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ABSTRACT 

 

 

Nowadays, Capacitive Power Transfer (CPT) is becoming an increasingly popular 

technology in the wireless charging field thus attracting the attention of many researchers. 

Although various research has been conducted with the aim of improving the performance 

of the system, there is still room for improvement to be made to further optimize the 

efficiency of the CPT system transmission. It is well known that the CPT system’s efficiency 

and output power are limited when the transfer distance or gap distance between metal 

electrodes increases due to any misalignment of capacitive coupling plates or changes in 

load resistance. Therefore, this thesis proposed the development of a CPT system with high 

efficiency for low power contactless charging applications. Initially, the thesis begins by 

designing a Class-E resonant inverter that can provide high-frequency switching capability 

to increase the power of the system. The Class-E resonant inverter satisfies the soft-

switching condition through parameter design thus improving the system’s efficiency. Next, 

the output performance is analyzed by observing the zero-voltage switching (ZVS) condition, 

output power and efficiency of the system. Due to the characteristics of the Class-E resonant 

inverter which is sensitive to the circuit parameters variation, the π1b impedance matching 

circuit is included in the design to enable the power transfer efficiently between transmitter 

and receiver. In this part, the mathematical analysis of the sensitivity of the system’s output 

power with respect to the load variation was introduced. In order to have a wider range of 

load variations, Class-E combined with double-sided LC matching circuits such as LCCL 

circuit and LCLC circuit were incorporated into the proposed approach. By switching the 

position of inductor and capacitor in LC matching at the receiver side of Class-E LCCL 

circuit, Class-E LCLC circuit was formed. The output performances of both circuits were 

analyzed and compared based on load variations, duty cycle variations and gap distance 

variations. MATLAB Simulink was used in this work to design and simulate all the 

aforementioned circuits. The design with the best output performance was selected to 

construct the CPT system. A 10W prototype was constructed which is operated at 1mm air 

gap with an efficiency of more than 84.6%. In conclusion, the research outcomes 

demonstrate the potential of CPT as an emerging wireless power transfer solution, as well 

as the theoretical and practical design methods to establish a solid foundation for future CPT 

research and development.  
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REKA BENTUK DAN ANALISIS PRESTASI TOPOLOGI PAMPASAN LC DUA SISI 

KELAS-E BAGI PENINGKATAN KECEKAPAN SISTEM CPT 

 

 

ABSTRAK 

 

 

Pada masa kini, Capacitive Power Transfer (CPT) menjadi teknologi yang semakin popular 

dalam bidang pengecasan tanpa wayar sekali gus menarik perhatian ramai penyelidik. 

Walaupun pelbagai kajian telah dijalankan dengan tujuan untuk meningkatkan prestasi 

sistem, masih terdapat ruang untuk penambahbaikan bagi mengoptimumkan lagi kecekapan 

penghantaran sistem CPT. Adalah diketahui umum bahawa kecekapan dan kuasa keluaran 

sistem CPT adalah terhad apabila jarak pemindahan atau jarak jurang antara elektrod 

logam meningkat disebabkan oleh sebarang salah jajaran plat gandingan kapasitif atau 

perubahan dalam rintangan beban. Oleh itu, tesis ini mencadangkan pembangunan sistem 

CPT dengan kecekapan tinggi untuk aplikasi pengecasan tanpa sentuh kuasa rendah. Pada 

mulanya, tesis dimulakan dengan mereka bentuk penyongsang resonan Kelas-E yang boleh 

menyediakan keupayaan pensuisan frekuensi tinggi untuk meningkatkan kuasa sistem.  

Penyongsang resonan Kelas-E memenuhi keadaan pensuisan lembut melalui reka bentuk 

parameter sekali gus meningkatkan kecekapan sistem. Seterusnya, prestasi keluaran 

tersebut dianalisis dengan memerhatikan keadaan pensuisan voltan sifar (ZVS), kuasa 

keluaran dan kecekapan sistem. Disebabkan oleh ciri-ciri penyongsang resonan Kelas-E 

yang sensitif kepada variasi parameter litar, litar padanan impedans π1b disertakan dalam 

reka bentuk untuk membolehkan pemindahan kuasa dengan cekap antara pemancar dan 

penerima. Dalam bahagian ini, analisis matematik sensitiviti kuasa keluaran sistem 

berkenaan dengan variasi beban telah diperkenalkan. Untuk mempunyai julat variasi beban 

yang lebih luas, Kelas-E digabungkan dengan litar padanan LC dua muka seperti litar 

LCCL dan litar LCLC telah dimasukkan ke dalam pendekatan yang dicadangkan. Dengan 

menukar kedudukan induktor dan kapasitor dalam padanan LC di bahagian penerima litar 

LCCL Kelas-E, litar LCLC Kelas-E telah terbentuk. Prestasi keluaran kedua-dua litar telah 

dianalisis dan dibandingkan berdasarkan variasi beban, variasi kitaran tugas dan variasi 

jarak jurang. MATLAB Simulink telah digunakan dalam kerja ini untuk mereka bentuk dan 

mensimulasikan semua litar yang disebutkan di atas. Reka bentuk dengan prestasi keluaran 

terbaik dipilih untuk membina sistem CPT. Sebuah prototaip 10W telah dibina dan 

dikendalikan pada celah udara 1mm dengan kecekapan lebih daripada 84.6%. 

