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Abstract: Data Warehouse (DW) and on line analytical processing (OLAP) as parts of business intelligence (BI) are 

proven platform for decision-making support. Over the previous decade, the advent of Web 2.0 technologies has 

increased the accessibility of the data web across the internet. The use of semantic web (SW) including linked open 

data, linked open statistical data, and open government data is rising at a breakneck pace, creating a greater pool of 

machine-readable data that can be shared and analyzed for strategic decision-making. The new DW concept takes a 

novel approach to merging the availability of these data resources containing the spatiotemporal data. This paper 

proposed a way to publish agricultural production data in SW using a spatiotemporal DW vocabulary called 

QB4MobOLAP. The data sources come from the village and rural area information system (SIDeKa), which records 

agricultural production transactions with spatiotemporal information. This paper also applying a new spatiotemporal 

data warehousing technique for analyzing spatiotemporal data for agricultural productivity. The experiment uses 

2.916.864 triples with temporal type data in a fact table, and 81.914 triples dimension data with spatial and temporal 

data. This approach offers a practical, simple model, and good performance for enabling executive decisions on 

agriculture production analysis. The experiment has execution time average below 10 s for spatiotemporal aggregation 

and less development time compared with DBMS. This approach also has 5-stars open data index. This paper also 

highlighted opportunities for scaling and fostering the spatiotemporal data warehousing initiative. 

Keywords: Spatiotemporal, Data warehouse, Open data, Semantic web, Agriculture production analytics. 

 

 

1. Introduction 

With the support of information technology, the 

Indonesian government's policy has focused on the 

development of the agricultural sector during the past 

decade. In Indonesia, where agricultural land is 

highly concentrated within villages, agricultural 

expansion is connected with village growth. 

Currently, the village community produces the most 

agricultural commodities. Agriculture contributes 

significantly to indonesia's gross domestic product 

(GDP). According to the world bank, the agriculture 

sector's GDP continued to increase from 2013 to 

2021. In 2021, agriculture, forestry, fisheries, and 

value added accounted for 13.33 percent of 

Indonesia's total GDP and 139.18 billion USD. 

Long-term food safety remains an ongoing 

challenge for many countries, including Indonesia a 

predominantly agricultural nation. Safe food refers to 

both available food and the amount of food that is 

required. The indonesian statistics central bureau and 

the agriculture ministry currently oversee and 

generate all official data and information pertaining 

to Indonesia's food resources in order to make 

judgments about how to best satisfy household food 

needs. However, these institutions lack an efficient 

system for gathering agricultural data and forecasting 

food from farming operations. In the context of 

sustainable food safety, many concerns involving 

spatial and temporal facts must be answered, such as 

(a) how much rice was produced  
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Figure. 1 Farming cycle, adapted from [1] 

 

by farmers in some district during the month of 

Ramadan this year? How much seed and fertilizer 

will be required over the next two months? (c) On a 

sub-district basis, how many soybean agricultural 

fields failed due to pests in the past year at a given 

location? 

From the farmer's perspective, the farming cycle 

is divided into three stages, which are as follows: (1) 

Pre-planting, (2) Planting and harvesting, and (3) 

Post-harvest. Figure 1. Shows the detail agricultural 

cycle has been discussed on [1]. 

The One Data initiative (https://data.go.id) 

pioneered the integration of agricultural data in 

Indonesia, although this data lacked particular 

location and temporal information. This data is rarely 

complete in terms of agriculture production progress. 

Since the 5-star open data concept emerged, the 

government and researchers have been drawn to the 

concept of open data. Many governments, including 

the United States, the United Kingdom, France, 

Australia, and Indonesia, participate in open data 

sharing and publication. Open data government 

provides significant benefits in terms of transparency, 

citizen service, effectiveness and efficiency, 

innovation, and economic growth. Indonesia ranks 

61st out of 94 countries, with a score of 25% on the 

global open data index.  

Open data has a five-category index, which is as 

follows: (a) 1-Star: data is stored in a variety of 

formats, is accessible via the internet, and adheres to 

open license standards. (b) 2-stars: data is available 

in structured, machine-readable form (e.g., 

spreadsheet instead of image scan), (c) 3-stars: data 

is provided in the same format as 2-Stars and is not 

proprietary (e.g., CSV instead of Excel), (d) 4-Stars: 

Data is available as 3-Stars and conforms to the W3C 

open standard for identifying objects so that persons 

can point to them; (e) 5-Stars: data is available as 4-

Stars and conforms to the Linked Open Data (LOD) 

standard. 

This study proposes the development of a 

spatiotemporal DW on SW system for agricultural 

production analytics, which connects many data 

sources utilizing open data formats with a five-star 

rating. The DW vocabulary has been represented in 

an our new QB4MobOLAP, an extension of the 

QB4OLAP vocabulary.  

This research is structured in such a way that 

section 2 examines related works and the state of the 

art in spatiotemporal DW in SW. Section 3 details the 

research methods used in this study. Section 4 

discusses the research's discussion and findings, 

while section 5 concludes the article and discusses 

future works. 

2. Related works 

2.1 Data warehouse for government services 

BI implementation has expanded dramatically 

over the previous two decades, owing to the 

expanding number of BI products available on the 

market. The DW is the central notion of BI. It serves 

as an organization's corporate data store. DW is 

defined as a technology that aides decision-makers in 

making tactical or strategic decisions and possesses 

subject-oriented, non-volatile, time-varying, and 

integrated qualities [2]. 

