log2 (3.903478))
+

1.153565

2cell(log2 (3.903478))

+
1.770795

1cell(log2 (3.903478))
+

1.153565

1
cell(log2 (3.903478))
ij

= 17.93542

Figure 1.  (a) A network with 7 nodes and 10 edges. (b) Removing of the most outer layer, which is node 4 and 
6. (c) Removing of the next outer layer, which is node 5. (d) Summary of the Ks-territory of all the nodes in the 
network.



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:11411  | https://doi.org/10.1038/s41598-023-37570-7

www.nature.com/scientificreports/

As illustrated in Fig. 1, Table 1 presents node rankings based on the implementation of the DC, BC, CC, Ks, 
GSM, IGSM, and H-GSM methodologies. Earlier works such as DC, KS, BC, and CC could only distinguish 
between six levels. Nonetheless, DC is better at level discrimination than KS and BC. The node rating for CC 
and GSM is the same. In finding the most INs in the network, both H-GSM and IGSM outperform standard 
GSM. For example, in GSM, rank 2 cannot tell which node is more significant between nodes 1 and 2. Yet, when 
it comes to distinguishing nodes, H-GSM surpasses IGSM. For example, given the greater value, the distinction 
between nodes 2 and 1 in H-GSM is obvious.

Datasets and evaluation criteria. Datasets. In this article, we experiment with several unweighted and 
undirected graphs of varying scales. We examine algorithm performance in terms of running time and influence 
spread and compare it to that of other algorithms. We apply the Susceptible-Infected-Recovered (SIR) epidemic 
model as a benchmark simulator over six real networks, including  USAir9736, Netscience and its largest com-
ponent subgraph (Netscience1)37,  Email38,  Yeast39, and  Router40, in order to compare the performance of the 
proposed H-GSM with the other indexing methods.  Table  2 lists some elementary statistics regarding these 
networks, including their total number of nodes (n), the total number of edges (m), maximum and minimum 
degree (dmax and dmin ), and maximum core value (coremax).

SIR model. SIR is a strategy that divides the population into three categories: susceptible (S), infected (I), and 
recovered (R). Just one node is chosen to be infected in each implementation, while the other nodes are set as 
vulnerable at each separate run. The seed node infects its neighbors with varying spreading probability α,and 
will recover from the infection with the probabilities β . Each loop is viewed as a time step t, and F(t) gives the 
number of nodes infected at time t, which is used to evaluate the first infected node’s  effect41. When none of the 
nodes remain diseased, the spreading process comes to an end. The same processes are performed for each node 
in each network, with 500 iterations.

Kendall coefficient. Kendall’s coefficient is used to determine how well-simulated rankings by the SIR model 
match the true rankings reached by centrality  measures42. Kendall’s coefficient compares the similarity and con-
sistency of two sequences. If the list of ranking strategy corresponds more strongly with the list of rated node-
spreading abilities in the SIR model, the ranking method is more successful. The more INs has a larger capacity 
to propagate. Assume a network comprises n vertices, with nc and nd representing the number of concordant and 
discordant pairs, respectively. The formula for calculating Kendall’s coefficient is as follows:

H − GSM(3) = iSI(3)× iGI(3)

= 8.523756× 17.93542

= 152.877133

Table 1.  Comparison results of simple network node influence evaluation indexes.

Rank DC Ks BC CC GSM IGSM H-GSM

1 3 3, 1,
2, 0 3 3 3 3 3

2 1, 2 5 1 1, 2 1, 2 2 (13.87) 2 (111.2834)

3 0 2 0 0 1 (13.71) 1 (108.7130)

4 5 0, 4,
5, 6 5 5 0 0

5 4, 6 6 6 5 5

6 4 4 6 6

7 4 4

Table 2.  The statistics of six real-world complex networks.

