

Faculty of Electronic and Computer Engineering

Cheok Yan Qi

Master of Science in Electronic Engineering

DESIGN AND PERFORMANCE ANALYSIS OF CLASS-E DOUBLE-SIDED LC COMPENSATION TOPOLOGY FOR CPT SYSTEM EFFICIENCY IMPROVEMENT

CHEOK YAN QI

Faculty of Electronic and Computer Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this thesis entitled "Design and Performance Analysis of Class-E Double-sided LC Compensation Topologies for CPT System Efficiency Improvement" is the results of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for award of Master of Science in Electronic Engineering.

AALAYSIA Signature Supervisor Name Dr. Yusmarnita binti Yusop : 01.03.2023 Date : UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEDICATION

To my beloved mother and father, Tan Siew Wang and Cheok Ching Choon, my sister, Cheok Yan Han, Cheok Yan Ying, Cheok Yan Rou and my little brother, Cheok Yan Kai, your kindness and advice should never be forgotten.

ABSTRACT

Nowadays, Capacitive Power Transfer (CPT) is becoming an increasingly popular technology in the wireless charging field thus attracting the attention of many researchers. Although various research has been conducted with the aim of improving the performance of the system, there is still room for improvement to be made to further optimize the efficiency of the CPT system transmission. It is well known that the CPT system's efficiency and output power are limited when the transfer distance or gap distance between metal electrodes increases due to any misalignment of capacitive coupling plates or changes in load resistance. Therefore, this thesis proposed the development of a CPT system with high efficiency for low power contactless charging applications. Initially, the thesis begins by designing a Class-E resonant inverter that can provide high-frequency switching capability to increase the power of the system. The Class-E resonant inverter satisfies the softswitching condition through parameter design thus improving the system's efficiency. Next, the output performance is analyzed by observing the zero-voltage switching (ZVS) condition, output power and efficiency of the system. Due to the characteristics of the Class-E resonant inverter which is sensitive to the circuit parameters variation, the π 1b impedance matching circuit is included in the design to enable the power transfer efficiently between transmitter and receiver. In this part, the mathematical analysis of the sensitivity of the system's output power with respect to the load variation was introduced. In order to have a wider range of load variations, Class-E combined with double-sided LC matching circuits such as LCCL circuit and LCLC circuit were incorporated into the proposed approach. By switching the position of inductor and capacitor in LC matching at the receiver side of Class-E LCCL circuit, Class-E LCLC circuit was formed. The output performances of both circuits were analyzed and compared based on load variations, duty cycle variations and gap distance variations. MATLAB Simulink was used in this work to design and simulate all the aforementioned circuits. The design with the best output performance was selected to construct the CPT system. A 10W prototype was constructed which is operated at 1mm air gap with an efficiency of more than 84.6%. In conclusion, the research outcomes demonstrate the potential of CPT as an emerging wireless power transfer solution, as well as the theoretical and practical design methods to establish a solid foundation for future CPT research and development.