DW has demonstrated its ability to supply 

technology that aids in decision-making, notably in 

governmental institutions. Liu et al. developed the e-

GovMon data warehouse to serve as an e-government 

data repository. The E-GovMon was developed 

utilizing open source technologies, including a 

PostgreSQL database management system, 

operational service data as a data source, and a real-

time ETL tool for data acquisition, transformation, 

and population. Although this data warehouse is 

distributed, this project does not recognize the data 

source's shareability as open data[3]. Additionally, 

Maliappis et al. recommended the use of OLAP data 

warehouses for agricultural decision-making in 

Greek. The purpose of this project is to combine a 

variety of agricultural data sources with varying 

characteristics, multiple dimensions, granularity, and 

user needs. The authors of this study devise a method 

for efficiently producing information through the 

usage of a data warehouse. The study makes use of 

pentaho data integration tools for ETL procedures 
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and an open source relational database management 

system for data storage [4]. Arora and Gupta present 

an overview of India's data warehouse 

implementation. The DW might aid the government 

in increasing efficiency and reducing costs across a 

range of industries, including agriculture, education, 

healthcare, and transportation. However, this article 

continues to employ isolated data and omits the 

concept of shareability associated with open data [5]. 

While the implementation of the DW in [2-5] 

achieves an amazing outcome in terms of providing 

government support for decision making, all studies 

still have drawbacks in terms of facilitating data 

sharing. Even if these studies make use of open 

source technology, the open notion of the data 

remains restricted. 

2.2 Spatiotemporal data warehouse on semantic 

web 

The SW grows with various data types, including 

spatiotemporal objects data. Spatiotemporal data 

grows due to mobile devices, GPS, IoT, network 

sensors, and location-based applications. The 

development of the spatiotemporal DW model on the 

SW starts from the Spatial SW, commonly referred to 

as Geospatial SW. Perry et al. instated that the web 

has much spatial and temporal data, and the 

technology of SW potentially could make the 

accessibility and usefulness of data better. Because of 

the lack of ability of SPARQL to query complex 

spatial and temporal data, Perry et al. proposed a new 

query language, SPARQL-ST, which is an extension 

of SPARQL for complex spatiotemporal queries. 

This research suggested a formal syntax and 

semantics, added spatial variables and constructs for 

manipulating temporal triples in SPARQL-ST, and 

applied them as a prototype built on a commercial 

DBMS [6]. This approach combines spatiotemporal 

SW with limited basic operations for spatiotemporal 

data like topological and temporal relationship. It also 

cannot be applied for aggregation and analytic query 

functions. Linked Geospatial Data in the UK 

government has been successfully deployed, 

followed by the production of geospatial datasets by 

the Ordnance Survey Company for areas of the UK 

that SPARQL Endpoints can access [7]. With the 

introduction of GeoNames, a linked data dataset that 

gathers geographical and thematic information for 

place names in multiple hemispheres and languages, 

linked data is gaining popularity. It stores longitude, 

latitude, altitude, population, and administrative 

information in accordance with the World Geodetic 

System 1984 (WGS84) regulations. Furthermore, 

LinkedGeodata is a linked data SW infrastructure 

converted from OpenStreetMap; this linked data is 

very useful for integrating and aggregating data 

related to maps [8] and is readily queryable via 

SPARQL. This technique drew the attention of 

several academics as a potential spatially-linked data 

paradigm, but it did not include temporal data. 

The temporal element was then included as a 

spatiotemporal SW in the construction of the YAGO2 

ontology, a continuation of the YAGO knowledge-

based ontology in which entities, events, and facts are 

coupled with information about space and time. By 

automating Wikipedia, GeoNames, and WordNet-

linked data, YAGO2 was created. At now, YAGO2 

includes 447 million facts and 9.8 million entities. 

YAGO2 employs the SPOTL model data (5 tuples), 

which is SPO's expansion (3 tuples). On YAGO2, 

entities are given a period, whereas facts are given a 

time point or period (Hoffart et al., 2013). YAGO2 

became a good methodology for enriching large 

spatiotemporal knowledge bases, but this approach 

did not have a query extension for this spatiotemporal 

representation [9]. 

In addition, GeoSPARQL, a query language that 

adds geographic aspects to SPARQL, has been 

created. GeoSPARQL is an SW vocabulary that 

enables the representation of geographical data. 

GeoSPARQL consists of two fundamental 

components: an ontology for storing geographical 

objects and query methods for analyzing the 

connections between geospatial items. The ontology 

is derived from OGC standards that provide 

expressive ideas and vocabulary. GeoSPARQL's 

ontology is designed to be compact for ease of 

comprehension and attachment. There are two 

primary classes in the GeoSPARQL ontology; 

feature and geometry. A feature is a spatially-

attributed object. Feature examples include a building, 

statue, castle, lake, etc. Geometry is a form, such as a 

point, line, triangle, or hexagon, used to depict the 

spatial placement of a feature. SpatialObject, the third 

class, is a superclass of both feature and geometry. 

W3C has adopted GeoSPARQL as a geographical 

RDF standard for data modeling and querying [10]. 

GeoSPARQL provides several outstanding 

characteristics for geospatial implementation on SW. 

However, it does not support analytical queries and 

has no extension for representing and querying 

spatiotemporal and mobility data.  

Further, EU research ran the GeoKnow project 

for three years, from late 2012 to 2015. This project 

extends the LinkedGeoData project, which develops 

OpenStreetMap that makes data available as an RDF 

base. The RDF model and GeoSPARQL standard are 

the foundation for describing and querying 

geographic data in this project. GeoKnow 
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contributive findings are (a) the introduction of query 

optimization methods of geospatial RDF for better 

performance than existing RDF stores, even still 

lacking analysis performances compared to relational 

DBMS, (b) aggregation of geospatial RDF data with 

fusion [11]. The adoption of the RDF Triple store for 

semantic geospatial and GeoSPARQL queries 

developed with the advent of Parliament RDF [10]. 