Network n m dmax/dmin coremax

USAir97 332 2126 139 / 1 27

Netscience1 379 914 34 / 1 8

Email 1133 5451 71 / 1 12

Netscience 1461 2742 34 / 1 20

Yeast 2361 7182 66 / 1 10

Router 2113 6632 109 / 1 15
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The greater the τ number, the more precise the ranked list generated by the ranking system. In the optimal 
scenario, τ = 1 , the approach and the actual spreading process have identical ranking lists. With a large α value, 
the spreading would encompass nearly the whole network. In this experiment, the SIR model’s spreading prob-
ability gradually increases from 0.01 to 0.1.

Results and discussions
Computational complexity. We determine how difficult it is to utilise our strategy in order to demon-
strate how well it works before discussing how well it works. Computational complexity, often known as algo-
rithm complexity, is the amount of time or space required by an algorithm for a given input size. As previously 
stated, the method reveals that H-GSM is composed of three major components. Before executing the iSI for-
mula with an O(time) complexity, the first stage determines the DC and Ks values. The second step began with 
the implementation of Dijkstra’s shortest path length, signified by complexity, O(n2) to determine the value of 
global influence (iGI) based on the values of DC and Ks. After that, the third step is performed to identify INs, 
which is the multiplication of iSI and iGI. Because our method is an improvement of GSM, we assumed that the 
overall computing time of H-GSM is also O(n2).

We demonstrate the computational difficulty of our technique by benchmarking its execution against six 
networks. In terms of execution time, our approach surpasses DC, BC, CC, GSM, and IGSM, as shown in 
Table 3. Whilst DC is commonly touted to have the simplest form and be the easiest to calculate, in terms of 
time execution, H-GSM exceeds DC. The techniques in this work are implemented on a Windows 11 platform 
64-bit system; the machine hardware configuration is an Intel® Core i7-8550U CPU @ 2.4 Hz processor, 24 GB 
of RAM; and Python-Visual Studio Code 1.56.2 is used for programming.

Nodes spreading and discrimination comparison. We use the SIR model, which is extensively used in 
network epidemic dynamics, to quantify node impact contributions by examining their spread and differences 
across nodes. SIR decides which nodes may spread out faster and wider over time. In general, the importance 
of a node is proportionate to its capacity to expand. The node with the greatest spreading capacity has the most 
power.

Table 4 shows the top 10 nodes in six networks with great spreading capability using the DC, BC, CC, GSM, 
IGSM, and H-GSM methodologies. As illustrated in Fig. 2, the ten nodes for each strategy were then used as seed 
nodes to monitor the nodes’ convergence in propagation capacities. The number of infected nodes, F(t), increases 
with time and quickly stabilises. H-GSM has highly effective propagation throughout the majority of the network.

After that, we analyse if the existence of a node in H-GSM effects its propagation. To analyse H-convergences, 
GSM’s a node from H-GSM that was not existent in GSM is compared with a node from GSM, as shown in 
Table 4. The following are the findings:

USAir97. All metrics had the same initial affected nodes in terms of node rank. When we looked at GSM, 
IGSM, and H-GSM, we discovered that their top 10 nodes were identical except for the order. When compar-
ing H-GSM with GSM, the top five nodes are the same, but the sixth varies. As shown in Figure 3a, node 90 
(H-GSM) and node 58 (GSM) behave similarly in the beginning, however node 90 had a surge from t = 2 to t = 
5. In a while, node 90 may infect others more than node 58 over time.

Netscience1. The lists produced by the various approaches vary in terms of the rank of each node. The first 
three lists spanning DC, IGSM, and H-GSM are largely identical, with the main change being the order in which 
the items occur. When node 58 (H-GSM) is compared to node 14 (GSM), as shown in Figure 3b, we can observe 
that node 58 performs better since it spreads quicker and further over time.

Email. It seems that the top five GSM, IGSM, and H-GSM nodes all have similar ranks in this network. The 
same five nodes appear in all three DC, BC, and CC variations. As illustrated in Figure 3, node 15 (H-GSM) has a 
quicker node effect than node 298 (GSM), despite their long-term behaviour being very comparable (GSM) (c).