REKA BENTUK DAN ANALISIS PRESTASI TOPOLOGI PAMPASAN LC DUA SISI KELAS-E BAGI PENINGKATAN KECEKAPAN SISTEM CPT

ABSTRAK

Pada masa kini, Capacitive Power Transfer (CPT) menjadi teknologi yang semakin popular dalam bidang pengecasan tanpa wayar sekali gus menarik perhatian ramai penyelidik. Walaupun pelbagai kajian telah dijalankan dengan tujuan untuk meningkatkan prestasi sistem, masih terdapat ruang untuk penambahbaikan bagi mengoptimumkan lagi kecekapan penghantaran sistem CPT. Adalah diketahui umum bahawa kecekapan dan kuasa keluaran sistem CPT adalah terhad apabila jarak pemindahan atau jarak jurang antara elektrod logam meningkat disebabkan oleh sebarang salah jajaran plat gandingan kapasitif atau perubahan dalam rintangan beban. Oleh itu, tesis ini mencadangkan pembangunan sistem CPT dengan kecekapan tinggi untuk aplikasi pengecasan tanpa sentuh kuasa rendah. Pada mulanya, tesis dimulakan dengan mereka bentuk penyongsang resonan Kelas-E yang boleh menyediakan keupayaan pensuisan frekuensi tinggi untuk meningkatkan kuasa sistem. Penyongsang resonan Kelas-E memenuhi keadaan pensuisan lembut melalui reka bentuk parameter sekali gus meningkatkan kecekapan sistem. Seterusnya, prestasi keluaran tersebut dianalisis dengan memerhatikan keadaan pensuisan voltan sifar (ZVS), kuasa keluaran dan kecekapan sistem. Disebabkan oleh ciri-ciri penyongsang resonan Kelas-E vang sensitif kepada variasi parameter litar, litar padanan impedans π 1b disertakan dalam reka bentuk untuk membolehkan pemindahan kuasa dengan cekap antara pemancar dan penerima. Dalam bahagian ini, analisis matematik sensitiviti kuasa keluaran sistem berkenaan dengan variasi beban telah diperkenalkan. Untuk mempunyai julat variasi beban yang lebih luas, Kelas-E digabungkan dengan litar padanan LC dua muka seperti litar LCCL dan litar LCLC telah dimasukkan ke dalam pendekatan yang dicadangkan. Dengan menukar kedudukan induktor dan kapasitor dalam padanan LC di bahagian penerima litar LCCL Kelas-E, litar LCLC Kelas-E telah terbentuk. Prestasi keluaran kedua-dua litar telah dianalisis dan dibandingkan berdasarkan variasi beban, variasi kitaran tugas dan variasi jarak jurang. MATLAB Simulink telah digunakan dalam kerja ini untuk mereka bentuk dan mensimulasikan semua litar yang disebutkan di atas. Reka bentuk dengan prestasi keluaran terbaik dipilih untuk membina sistem CPT. Sebuah prototaip 10W telah dibina dan dikendalikan pada celah udara 1mm dengan kecekapan lebih daripada 84.6%. Kesimpulannya, hasil penyelidikan menunjukkan potensi CPT sebagai penyelesaian pemindahan kuasa tanpa wayar yang muncul, serta kaedah reka bentuk teori dan praktikal untuk mewujudkan asas yang kukuh untuk penyelidikan dan pembangunan CPT masa hadapan.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my special thanks of gratitude to my supervisor, Dr. Yusmarnita binti Yusop who gave me the golden opportunity to do this wonderful project. I wish to thank her for her kindly help in reading my draft writing for journal paper and thesis. Her deep insights and positive manner have always been helpful and encouraging.

Secondly, I would like to thank my second supervisor, Professor Madya Dr. Mohd Shakir bin Md. Saat who providing so many valuable advices throughout the course of master research.

Moreover, I would like to express my appreciation to my friends and technicains in the laboratory, especially Sir Mohamad Effendy bin Abidin, Sir Imran bin Mohamed Ali and others for their kindly help and support me directly or indirectly in completing my research.

Besides, I would like to thank Faculty of Electronic and Computer Engineering (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM) and Ministry of Education (MOE) for providing me equaipment facilities and financial support. Their support is gratefully acknowledged.

Finally, I would like to express my deepest appreciation to my beloved father, Cheok Ching Choon and to my beloved mother, Tan Siew Wang for their motivation, support and encouragement. Thankyou very much to my siblings for their understanding and support.

Thanks again to everyone.