Kesimpulannya, hasil penyelidikan menunjukkan potensi CPT sebagai penyelesaian 

pemindahan kuasa tanpa wayar yang muncul, serta kaedah reka bentuk teori dan praktikal 

untuk mewujudkan asas yang kukuh untuk penyelidikan dan pembangunan CPT masa 

hadapan. 
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INTRODUCTION 

 

1.1  Background of Thesis 

  Wireless Power Transfer (WPT) or wireless power transmission is a technology of 

transmitting electrical energy from the source to the load without any wires as physical 

connection. The WPT system consists of a transmitter, a medium for transferring power and 

a receiver. The transmitter receives the electrical power from the power supply and generates 

a time-varying electromagnetic field to carry power across the medium to the receiver which 

then supplies the power to the load. Several handheld devices can be considered for the load 

such as mobile phones and electric toothbrushes. Besides, WPT can be applied for induction 

cooking and charging implantable medical devices like artificial cardiac pacemakers. By 

having sufficient output voltage, WPT can even charge electric vehicles. Figure 1.1 

illustrates the potential applications of WPT for daily usage in a domestic environment. 

Using the WPT method, the problem of wires tangling together when having a lot of home 

appliances can be solved. As a result, WPT increases mobility, convenience and safety for 

all electronic device users. 

WPT mainly falls into two main categories which are the near field and far field. Two 

well-known techniques in the near field are Capacitive Power Transfer (CPT) and Inductive 

Power Transfer (IPT). This research focuses on the design of CPT due to negligible eddy-

current loss, relatively low cost, low weight and excellent misalignment performance. The 

designed CPT system utilizes a Class-E resonant inverter and different types of impedance 

matching networks.  
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Figure 1.1: Application of WPT in House 

 

1.2 Problem Statement 

  The Wireless Power Transfer (WPT) technology has been demonstrated since 1981 

by Nikola Tesla with the illumination of phosphorescent lamps without using wire through 

CPT technology. Due to being more applicable to many power levels and various gap 

distances, IPT is the preferred choice when it comes to designing a WPT system. However, 

IPT has a significant shortcoming that concerns with the human safety regarding the field 

emission and overheating due to loss of eddy current when metal objects are close to the 

magnetic field (Huang et al., 2013). Therefore, most research in this field suggest CPT as 

the solution for this problem, as it is not sensitive to any metal presence and does not generate 

extra heat in metal due to eddy current losses (Li et al., 2015; Lu et al., 2015b).  

In general, overall system efficiency is an important factor in designing and applying 

the CPT system. Although researchers have carried out a large amount of work to improve 

the performance of the system, there is still room for improvement to be made to further 

optimize the efficiency of the CPT system transmission. Based on the literature, system loss 
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is mainly derived from power converter switching losses (Meade et al., 2008), coupling 

losses (Park, Thompson and Ferguson, 2005) and the parasitic resistance losses (Mohammad 

et al., 2013) from compensation components, including compensation inductors, capacitors, 

and switch devices. Most conventional CPT systems apply a full-bridge inverter for low-

power CPT application. However, the use of the aforementioned approach to generate AC 

sinusoidal wave is complex due to the difficulty to drive the gating signal for power switches 

and will eventually lead to high switching losses (Bhardwaj, Borage and Tiwari, 2008). A 

full-bridge inverter consists of two pairs of switches which turn on and turn off 

simultaneously with a dead time. The dead time is necessary to avoid ‘shoot through’ or 

cross-conduction current through the same led of switches which resulting the failure of 

switching devices (Zammit, Apap and Staines, 2018). However, this dead time lead to 

switching loss. Therefore, CPT system using a Class-E resonant inverter is proposed because 

it could achieve 100% theoretical maximum efficiency by applying soft-switching condition 

via the use of one power electronic switching device.  

An important aspect when designing the CPT system is the trade-off between the 

transfer distance, power and efficiency which implies that the current CPT system cannot 

achieve long distance, high power and efficiency at the same time. For low-power charging 

applications, the CPT system’s efficiency and output power are limited when the transfer 

distance or gap distance between metal electrodes increases (Dai and Ludois, 2015a). 