The development of stRDF/stSPARQL is an 

alternative proposal comparable to GeoSPARQL. 

The stRDF is a data paradigm that extends RDF in 

order to express dynamic geographical information 

[12]. stRDF defines spatial and temporal dimensions 

using spatial and spatial literal data types. Strabon 

was then created as an RDF store that supports 

stSPARQL and GeoSPARQL, which are semantic 

geographic query languages. With the stRDF data 

model and these query languages, Strabon is 

expressive. The performance of strategic is scalable 

to enormous amounts of data and performs well [13]. 

stRDF/stSPARQL has included many elements of 

spatial data representation and query 

implementations, however, it lacks adoption of 

spatiotemporal data and analytical capabilities. 

Zhang et al. suggested an addition to SPARQL 

for modeling spatiotemporal relationships and 

querying a quantitative spatiotemporal connection. 

The extension model adds a time- and space-based 

event model. The query extension produced 30 new 

query operators that were able to identify hidden links 

between items in event ontology with high speed and 

efficiency [14]. This method provides SPARQL 

capabilities extensively; however, it does not yet 

support the spatial-temporal analytical query. 

Alternatively, Gur et al. presented QB4SOLAP, a 

general and extendable language (meta-model) for 

spatial DW on the SW. QB4SOLAP adds spatial 

concepts to the QB4OLAP vocabulary. In addition, 

they provide QB4SOLAP formalization. The 

essential spatial cube ideas, spatial hierarchies and 

levels, measurements, aggregation functions, and 

topological interactions between spatial dimensions 

and hierarchical level members have been defined in 

this article. In addition, they established many 

analytical spatial OLAP operators over QB4SOLAP, 

their formal semantics, and methods for creating 

geographically extended SPARQL queries [15]. The 

QB4SOLAP has a significant result for modeling and 

querying spatial analytical data, but this work is only 

limited to spatial data and not to spatiotemporal data 

with more dynamic characteristics. 

Table 1 provides an overview of the previous 

model and query of spatial and new spatiotemporal 

DW on SW using QB4MobOLAP. 

2.3 QB4MobOLAP vocabulary 

QB4MobOLAP is the vocabulary for 

representing spatiotemporal/mobility DW on the SW. 

QB4MobOLAP using MobilityObject for 

representing spatiotemporal data. QB4MobOLAP is 

an extension vocabulary from QB, QB4OLAP, and 

QB4SOLAP. Fig. 2 depicts the QB4MobOLAP 

vocabulary.  The QB4MobOLAP vocabulary enables 

DW schemas and DW instances to be defined as RDF 

triples. QB4MobOLAP expands the QB4OLAP 

vocabulary with spatiotemporal notions to enable 

spatiotemporal OLAP operations over RDF data via 

SPARQL queries. The rectangle with a gray 

background is a QB and QB4OLAP vocabulary 

extension class, subclass, and object property. These 

classes could be used for representing the 

spatiotemporal/mobility cube class. QB4MobOLAP 

makes an extension on built-in function QB4OLAP, 

which is represented with classes 
qb4mob:MobilityTemporalAggrFunction 

and 
qb4mob:MobilitySpatialAggrFunction 

in the vocabulary. The 
qb4mob:MobilityTemporalAggr Func 

class has instances qb4mob:TAvg, 
qb4mob:TCount, qb4mob:TMin, 

qb4mob:TMax, and qb4mob:TSum. The 
qb4mob: MobilitySpatial-AggrFunc 

class has instances qb4mob:TCentroid, 

qb4mob:TUnion, qb4mob:TConvexHull, 

qb4mob: TIntersect, and qb4mob:TMBR. 

The QB4MobOLAP also introduced classes 

qb4mob:MobilityObject for representing 

mobility data types. The  

qb4mob:MobilityObject has subclasses 

qb4mob:MobilityBase and 

qb4mob:MobilityGeometry. 

QB4MobOLAP is a viable approach for modeling, 

publishing, and querying spatiotemporal DW on the 

SW while taking multidimensional approach into 

account. In this paper, we implemented 

QB4MobOLAP with a creation of a spatiotemporal 

data cube from Indonesian open agriculture 

production data. Additionally, we demonstrate how 

to leverage multidimensional spatiotemporal linked 

data on the SW, which involves not only adding 

semantics and connecting different data sets on the 

SW, but also enabling analytical inquiries through the 

use of spatiotemporal data cubes. 
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Table 1. Model and query comparison DW on SW 

 SPARQL

-ST [6]  

Linked 
Geo 
Data[8] 

YAGO2 

[9] 

Geo 

SPARQL 

[10] 

stRDF/ 

stSPAR

QL [12] 

SPARQL 

Ext. [14] 

QB4 

SOLAP 

[15] 

QB4Mob

OLAP  

[16] 

MODEL         

  Semantics and 

Ontology 

√ √ √ √ √ √ √  

  Feature and 

Geometry 

√ √  √ √ √ √  

  Spatial Fact    √ √  √  

  Spatial Measures    √ √  √  

  Spatial Hierarchy       √  

  Spatiotemporal 

Fact 

       √ 

  Spatiotemporal 

Measures 

       √ 

QUERY         

 Topological 

Relationship  

√ √  √ √ √ √  

   Unary 

Operations 

   √ √    

   Binary 

Operations 

   √ √    

   Numeric 

Operations 

   √ √    

   Azimuthal 

Relationship 

   √ √ √   

   Temporal 

Relationship 

(Before, After, 

etc)  