TABLE OF CONTENTS

PAGE

DECL	ARA	TION		
APPR	OVA	L		
DEDI	CATI	ON		
ABST	'RAC'	Г		i
ABST	'RAK			ii
ACKN	NOW	LEDGE	MENTS	iii
TABL	LE OF	CONT	ENTS	iv
LIST	OF T.	ABLES		vii
LIST	OF F	IGURES	5	viii
LIST	OF A	PPEND	ICES	xi
LIST	OF A	BBREV	IATIONS	xii
LIST	OF P	UBLICA	ATIONS	xiii
CHAI	PTER			
1.	INTI	RODUC	TION	1
	1.1	Backg	round of Thesis	1
	1.2	Proble	m Statement	2
	1.3	Resear	ch Objectives	4
	1.4	Resear	rch Scope	4
	1.5	Organi	ization of Thesis	5
		1		
2.	LITE	ERATUI	RE REVIEW	7
	2.1	Introdu	action	7
	2.2	Histor	y of Wireless Power Transfer (WPT) Technology	7
	2.3	Wirele	ss Power Transfer (WPT) Technology	8
	2.4	Capaci	itive Power Transfer (CPT) Technology	13
	2.5	Inverte	er	14
		2.5.1	PWM Converter KAL MALAYSIA MELAKA	14
		2.5.2	Power Amplifier-based Inverter	16
			2.5.2.1 Class-E Amplifier	16
		2.5.3	Full-bridge Inverter	21
	2.6	Capaci	tive Coupler Plates	22
		2.6.1	Two-plate Coupler Structure/ Unipolar Structure	23
		2.6.2	Four-plate Coupler Structure/ Bipolar Structure	24
		2.6.3	Relationship between Voltage and Current of Capacitive	~ ~
	0.7	G	Coupling Plates	25
	2.7	Compe	ensation Circuit	26
		2.7.1	L-type Compensation Circuit	28
		2.1.2	LC-type Compensation Circuit	29
	2.0		2.7.2.1 Double-sided LC Compensation Circuit	51
	2.8	Rectifi	er Helf Destifier	<i>33</i>
		2.8.1	Hall-wave Rectifier	<u>33</u>
	2.0	2.8.2	Full-wave Kectifier	34 27
	2.9	Applic	Diamodical Implants	35
		2.9.1	Biomedical Implants	36
		2.9.2	Electric Vehicle (EV.) Charging	36
		2.9.3	Housenold Apparatus Charging	51

		2.9.4 Underwater Charging	37
	2.10	Present CPT Design Issue	38
	2.11	Summary	42
		-	
3.	RESE	EARCH METHODOLOGY	43
	3.1	Introduction	43
	3.2	Proposed CPT System	43
	3.3	Research Framework	44
	3.4	Design Class-E Resonant Inverter	48
		3.4.1 Assumptions for Class-E Resonant Inverter	49
		3.4.2 Mathematical Analysis of Class-E Resonant Inverter	49
		3.4.3 Maximum Current and Voltage of Class-E Resonant Inverter	54
		3.4.4 Input Impedance of the Class-E Resonant Circuit	55
		3.4.5 Output Power and Equations of Class-E Resonant	
		Inverter Components	58
	3.5	Design Class-E with π 1b Impedance Matching Circuit	61
		3.5.1 Mathematical Analysis of Class-E with π 1b Impedance	
		Matching	63
		3.5.2 Power Output Mathematical Analysis for Class-E π 1b	
		Matching Circuit	68
	3.6	Design Class-E with Double-sided LC Impedance Matching Circuit	70
		3.6.1 Design Class-E LCCL Circuit	71
		3.6.1.1 Mathematical Analysis of Class-E LCCL Circuit	72
		3.6.1.2 Power Output Mathematical Analysis for	
		Class-E LCCL Circuit	74
		3.6.2 Design Class-E LCLC Circuit	77
		3.6.2.1 Mathematical Analysis of Class-E LCLC Circuit	78
		3.6.2.2 Power Output Mathematical Analysis for	
		Class-E LCLC Circuit	79
	3.7	Prototype Development of CPT System	83
		3.7.1 Class-E DC-DC Converter ALAYSIA MELAKA	83
		3.7.2 Modification of DC-DC Converter to CPT System	84
	3.8	Summary	87
4.	RESU	ULTS AND DISCUSSION	88
	4.1	Introduction	88
	4.2	Class-E Resonant Inverter	88
		4.2.1 Simulation and Experimental Results of Class-E Resonant	
		Inverter (Optimum_Operation)	89
		4.2.2 Performance Analysis of Class-E Resonant Inverter	92
	4.3	Class-E with π 1b Impedance Matching Circuit	98
		4.3.1 Output Performance of Class-E with π 1b Impedance	
		Matching Circuit	99
		4.3.2 Performance Analysis of Class-E with π 1b Matching Circuit	101
	4.4	Class-E with Double-sided LC Impedance Matching Circuit	107
		4.4.1 Simulation Results of Class-E LCCL and Class-E LCLC	
		Circuits	107
		4.4.2 Performance Analysis for Class-E LCCL and LCLC Circuits	109
		4.4.3 Analysis with Load Variations	113
		4.4.3.1 Zero Voltage Switching (ZVS)	113