Moreover, CPT is known to be sensitive to load and coupling variations (Mostafa, Muharam, 

et al., 2019). The system efficiency will decrease significantly due to any misalignment of 

capacitive coupling plates or changing in load resistance. Therefore, various impedance 

matching circuits based on L-type, T-type and π-type matching networks are designed and 

applied to the Class-E inverter to preserve the zero-voltage switching (ZVS) condition thus 

compensating for the power loss caused by load and coupling variation. The impedance 
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matching circuits match the load impedance and the source impedance to minimize signal 

reflection, thus allowing the maximum power transfer from the source to load.  

 

1.3 Research Objectives 

The objectives of this research project are summarized as follows: 

i. To design a Class-E resonant inverter that drives a CPT system. 

ii. To investigate the performance of Class-E inverter with the presence of π1b, LCCL and 

LCLC impedance matching networks. 

iii. To analyse the performance of the complete prototype of the CPT system in terms of 

ZVS, output power, and system efficiency.   

 

1.4 Research Scope 

 This research aims to improve the efficiency of the CPT system. The details of the 

research scopes and the limitation of this work are as follows: 

i. The proposed CPT is limited to the low-wattage charging application and small gap 

distance 1mm only. This is due to the fact that a large gap and high power causes the  

voltage across the gap from transmitter to receiver to exceed the permitted electric field 

for human exposure, which is 614V/m (IEEE standards, 2019) thus may not be safe for 

human contact (Asa et al., 2020). In order to demonstrate low power charging application, 

10W output power is sufficiently for application in USB interface, LED driving and 

charging mobile devices such as mobile phones, laptops and tablets. 

ii. Class-E resonant inverter is selected to build the CPT system because it can theoretically 

achieve 100% efficiency. It is designed at optimum operation with duty cycle, D = 0.5 

to gain 10W output power and efficiency above 80% at an optimum load, 𝑅𝐿 = 50Ω.  
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iii. The pulse width modulation (PWM) signal and tuning for Class-E converter are operated 

at 1 MHz switching frequency. In order to protect human against adverse health effects 

when exposed to very high radio frequency, NCRP, IEEE and ICNIRP determined a 

threshold level of specific absorption rate (SAR) about 0.4 W/kg (IEEE, 2006). 

Therefore, a suitable frequency for maximum power transfer and within the permitted 

SAR is required and explored in this research.   

iv. The size of the capacitive coupling plate with a parallel circular structure is equivalent 

to the capacitance value of the designed Class-E components. The circular plate is made 

from the single-sided FR4 printed circuit board (PCB) copper plate, which is easier and 

cheaper.  

v. The verification of the proposed design and performance analysis is carried out through 

the simulation using MATLAB before the circuit was fabricated. 

vi. Agilent Technologies DSO-X 2012A 100MHz oscilloscope was used to analyse the 

proposed design where several output parameters such as ZVS condition, input and 

output power, and efficiency were recorded. 

 

1.5 Organization of Thesis 

 The thesis comprises five chapters. Chapter 1 presents the introduction of this project, 

consisting of background, problem statement, research objectives, limitation of the research, 

and the organization of the thesis. 

 Chapter 2 describes the literature review on wireless power transfer (WPT) 

technology. The history of Wireless Power Transfer (WPT) is introduced at the very 

beginning. Then, an overview of Wireless Power Transfer (WPT) is discussed. This chapter 

focuses mainly on Capacitive Power Transfer (CPT). Its working principle, applications and 

roles of each block that constitute the CPT system such as inverter, compensation circuit, 
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rectifier, and capacitive coupler are presented. This chapter ends with several issues and 

challenges related to the present CPT system design. 

 Chapter 3 depicts the methodology for full development of CPT system. This chapter 

presents the derivation of related formulas for circuit parameters and output performances 

of CPT system. Firstly, a basic Class-E resonant inverter is designed. Then, π1b matching 

circuit is designed to change the optimum load to 50Ω. Then, an extra LC matching circuit 

is added to the receiver part of the Class-E with π1b matching circuit to form Class-E LCCL 

and LCLC circuits. Moreover, the Class-E DC-to-DC converter is formed by adding the full-

wave rectifier and a capacitor filter to either of them. Lastly, the Class-E DC-DC converter 

is modified to CPT system. 

 Chapter 4 presents the results of the design specifications and output performances 

of the Class-E resonant inverter, Class-E with π1b impedance matching circuit, Class-E 

LCCL circuit, Class-E LCLC circuit, Class-E DC-to-DC converter and CPT system. The 

Class-E LCCL circuit and Class-E LCLC circuits are compared based on output performance 

at optimum load, load variations, duty cycle variations and gap distance variations to select 

one suitable to realize the CPT system.  

 Chapter 5 discusses the conclusion of this research, including research outcomes, 

contributions of this study and recommendations for future research based on this study.  

 

  