√ √ √   √   

Spatiotemporal 

Operations 

        √ 

Lifting 

operations of 

temporal types 

       √ 

 Spatial 

Distributive 

 √     √  

 Spatial 

Algebraic 

      √  

 Spatial Holistic       √  

Spatial-Rollup       √  

Spatial-Slice       √  

Spatial-Dice       √  

Spatial-Drill-

down 

      √  

Spatiotemporal-

Rollup 

       √ 

Spatiotemporal -

Slice 

       √ 

Spatiotemporal -

Dice 

       √ 

3. Research methodology 

The methodology of our research is a constructive 

research. This constructive research concentrated on 

the development of methodologies, models, modules, 

tools, and approaches that were applicable beyond the 

realistic study that inspired them [22]. The research 

activities are depicted in Fig. 3.  
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Figure. 2 QB4MobOLAP vocabulary 

 

 
Figure. 3 The research activities 

 

The step of the research are the following: 

1. Preparation process: Preparation process held by 

literature review that reported in [17] 

2. Design process: The design process of the 

research comprised of the step: (a) Preliminary 

research, (b) Theoretical framework, and (c) 

Design and implementation. The design and 

implementation were conducted by developing 

spatiotemporal DW vocabulary on SW.  

3. Evaluation and validation: Evaluation and 

Validation is the process to validate the 

model/vocabulary, the query operators, and 

functions proposed in the previous step. The 

validation applied by implementing them to a 

practical use case. A detailed performance study 

of our implementation also conducted using large 

synthetic and real-world RDF datasets.  
This paper is in the evaluation and validation 

phase of the research. This phase has a cycle related 

to development and evaluate the query performance, 

in the following manner: (1) Requirement analysis 

including identification, specification, refinement, 

and prioritizing of user requirements; (2) Design the 

DW by creating a snowflake/star model DW 

including fact tables, measurements, and dimensions. 

Additionally, the design process incorporates 

spatiotemporal measures and dimensions; (3) Extract, 

Transform, Load, and Link (ETLL) the data into an 

RDF DW using the QB4MobOLAP vocabulary; (4) 

Implement the Spatiotemporal OLAP query for the 

RDF DW; and evaluate both execution and 

development time of the spatiotemporal OLAP query. 

4. Results and discussions 

The creation of the spatiotemporal DW begins 

with a requirement study. The following steps are 

involved in the requirement analysis process: 

4.1 Requirement analysis  

Identification, specification, refinement, and 

prioritizing of user requirements including the process 

of identification of user group, user, and goal 

prioritization. The user and group of users in this case 

are government, industry, and civil community. The 

priority goal of the DW implementation is to support 

decision making for strengthening the food 

availability and handling of food safety. The decision 

making could be supported by descriptive and 

diagnostic analytics with some queries. The detail 

queries shown in the next section.  
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Figure. 4 The AgriProd data warehouse relational schema 

4.2 DW design 

The spatiotemporal DW design, including facts, 

measures, and dimension shown in Fig. 4. This design 

introduces new temporal type measures and spatial 

dimensions with hierarchy. The _Geo postfix 

indicates a spatial attribute that contains a collection 

of location or geographic information. 

4.3 The extract, transform, load, and link process  

Extract, transform, load, and link (ETLL) is the 

process for integrating disparate data sources and 

loading them into enterprise DW.  

Data source 

The data source is open transactional data from the 

village information system (SIDeKa), which may be 

accessed via REST API web services running on top 

of the SIDeKa server. The web service is written in 

PHP and is based on the CodeIgniter framework. Each 

SIDeKa server has a number of unique endpoints. 

Each endpoint will be responsible for a single function, 

which will return a value or set of values from a 

transactional database in SIDeKa via JSON formats.  

Cube definition in QB4MobOLAP 

QB4MobOLAP vocabulary has modeled a 

spatiotemporal/mobility DW in RDF terms. DW has 

observation facts that is central to multidimensional 

analysis, the DW is called cube. Facts have a set of 

properties called measures, which have aggregate 

functions that can be defined. To provide alternative 

analytic viewpoints, a multidimensional data cube has 

n dimensions (with the attribute of contextual 

information) on a multidimensional space, where each 

dimension might have hierarchies with levels. Users 

can aggregate measures (of facts) at multiple levels of 

detail by using levels (of dimensions) (a.k.a. 

granularity). Dimensions and facts are tied to the 

structure to assist this analysis at various detail levels. 

Levels also include attributes that describe the basic 

features of the members of the level. 

These multidimensional concepts and their roles 

and relationships are annotated at the schema level in 

RDF triple format using the QB4OLAP vocabulary. 

Schema level (RDF) multidimensional elements 

correspond to tables and columns (of tables). Fact 

member with measure values and level members with 

attribute values are instance-level concepts annotated 

at the instance level with QB4MobOLAP Vocabulary. 

These instance level (RDF) cube elements correspond 

to the actual data rows/records annotated in triple 

format with QB4MobOLAP. 

An RDF triple t is made up of three parts: the 

subject (s), the predicate (p), and the object (o), which 

is defined as triple (s,p,o) ∈ t = (I ∪ Bn) × I × (I ∪ 

Bn ∪ L), where I is the set of IRIs, Bn is the set of 

blank nodes, and L is the set of literals. The DW using 

Cube Schema (CS) with element x defined as, CS(x) 

∈ (I ∪ Bn ∪ L) yielded a set of triples T and denoted 

by (x rdf:type ex:Property). 

DW Schema  

A data structure definition (DSD) contains 

information about the schema of a data set (i.e., a data 

warehouse, an instance of the class qb:DataSet). 