		4.4.3.2 Output Voltage and Efficiency	115
	4.4.4	Analysis with Duty Cycle Variation at 1 MHz	117
	4.4.5	Analysis with Gap Distance Variations Between	
		Capacitive Coupling Plates	118
	4.4.6	Selection Between Class-E LCCL and Class-E LCLC Circuits	119
	4.4.7	Experimental Results of Class-E LCCL Circuit	121
4.5	Develo	opment of CPT System Based on Class-E LCCL Topology	125
	4.5.1	Calculation for Design Specifications and Output	
		Performances	125
	4.5.2	Capacitive Coupler Design	126
	4.5.3	Output Performance of CPT System	128
	4.5.4	Performance Analysis of CPT System Based On	
		Class-E LCCL Topology	131
4.6	Summ	ary	133
CON	CLUSI	ON AND FUTURE RESEARCH	134
5.1	Conclu	asion	134
5.2	Contri	bution of the research	136
5.3	Future	Works	137
	M	ALAISIA	
REF	ERENC	E 2	139
APP	ENDIX .	A, B, C, D	160
	ملاك	اونيۈم,سيتي تيكنيكل مليسيا	
	UNIVE	ERSITI TEKNIKAL MALAYSIA MELAKA	

5.

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Wireless Power Technology	11
2.2	Types of LC Matching Circuits	30
2.3	Comparison of Past Research for Low-power CPT System	38
4.1	Description of Symbols Used in Class-E Resonant Inverter	90
4.2	Design Parameter and Output Performances of Class-E Resonant Invertee	r 91
4.3	Results of Class-E Resonant Inverter at Varied Load	97
4.4	Description of Symbols Used in Class-E π 1b Matching Circuit	100
4.5	Design Parameter and Output Performance of Class-E with $\pi 1b$	
	matching circuit	100
4.6	Design Specifications and Circuit Parameters	107
4.7	Output Performance Comparison at $R_L = 50\Omega$	108
4.8	Description of Symbols Used in Class-E LCCL Circuit	122
4.9	Output Performance of Class-E LCCL Circuit Based on Experiment	122
4.10	Description of symbols used in Class-E LCCL Circuit	129
4.11	Design Specifications and Output Performance of Class-E DC-DC	
	Converter	130

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Tesla's Wardenclyffe Tower	8
2.2	Block Diagram of WPT System	9
2.3	Classification of Wireless Power Transfer (WPT) Technology	10
2.4	Block Diagram of Capacitive Power Transfer (CPT)	13
2.5	Types of Converters	15
2.6	Waveform of ZVS Condition	17
2.7	Class-E Resonant Inverter	18
2.8	Switching Waveform of Class-E Inverter at $D = 0.5$	19
2.9	Schematic Diagram of (a) Full-bridge Inverter and (b) Waveforms	
	of Output Voltage and Current	21
2.10	Two-plate Structure/ Unipolar Structure	23
2.11	Four-plate Structure/ Bipolar Structure	24
2.12	Simplified Equivalent Model of Coupling Capacitors with (a) Behavio	r
	Source Model and (b) π model	25
2.13	Simplifier CPT System	25
2.14	Series L Compensation	29
2.15	LC Compensation	32
2.16	Half-Wave Rectifier and Its Input and Output Waveform	33
2.17	Full-wave Rectifier and Its Output Waveform	34
2.18	Diodes Involve in Positive and Negative Cycle	35
3.1	Proposed CPT System Block Diagram	43
3.2	Flowchart of Project	47
3.3	Class-E Resonant Inverter with MOSFET Driver Circuit	48
3.4	Equivalent Circuit of Basic Class-E inverter	49
3.5	Equivalent Circuit during Switch On and Switch Off	50
3.6	Right-angle Trigonometric	52