(9)τ =
nc − nd

0.5n(n− 1)

Table 3.  Time execution for computational complexity for six networks.

Network t(DC) t(BC) t(CC) t(GSM) t(IGSM) t(H − GSM)

USAir97 0.6 0.5 0.1 0.3 0.3 0.4

Netscience1 0.6 0.5 0.2 0.4 0.3 0.4

Email 0.5 4.7 1.2 0.4 0.3 0.3

Netscience 0.4 1.6 0.2 0.4 0.4 0.3

Yeast 0.6 17.9 5.5 0.4 0.4 0.4

Router 0.4 14.1 4.4 0.4 0.5 0.3

Average 0.52 6.55 1.93 0.38 0.37 0.35
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Netscience. Node 106 appears in the top five node rank lists for every technology except GSM in this net-
work. Hence, if we look at node 106 in H-GSM, we can see that it eventually outperforms node 54 in GSM in 
terms of how quickly and far it expands over time. Figure 3 displays the results (d).

Yeast. Similarly, node 35 occurs in the top 10 nodes rated in all methods except GSM. As shown in Figure 3, 
node 35 (H-GSM) has a greater overall effect than node 596 (GSM) in terms of the pace at which it expands and 
the total node influence it holds (e).

Router. The patterns seem to be the same for node 139 (H-GSM) and node 369 (GSM), with the exception 
that node 139 appears to be more important in that it is spreading faster and broader than node 369. After com-
paring the rankings for various techniques to the list of node ranks in GSM in Figure 3f, it was discovered that 
only a handful were enrolled in the top-10 most INs.

Kendall’s model comparison. The SIR and Kendall models are used to ensure that the relationships dis-
covered between H-GSM and other well-known metrics of centrality are relevant and helpful. Kendall’s for the 

Table 4.  Top-10 ranking nodes for: (a) USAir97, (b) Netscience1, (c) Email, (d) Netscience, (e) Yeast and (f) 
Router network.

Rankings

USAir97

Rankings

Netscience1

DC BC CC GSM IGSM H-GSM DC BC CC GSM IGSM H-GSM

1 25 25 25 25 25 25 1 3 58 58 4 58 3

2 97 3 97 97 97 97 2 4 106 119 3 4 4

3 95 97 23 95 95 95 3 58 189 106 5 3 58

4 80 27 95 85 85 85 4 5 119 44 13 106 5

5 85 7 27 80 80 80 5 72 72 187 14 119 119

6 90 85 85 58 58 90 6 219 4 107 15 44 13

7 58 95 7 23 90 58 7 119 44 4 16 107 44

8 23 80 28 90 23 23 8 13 187 6 28 5 106

9 24 29 58 27 24 24 9 7 6 130 29 187 107

10 27 10 24 24 27 27 10 106 178 135 119 189 219

(a) (b)

Rankings

Email

Rankings

Netscience

DC BC CC GSM IGSM H-GSM DC BC CC GSM IGSM H-GSM

1 104 332 332 104 104 104 1 43 106 106 44 106 43

2 332 104 22 332 332 332 2 44 184 204 43 44 44

3 15 22 104 22 22 22 3 106 328 184 45 184 106

4 22 577 41 41 41 41 4 45 204 84 53 43 204

5 41 75 40 40 40 40 5 531 120 326 54 204 184

6 40 232 75 75 75 15 6 892 44 185 55 84 84

7 195 134 232 298 232 232 7 893 84 44 56 185 45

8 232 40 51 232 51 195 8 894 326 46 68 326 185

9 20 354 134 51 134 75 9 120 46 215 69 328 53

10 75 41 377 134 377 20 10 143 305 220 204 45 326

(c) (d)