The DSD can be applied to a variety of data sets. A 

data set's DSD includes dimensions, levels, measures, 

and attributes, in addition to component properties. As 

CS = DSD, the DSD is defined by a conceptual MD 

cube schema CS, which includes a collection of 

dimension types D, a collection of measure M, and a 

collection of fact types as CS = (D, M, F). The 

following definitions apply to the cube schema 

elements: 

Attributes. An attribute a ∈ A = {a1, a2, . . . , an} 

has a domain a:dom in the cube schema CS with a 

set of triples ta ∈ T where ta is represented as (a 

rdf:type qb:AttributeProperty; rdfs:domain 

xsd:Schema). 

Levels. A level l ∈ L = {l1, l2, . . . , ln} consists of 

a set of attributes Al, which is defined by a schema 

l(a1: dom1, . . . , an: domn), where l is the level, and 

each attribute a is defined over the domain dom. 

For each level l ∈ L in the cube schema CS, a set 
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of triples tl ∈ T represented as (l rdf:type 

qb4o:LevelProperty; 

qb4o:hasAttribute a).  

Dimensions. A set of dimensions D = {d1, d2, . . . , 

dn} form a cube schema with n dimensions. Each 

d ∈ D contains a tuple d = (L, H); where L is a 

Level and H is a hierarchy. In the cube schema CS, 

each dimension d ∈ D has a set of triples td ∈ T, 

which is defined as (d rdf:type 

qb:DimensionProperty; 

qb4o:hasHierarchy h). Example 1 gives 

instances of level, example 2 gives instances of 

hierarchy, and example 3 gives dimensions 

example instances in Agriculture Production DW. 

Examples 1  

agri:districts a 

qb4o:LevelProperty;            

      qb4o:hasAttribute 

agri:districtId;  

      qb4o:hasAttribute 

agri:districtName;    

      qb4o:hasAttribute 

agri:districtGeo.  

Examples 2   

#Hierarchies: 
agri:LocationGeography  rdf:type 

qb4o:hierarchy;  
qb4o:inDimension 

agri:DimDistrict; 
qb4o:hasLevel agri:field,  

agri:village, agri:subdistrict, 

agri:district. 

Example 3  

#Dimensions: 

agri:DimDistrict  rdf:type 

qb:DimensionProperty; 

qb4o:hasHierarchy 

agri:LocationGeography. 

agri:DimCrops rdf:type 

qb:DimensionProperty . 

agri:DimDate rdf:type 

qb:DimensionProperty; 

qb4o:hasHierarchy 

agri:timeHierarchy. 

Measures. Facts have a property called measures. 

A measure m ∈ M = {m1, m2, . . . , mn} in the cube 

schema CS is represented as (m rdf:type 

qb:MeasureProperty; 

rdfs:subPropertyOf sdmx-

measure:obsValue; rdfs:domain 

xsd:schema).  

Facts. Facts are associated with values of 

dimensions and measures. A fact denotes as f ∈ F 

= { f1, f2, . . . , fn}. The relation of the facts is 

described in components in the schema level of the 

facts cube definition, which is determined by (F 
rdf:type 

qb:DataStructureDefinition; 

qb:component[qb4o:level l; 

qb4o:cardinality c]; 

qb:component[qb:measure m; 

qb4o:aggregateFunction AF]). 

Cardinality, c ∈ {1 − 1, 1 − *, * − 1, * − *} specifies 

the relationship cardinality between facts and level 

members. The definition of the cube schema 

requires the specification of measures aggregate 

functions. QB4OLAP defines typical aggregate 

functions, for example, AF ∈ {Sum, Avg, Count, 

Min, Max}. The facts are presented at the instance 

level, with each fact f having a unique IRI I, an 

observation. The fact is represented as (f 

rdf:type qb:Observation).  

Spatial Attributes. Spatial attributes are specified 

on a domain level. Each attribute with geometry 

domain (sa : domgeo ∈ A) is a member of the 

geo:Geometry class and is referred to as a 

spatial attribute, which is represented in the cube 

schema CS as (sa rdf:type 

qb:AttributeProperty; rdfs:domain 

geo:Geometry). In the instances, each spatial 

attribute type (point, polygon, line, etc.) is 

assigned using the predicate rdfs:range. 

Spatial Levels. In the cube schema CS, a spatial 

level ls ∈ L is defined by a set of triples tls ∈ T and 

represented as (ls rdf:type 

qb4o:LevelProperty; 

qb4o:hasAttribute a, as; 

geo:hasGeometry geo:Geometry). 

Spatial levels must be geo:Geometry class 

members and may have spatial attributes. Example 

4 shows District level as a spatial level with spatial 

attribute. 

Example 4  

#Attributes 

agri:DistrictId rdf:type 

qb4o:levelAttribute; 

qb4o:inLevel agri:District; 

rdfs:range xsd:Integer . 

agri:DistrictName rdf:type 

qb4o:levelAttribute ; 

 qb4o:inLevel agri:District; 
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Figure. 5 The deployment diagram of AgriProd data 

warehouse 
 

 rdfs:range xsd:String . 

agri:plantationGeo rdf:type 

qb4o:levelAttribute ; 

 qb4o:inLevel agri:District; 

rdfs:subPropertyOf 

geo:Geometry; 

rdfs:range geo:wktLiteral; 

rdfs:domain geo:Polygon; 

rdfs:subClassOf 

geo:SpatialObject; 

Spatiotemporal Measures. A spatiotemporal 

measure stm ∈ M is specified in the cube schema 

CS by a set of triples tstm ∈ T and encoded as (stm 
rdf:type qb:MeasureProperty; 

rdfs:subPropertyOf sdmx-

measure:obsValue; rdfs:domain 

qb4mob:MobilityBase/MobilityGeome

try). The class of the numeric value is given with 

the property rdfs:domain and rdfs:range 

assigns the values from the class 
qb4mob:MobilityBase/ 

mobilityPoint, i.e., temporal integer, 

temporal float, temporal point, temporal polygon, 

etc. at the instance level.  