3.7	Equivalent Circuit of $L - C_2 - R_L$ Series-resonant Circuit at Operating			
	Frequency	56		
3.8	Phasor Diagram for Voltages at Operating Frequency	56		
3.9	Peak-to-peak Current of Inductor	60		
3.10	Block Diagram and Circuit of Class-E π 1b Circuit	62		
3.11	Analysis of Impedance Transformation Circuit for Class-E π 1b Circuit	63		
3.12	Double-sided LC Impedance Matching Circuit	71		
3.13	Class-E LCCL Circuit	71		
3.14	Output LC matching of Class-E LCCL with Series and Parallel			
	Subnetworks	72		
3.15	Simplification of Class-E LCCL Circuit	74		
3.16	Class-E LCLC Circuit	78		
3.17	Output LC matching of Class-E LCLC with Series and Parallel			
	Subnetworks	78		
3.18	Simplification of Class-E LCLC Circuit	80		
3.19	Class-E DC-DC Converter	83		
3.20	Transformation of A Single Capacitor to Coupling Plates	84		
3.21	Design of Capacitive Coupling Plates	86		
4.1	Simulation Circuit for Class-E Resonant Inverter	89		
4.2	Circuit Configuration of Class-E Resonant Inverter	90		
4.3	MOSFET Switching Voltage and Current Waveforms of Class-E			
	inverter at 1MHz	92		
4.4	Output Waveforms of Class-E Inverter at 1MHz	94		
4.5	MOSFET Switching Voltage Waveforms of Class-E Inverter at 1MHz	95		
4.6	Simulation Waveform of Switching Voltages and Output Voltage and			
	Current	97		
4.7	Simulation Circuit for Class-E with π 1b Matching Network	99		
4.8	Circuit Configurations of Class-E with π 1b Matching Circuit	99		
4.9	Zero Voltage Switching Waveform of Class-E π 1b Circuit	102		
4.10	Input and Output Waveforms of Class-E with π 1b Circuit	103		
4.11	Voltage and Current Waveforms of Impedance Matching Components			
	in Class-E π 1b Matching Circuit	104		
4.12	Simulation Circuit for Double-sided LC Impedance Matching	108		

4.13	ZVS Conditions Waveforms of Class-E LCCL and Class-E LCLC			
	Circuits	109		
4.14	Output Voltage and Current Waveform	110		
4.15	Voltage and Current Waveform of Impedance Matching Components			
	in Class-E LCCL and Class-E LCLC Circuits	112		
4.16	ZVS Conditions Waveform	114		
4.17	Plot of Output Voltage and Current with Varied Load with (a) Graph			
	of V_{RL} versus R_L and (b) Graph of I_{RL} versus R_L	116		
4.18	Plot of Efficiency with Varied Load	117		
4.19	Plot of Efficiency with Varied Duty Cycle	118		
4.20	Plot of Efficiency with Varied Gap Distance Between Capacitive Plates	119		
4.21	LC Matching Structure of Class-E LCCL and Class-E LCLC Circuits	120		
4.22	Simplified Class-E LCCL Circuit Based on Equivalent π model	121		
4.23	Circuit Configurations of Class-E LCCL Circuit	121		
4.24	ZVS Condition for Experimental Class-E LCCL	123		
4.25	Output and Input Waveform of Experimental Class-E LCCL Circuit	124		
4.26	Voltage and Current Waveform of Impedance Matching Components			
	in Experimental Class-E LCCL Circuits	124		
4.27	Class-E DC-DC Converter	125		
4.28	Capacitive Coupling Plates	127		
4.29	LCR Meter for Capacitance Reading on (a) A Pair of Coupling Plates			
	and (b) Two Pairs of Coupling Plates in Parallel	127		
4.30	Simulation Circuit for Class-E DC-DC Converter	128		
4.31	Circuit Configurations of CPT system	129		
4.32	Experimental Setup for CPT System	130		
4.33	Zero Voltage Switching Waveform of Class-E DC-DC Converter	131		
4.34	Output Waveforms of Class-E DC-DC Converter	132		
5.1	Summarization of Circuit Parameters in CPT System	136		

LIST OF APPENDICES

APPEN	NDIX TITLE	PAGE
А	Series-to-Parallel Transformation	160
В	Calculation for Class-E Resonant Circuit	163
С	Calculation for Class-E π 1b Circuit	165
D	Calculation for Class-E LCCL and LCLC Circuits اونيونرسيني نيڪنيڪل مليسيا ملاك	168
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA	