Rankings

Yeast

Rankings

Router

DC BC CC GSM IGSM H-GSM DC BC CC GSM IGSM H-GSM

1 19 446 215 596 215 248 1 100 2 2 89 100 100

2 248 20 35 248 248 581 2 139 0 100 384 139 139

3 441 35 615 581 35 35 3 350 100 89 350 2 350

4 20 19 248 427 20 427 4 62 139 139 356 89 89

5 35 441 20 85 19 19 5 48 159 0 369 0 384

6 446 215 19 279 441 20 6 242 508 242 279 242 0

7 96 248 581 82 581 85 7 113 99 384 381 99 135

8 427 103 441 435 615 441 8 135 350 426 185 62 48

9 581 308 813 250 427 446 9 0 62 99 367 384 2

10 85 427 85 569 85 215 10 51 179 216 100 350 356

(e) (f)
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proposed H-GSM and other approaches is shown in Fig. 4. In Kendall’s words, H-GSM surpasses state-of-the-
art baseline approaches implemented on various network topologies by an alpha of 0.01 to 0.10, proving that it 
effectively conveys information. The H-GSM surpassed competitors for USAir97 and Netscience 1. H-GSM rates 
strongly in the Email, Netscience, Yeast, and Router categories while being somewhat inferior to the top two 
approaches. In comparison to H-GSM and IGSM, the original GSM technique has a low value.

Figure 2.  Propagation influence of top 10 nodes of six networks by six methods.
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Conclusion and future recommendations
When H-GSM findings are compared to GSM and other techniques, it is evident that H-GSM is superior. H-GSM 
is a hybrid strategy that improves on the GSM methodology by taking into account both the network’s local and 
global structure, as represented by the DC and KS approaches, respectively. The capacity of a node to exchange 
information with all other nodes, as well as the node’s own impact, are utilised as indicators to measure the node’s 
influence in the network. The fundamental assumption is that the place and degree of connectedness of nodes 
are the major drivers of their influence. The more common nodes there are between two nodes, the closer they 

Figure 3.  Node’s discriminatory comparison of H-GSM and GSM for (a) USAir97, (b) Netscience1, (c) Email, 
(d) Netscience, (e) Yeast, and (f) Router networks.
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are, suggesting a better capacity to transfer information. The more significant a neighbour node is, the more it 
contributes to a node’s influence.

To analyse the usefulness of the proposed strategy, we use the SIR model to simulate the propagation process 
and perform tests on the two major aspects of discrimination and accuracy in diverse real-world networks. 
First, when compared to other techniques, H-GSM has the lowest average computational complexity in terms 
of execution time. Second, the proposed technique illustrates that integrating local and global information may 
successfully decouple a node’s value by comparing the top ten most INs. Moreover, the suggested technique in 

Figure 4.  Kendall coefficient results comparisons for the six methods for (a) USAir97, (b) Netscience1, (c) 
Email, (d) Netscience, (e) Yeast, and (f) Router networks.
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the research outperforms others in ranking correlation, proving its high accuracy. Finally, by integrating the 
strengths of the DC and Ks indices and incorporating additional self- and global impact metrics, the proposed 
H-GSM algorithm improves on previous techniques. The addition of location and node data improves its capac-
ity to recognise important nodes in a network. We think that our suggested technique will make a substantial 
contribution to the area of network analysis and will be beneficial in a variety of applications.

In conclusion, this paper has presented the H-GSM as a novel approach for analyzing complex networks. By 
considering both local and global information of each node, the H-GSM algorithm addresses the deficiencies of 
current techniques and offers a more comprehensive understanding of network structures. H-GSM algorithm 
presents a significant step forward in network analysis, enabling researchers to gain deeper insights into complex 
network structures and identify INs with improved accuracy and scalability. This is one of our early efforts by 
using the network’s topological connection structure. Additionally, we will continue our study by evaluating 
other combinations and validation approaches in order to increase the performance of the methodologies offered.

Data availability
The dataset that being used in this article can be downloaded freely from These networks can be downloaded 
from KONECT (http:// konect. cc/ netwo rks/) and NETWORK (https:// netwo rkrep osito ry. com/ netwo rks. php).
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