Spatiotemporal Facts. Spatiotemporal facts Fst 

have spatiotemporal nature relates several 

dimensions either spatial or temporal. 

Spatiotemporal fact cube has spatiotemporal 

measures (mst), as its members make it possible to 

aggregate along with spatiotemporal measures 

with the aggregation functions Magg. 

Representation of a complete mobility fact cube at 

the schema level in RDF is given by a set of triples 

tfs ∈ T and encoded as (fs a 

qb:DataStructureDefinition; qb: 

component [qb: measure ms, sdmx-

measure:obsValue; 

qb4mob:aggregate-functionMAF]). 

QB4MobOLAP extends the built-in functions of 

QB4OLAP with mobility aggregation functions, 

which is added with a class 

qb4mob:MobilityTemporalAggrFunc or 
qb4mob:MobilitySpatialAggrFunc. 

Example 5 display the creation of a spatiotemporal 

fact instance fst with its relation to measuring 

values and dimension levels 

(agri:harvestProduce), which is 

production rate that change by time. Specification 

of the spatiotemporal/mobility aggregate function 

for harvestProduce (production rate by time) can 

be specified as the "Time Average/TAvg". 

Example 5  

#Measures 

agri:HarvestProduce rdf:type 

qb:MeasureProperty;  

    rdfs:domain 

 qb4mob:MobilityDecimal; 

    rdfs:range geo:wktLiteral; 

    rdfs:subClassOf qb4mob: 

MobilityObject . 

agri:YieldsInCurrency rdf:type 

qb:MeasurePro-perty;  

    rdfs:domain 

 qb4mob:MobilityDecimal; 

    rdfs:range geo:wktLiteral;  

    rdfs:subClassOf 

qb4mob:MobilitylObject . 

agri:CreditProjected rdf:type 

qb:MeasurePro-perty; 

    rdfs:range  xsd:decimal. 

Example 6 

#Cube Definition 

agri:AgriProduction rdf:type 

qb:DataStructureDefinition ; 

#Lowest level for each dimension 

 qb:component [qb4o:level 

agri:fields;cardinality 

qb4o:ManyToOne]; 

qb:component [qb4o:level 

agri:crops; 

cardinality qb4o:ManyToOne]; 

 qb:component [qb4o:level 

agri:date ; cardinality 

qb4o:ManyToOne]; 

#Cube measures 

qb:component [qb:measure 

agri:creditProjected; 

qb4o:aggregateFunction qb4o:Sum]; 

qb:component [qb:measure 

agri:HarvestProduce; 

qb4o:aggregateFunction 

qb4mob:TSum] ; 
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qb:component [qb:measure 

agri:YieldsInCurrency;  

qb4o:aggregateFunction 

qb4mob:TSum]; 

qb:component [qb:measure 

agri:harvestPredictionInCurrency;  

qb4o:aggregateFunction 

qb4mob:TSum]; qb:component 

[qb:measure agri: SeedingNeeds ; 

qb4o:aggregateFunction 

qb4mob:TSum ]; 

Linking process  

The deployment of the Linked Open 

Spatiotemporal DW is depicted in Fig. 5.  The DW 

system deploys on GraphDB with QB4MobOLAP 

vocabulary. QB4MobOLAP could represent temporal 

and spatiotemporal data types and functions for 

spatiotemporal analytics. 

The ETL process import the data from sources using 

API, analyzed, linked, and publishing it. Some 

external vocabulary used in the linking and publishing 

process like WGS84 for defining spatial objects, 

Geonames for external linking of place names, and 

AGROVOC for representing crops. The example of 

the external linked to represent the place name Sleman 

district in Indonesia to GeoNames URI of Sleman 

with owl:sameAs predicate. 
agrii:district_501 a 

agri:districts;    qb4o:memberOf 

agri:districts; agri:districtId 

501; agri:districtName "Sleman"; 

agri:districtGeo "POLYGON 

((109.2299989 -7.3350438, 

109.2303208 -

7.3354481,…………………,109.2299989 -

7.3350438)) "^^geo:wktLiteral; 

owl:sameAs geonames:1626754 . 

The instance example of the Production fact is: 
agrii:prod_315999 a qb:Observation;

 agri:cropId agrii:crop_3;

 agri:startDateId 

agrii:date_20190520;

 agri:endDateId 

agrii:date_20190830; agri:fieldId 

agrii:field_9; agri:harvestProduce 

"TINT{12@2020-03-02 00:00:00+07, 

5.5@2020-03-09 00:00:00+07, 

20@2020-03-16 

00:00:00+07}"^^geo:wktLiteral;

 agri:yieldsInCurrency 

"TINT{12000@2020-03-02 00:00:00+07, 

5500@2020-03-09 00:00:00+07, 

20000@2020-03-16 

00:00:00+07}"^^geo:wktLiteral;

 agri:harvestPredictionInCurrency 

"TINT{12000@2020-03-02 00:00:00+07, 

5500@2020-03-09 00:00:00+07, 

20000@2020-03-16 

00:00:00+07}"^^geo:wktLiteral; 

agri:creditProjected 5000 . 