LIST OF ABBREVIATIONS

AC	-	Alternating Current
AET	-	Acoustic Power Transfer
CPT	-	Capacitive Power Transfer
DC	-	Direct Current
EMF	-	Electromotive Force
EV	-	Electric Vehicle
ICNIRP	- AL	International Commission on Non-Ionizing Radiation Protection
IEEE		Institute of Electrical and Electronic Engineers
IPT	- 3	Inductive Power Transfer
MOSFET		Metal-Oxide-Semiconductor Field-Effect Transistor
MPT	- Fa	Microwave Power Transfer
NASA	- SAINI	National Aeronautics and Space Administration
NCRP	- Ala	National Council on Radiation Protection and Measurements
OPT	-	Optical Power Transfer
PCB	-UNIVER	Printed Circuit Board_ MALAYSIA MELAKA
PWM	-	Pulse Width Modulation/ Modulated
RF	-	Radio Wave
RMS	-	Root Mean Square
SAR	-	Specific Absorption Rate
WPT	-	Wireless Power Transfer
ZDS	-	Zero Derivative Switching
ZVS	-	Zero Voltage Switching

LIST OF PUBLICATIONS

List of Journals:

- Qi, C.Y., Yusop, Y., Saat, S., Husina, H., and Izadora, 2022. Modelling of Capacitive Power Transfer System Based on Class-E LCCL Topology. *Jurnal Teknologi*, 84(3), pp.69–79.
- 2. Yusmarnita Yusop, Y.Q. Cheok, K.C Wong, S.S. and K.K.H., 2022. Design And Analysis of Self-Charging Unmanned Aerial Vehicle (UAV) System Using Inductive Approach. *Journal of Advanced Manufacturing Technology (JAMT)*. (Paper waiting for publication)

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

List of Conference:

 Cheok Yan Qi, Yusmarnita Yusop, Shakir Saat, Huzaimah Husin, K.K., 2022. Modelling of Capacitive Power Transfer System Based on Class-E LCLC Topology. Proceedings of 4th International Conference on Telecommunication, Electronic and Computer Engineering (ICTEC'22), Melaka, Malaysia. (Paper Accepted)

CHAPTER 1

INTRODUCTION

1.1 Background of Thesis

Wireless Power Transfer (WPT) or wireless power transmission is a technology of transmitting electrical energy from the source to the load without any wires as physical connection. The WPT system consists of a transmitter, a medium for transferring power and a receiver. The transmitter receives the electrical power from the power supply and generates a time-varying electromagnetic field to carry power across the medium to the receiver which then supplies the power to the load. Several handheld devices can be considered for the load such as mobile phones and electric toothbrushes. Besides, WPT can be applied for induction cooking and charging implantable medical devices like artificial cardiac pacemakers. By having sufficient output voltage, WPT can even charge electric vehicles. Figure 1.1 illustrates the potential applications of WPT for daily usage in a domestic environment. Using the WPT method, the problem of wires tangling together when having a lot of home appliances can be solved. As a result, WPT increases mobility, convenience and safety for all electronic device users.

WPT mainly falls into two main categories which are the near field and far field. Two well-known techniques in the near field are Capacitive Power Transfer (CPT) and Inductive Power Transfer (IPT). This research focuses on the design of CPT due to negligible eddycurrent loss, relatively low cost, low weight and excellent misalignment performance. The designed CPT system utilizes a Class-E resonant inverter and different types of impedance matching networks.

Figure 1.1: Application of WPT in House

1.2 Problem Statement

The Wireless Power Transfer (WPT) technology has been demonstrated since 1981 by Nikola Tesla with the illumination of phosphorescent lamps without using wire through CPT technology. Due to being more applicable to many power levels and various gap distances, IPT is the preferred choice when it comes to designing a WPT system. However, IPT has a significant shortcoming that concerns with the human safety regarding the field emission and overheating due to loss of eddy current when metal objects are close to the magnetic field (Huang et al., 2013). Therefore, most research in this field suggest CPT as the solution for this problem, as it is not sensitive to any metal presence and does not generate extra heat in metal due to eddy current losses (Li et al., 2015; Lu et al., 2015b).