4.4 Implement spatiotemporal OLAP query for 

the RDF cube 

From the user requirement, it could be captured 

some question for spatiotemporal agriculture 

production analytics. Those queries are:  

 

Query#1: Determine the amount of corn, soybeans, 

and rice produced during the fasting month and Eid 

al-Fitr in the selected location of sub-districts this 

year. This query involves spatotemporal roll-up along 

the crops dimensions. Then, the dice operation on 

crops and time dimensions, and spatial slice over 

certain geographic area. The STOLAP query on the 

Linked ODW is:   
SELECT 

?desc (AVG(jsfn:TAVG(jsfn:AtPeriod 

(?harvestproduce,'2019-05-01', 

'2020-06-01'))) 

as ?tavgharvestproduct) 

WHERE { 

?obs a qb:Observation ; 

    agri:fieldId ?fieldId ; 

    agri:cropId ?cropId ; 

    

agri:harvestProduce ?harvestproduce 

. 

?cropId qb4o:memberOf agri:crops; 

    agri:description ?desc . 

?fieldId qb4o:memberOf agri:fields; 

   agri:fieldGeo ?fieldGeo . 

FILTER ((?desc = 'Rice') || (?desc 

= 'Corn') || (?desc = 'Soybeans')  

&& (geof:sfWithin (?fieldGeo, 

"POLYGON ((109.2305407 -7.3356011, 

109.2318389 -7.3378251, 109.2334375 

-7.3370909, 109.2333838 -7.3367291, 

109.2333195 -7.3364099, 109.23318 -

7.3359629, 109.2331049 -7.3355586, 

109.2329547 -7.33525, 109.2328796 -

7.3350159, 109.2327508 -7.3348669, 

109.2325899 -7.3346222, 109.2305407 

-7.3356011))"))) } 

GROUP BY ?desc 

 

Query#2: Determine the average crop potential 

agricultural loss (in monetary terms) incurred by the 

Sleman district as a result of Mount Merapi's eruption 

on January 21, 2020. The impacted area is anticipated 
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to have a radius of 5 kilometers. This query involves 

spatotemporal roll-up along the crops dimensions. 

Then, the dice operation on crops and time 

dimensions, and spatial function within district and 

field area. The STOLAP query on the Linked ODW 

is: 
SELECT ?desc 

(SUM((jsfn:TAVG(jsfn:AtPeriod 

(?harvestpredictionInCurrency,'2020

-01-21', '2020-03-21')))- 

(jsfn:TAvg(jsfn:AtPeriod 

(?yieldsInCurrency,'2020-01-21', 

'2020-03-21')))) 

as ?avgharvestlostprediction) 

WHERE { 

?obs rdf:type qb:Observation ; 

     agri:fieldId ?fieldId ; 

     agri:cropId ?cropId ; 

     

agri:harvestPredictionInCurrency ?h

arvestpredictionInCurrency ; 

     

agri:yieldsInCurrency ?yieldsInCurr

ency . 

?cropId qb4o:memberOf agri:crops; 

    agri:description ?desc . 

?fieldId qb4o:memberOf agri:fields; 

      agri:fieldGeo ?fieldGeo . 

?districtId qb4o:memberOf 

agri:districts; 

      

agri:districtGeo ?districtGeo ; 

      agri:districtName 'Sleman' . 

    FILTER ((?desc = 'Rice') || 

(?desc = 'Corn') || (?desc = 

'Soybeans') && (geof:sfWithin 

(?fieldGeo, ?districtGeo)) && 

(geof:distance('POINT (110.445671 -

7.540566)', ?fieldgeo) < 5000))} 

GROUP BY ?desc 

 

Query#3: Determine how much credit prepared by 

the bank at per the quarter year 2019 in 

subdistrict ’Kalasan’? This query involve roll-up 

along the time dimensions. Then slice by subdistricts, 

and spatial function within subdistricts and fields area. 

The STOLAP query on the Linked ODW is: 
SELECT ?quarter (SUM 

(?creditprojected) 

as ?sumcreditprojected) 

WHERE {?obs rdf:type 

qb:Observation ; 

    agri:startDateId ?dateId ; 

    agri:fieldId ?fieldId ; 

    

agri:creditProjected ?creditproject

ed . 

?fieldId qb4o:memberOf agri:fields; 

   agri:fieldGeo ?fieldGeo . 

?dateId qb4o:memberOf agri:date; 

        agri:quartal ?quarter ; 

        agri:year ?year . 

?subdistrictId qb4o:memberOf 

agri:subdistricts; 

         

agri:subdistrictGeo ?subdistrictGeo

; 

         

agri:subdistrictName ?subdistrictNa

me . 

FILTER ((?year = 2019) && 

(?subdistrictName = 'Kalasan') && 

(geof:sfWithin 

(?fieldGeo, ?subdistrictGeo))) 

} 

GROUP BY ?quarter 

 

Query#4: Determine the nearest village that may fill 

the shortfall in corn, soybean, and rice output for 

selected communities during 2020's fasting month. 
SELECT ?fieldGeo 

(jsfn:TWAVG(jsfn:TSUM( jsfn:ATPERIO

D(?harvestproduct, '2020-06-01’, 

'2020-06-30'))) 

as ?avgharvestproduct) 

WHERE {?obs rdf:type 

qb:Observation ; 

agri:cropId ?cropId 

 agri:fieldId ?fieldId . 

?cropId qb4o:memberOf agri:crops; 

        agri:cropdesc ?cropdesc . 

?fieldId qb4o:memberOf agri:fields; 

   agri:fieldGeo ?fieldGeo . 

?subdistrictId qb4o:memberOf 

agri:villages; 

         

agri:villageGeo ?villageGeo; 

         

agri:villageName ?villageName . 

FILTER ((?villageName = 

'Karangtengah') && (geof:sfWithin 

(?fieldGeo, ?villageGeo)) && 

(?cropdesc = 'Rice') || (?cropdesc 

= 'Corn') || (?cropdesc = 

'Soybeans')) 

GROUP BY ?fieldGeo 
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Query#5: Calculate the fertilizer and sowing material 

requirements for corn, soybean, and rice agriculture 

in the Bantul district during the first quarter of 2020. 
SELECT ?cropdesc 

(jsfn:TWAVG(jsfn:TSUM( jsfn:ATPERIO

D(?fertilizerneeds, '2020-01-06’, 

'2020-06-06')) 

as ?avgfertilizerneeds) 

WHERE {?obs rdf:type 

qb:Observation ; 

 agri:fertilizerneeds ?fertiliz

erneeds ; 

agri:dateId ?dateId ; 

agri:cropId ?cropId ; 

agri:fieldId ?fieldId . 

?fieldId qb4o:memberOf agri:fields; 

   agri:fieldGeo ?fieldGeo . 

?cropId qb4o:memberOf agri:crops; 

        agri:cropdesc ?cropdesc . 

?subdistrictId qb4o:memberOf 

agri:subdistricts; 

         

agri:subdistrictGeo ?subdistrictGeo

; 

         

agri:subdistrictName ?subdistrictNa

me . 

FILTER ((?subdistrictName = 

'Bantul') && (geof:sfWithin 

(?fieldGeo, ?subdistrictGeo) && 

(?cropdesc = 'Rice') || (?cropdesc 

= 'Corn') || (?cropdesc = 

'Soybeans' ) ) 

GROUP BY ?cropdesc 

5. Evaluation and validation 

For evaluating the performance of our approach, 

measurement and presentation of the total time to get 

similar results from the RDF data in two different non-

SW environments. The results are presented under 

quantitative evaluation. We also compare the open 

data index as the qualitative evaluation of two 

different environments. Finally, we discuss the 

technical lessons and summarize our work. 

The implementation scenario is comparing the 

query run times of the algorithms in QB4MobOLAP 

with different query platforms ORDBMS tool. Since 

these tools cannot process RDF data natively, data 

preparation and load times considers as development 

costs. Development cost is given in hours, which 

involves, extracting the data, loading into these (non-

SW) environments in their native format. Assumption 

has been made that the developer has a basic 

knowledge of the domain, data set, the schema of the  

 

Table 2. Queries execution time, development cost, and 

open data index 

Id 

SW ORDBMS 

Exec. 

Time 

(s) 

Dev. 

Cost 

(min) 

Open 

Data 

Index 

Exec. 

Time 

(s) 

Dev. 

Cost 

(min) 

Open 

Data 

Index 

Q1 6.7 5 5 0.33 60 NA 

Q2 10 5 5 0.42 60 NA 

Q3 13 5 5 0.55 60 NA 

Q4 22 5 5 14 60 NA 

Q5 5.2 5 5 0.57 60 NA 

 

data set, and able to extract data with SPARQL 

queries, can perform SQL queries on ORDBMS to get 

similar results as in the algorithms. The development 

cost excludes the preparation (downloading and 

installing) of the environments. The development cost 

of QB4MobOLAP is a configuration set-up, where 

the user should point to the SPARQL endpoint where 

the instance triples are located and specify the RDF 

cube schema of the use case data. 

The Linked ODW fact contains around 3 million 

triples with temporal integer types for some triples, 

4495 triples of field dimension with geographic data 

as polygons, 80 triples of village dimension, dozens 

of triples of the subdistricts, and districts. The DW 

time dimension contains 3653 triples representing a 

date for ten years.  

The five queries were executed on pentium core i5 

8th generation with a 16GB RAM computer. The 

results of the execution test time of the five queries, 

development cost, and open data index are shown in 

Table 2. 

Fig. 6 and Fig. 7 show the comparison of 

execution time and development time in SW and 

ORDBMS. ORDBMS have less significant execution 

time compared with SW, but for overall SW has less 

development time and have the best open data index. 

The development time equals execution time plus 

development cost.  

Compared to ORDBMS environment, The 

execution time of the QB4MobOLAP platform on 

Agriculture Production DW still has limitation. The 

execution time takes longer time than the ORDBMS 

environment, as shown Fig. 6. However, the 

QB4MobOLAP platform has better development 

time than the ORDBMS platform because the 

ORDBMS environment must preprocess the data, 

which entails extracting and loading the data into 

non-SW environments in their native format. This 

data preprocessing takes 60 minutes to complete. The 

QB4MobOLAP platform also has the highest open 

data index, which is important for the public to make 

innovations based on that data. Fig. 7 depicts the  
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Figure. 6 Query execution time 

 

 
Figure. 7 Query development time 

 

development time, the sum of execution time with 

development cost.  

6. Conclusion and future works 

The implementation of this open spatiotemporal 

data for production analytics was designed utilizing a 

novel idea of spatiotemporal data warehouse and the 

Semantic Web's QB4MobOLAP vocabulary. Using 

spatiotemporal queries for a roll-up, a drill-down, a 

slice, a dice, a geographical aggregation function, and 

a temporal aggregation function, this system was able 

to answer the important issues for agricultural 

production analysis in a acceptable amount of time. 

The query result is useful for descriptive and 

diagnostic analyses of agricultural productivity. The 

openness of the data source with the 5-stars index 

provides the chance to integrate and expand the data 

source with the internet's big data catalog and the 

semantic web's inference capacity. 

Experiments shown that QB4MobOLAP 

vocabulary for spatiotemporal DW implementation is 

practical and straightforward. The solution provides 

important support for spatiotemporal analytics. 

Representation of DW in QB4MobOLAP vocabulary, 

integration with another linked data will boost the 

system's potential with a larger library and 

standardization of application domain words and 

ideas [15]. Using this linked data as a data source, the 

data warehouse may be augmented with the new 

semantic and method to give more information for 

reasoning based on logical axioms throughout the full 

business intelligence and big data warehousing 

process. 
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