In general, overall system efficiency is an important factor in designing and applying the CPT system. Although researchers have carried out a large amount of work to improve the performance of the system, there is still room for improvement to be made to further optimize the efficiency of the CPT system transmission. Based on the literature, system loss is mainly derived from power converter switching losses (Meade et al., 2008), coupling losses (Park, Thompson and Ferguson, 2005) and the parasitic resistance losses (Mohammad et al., 2013) from compensation components, including compensation inductors, capacitors, and switch devices. Most conventional CPT systems apply a full-bridge inverter for low-power CPT application. However, the use of the aforementioned approach to generate AC sinusoidal wave is complex due to the difficulty to drive the gating signal for power switches and will eventually lead to high switching losses (Bhardwaj, Borage and Tiwari, 2008). A full-bridge inverter consists of two pairs of switches which turn on and turn off simultaneously with a dead time. The dead time is necessary to avoid 'shoot through' or cross-conduction current through the same led of switches which resulting the failure of switching loss. Therefore, CPT system using a Class-E resonant inverter is proposed because it could achieve 100% theoretical maximum efficiency by applying soft-switching condition via the use of one power electronic switching device.

An important aspect when designing the CPT system is the trade-off between the transfer distance, power and efficiency which implies that the current CPT system cannot achieve long distance, high power and efficiency at the same time. For low-power charging applications, the CPT system's efficiency and output power are limited when the transfer distance or gap distance between metal electrodes increases (Dai and Ludois, 2015a). Moreover, CPT is known to be sensitive to load and coupling variations (Mostafa, Muharam, et al., 2019). The system efficiency will decrease significantly due to any misalignment of capacitive coupling plates or changing in load resistance. Therefore, various impedance matching circuits based on L-type, T-type and π -type matching networks are designed and applied to the Class-E inverter to preserve the zero-voltage switching (ZVS) condition thus compensating for the power loss caused by load and coupling variation. The impedance

matching circuits match the load impedance and the source impedance to minimize signal reflection, thus allowing the maximum power transfer from the source to load.

1.3 Research Objectives

The objectives of this research project are summarized as follows:

- i. To design a Class-E resonant inverter that drives a CPT system.
- ii. To investigate the performance of Class-E inverter with the presence of π 1b, LCCL and LCLC impedance matching networks.
- iii. To analyse the performance of the complete prototype of the CPT system in terms of ZVS, output power, and system efficiency.

1.4 Research Scope

This research aims to improve the efficiency of the CPT system. The details of the research scopes and the limitation of this work are as follows:

- i. The proposed CPT is limited to the low-wattage charging application and small gap distance Imm only. This is due to the fact that a large gap and high power causes the voltage across the gap from transmitter to receiver to exceed the permitted electric field for human exposure, which is 614V/m (IEEE standards, 2019) thus may not be safe for human contact (Asa et al., 2020). In order to demonstrate low power charging application, 10W output power is sufficiently for application in USB interface, LED driving and charging mobile devices such as mobile phones, laptops and tablets.
- ii. Class-E resonant inverter is selected to build the CPT system because it can theoretically achieve 100% efficiency. It is designed at optimum operation with duty cycle, D = 0.5 to gain 10W output power and efficiency above 80% at an optimum load, $R_L = 50\Omega$.

- iii. The pulse width modulation (PWM) signal and tuning for Class-E converter are operated at 1 MHz switching frequency. In order to protect human against adverse health effects when exposed to very high radio frequency, NCRP, IEEE and ICNIRP determined a threshold level of specific absorption rate (SAR) about 0.4 W/kg (IEEE, 2006). Therefore, a suitable frequency for maximum power transfer and within the permitted SAR is required and explored in this research.
- iv. The size of the capacitive coupling plate with a parallel circular structure is equivalent to the capacitance value of the designed Class-E components. The circular plate is made from the single-sided FR4 printed circuit board (PCB) copper plate, which is easier and cheaper.
- v. The verification of the proposed design and performance analysis is carried out through the simulation using MATLAB before the circuit was fabricated.
- vi. Agilent Technologies DSO-X 2012A 100MHz oscilloscope was used to analyse the proposed design where several output parameters such as ZVS condition, input and output power, and efficiency were recorded.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

1.5 Organization of Thesis

The thesis comprises five chapters. Chapter 1 presents the introduction of this project, consisting of background, problem statement, research objectives, limitation of the research, and the organization of the thesis.

Chapter 2 describes the literature review on wireless power transfer (WPT) technology. The history of Wireless Power Transfer (WPT) is introduced at the very beginning. Then, an overview of Wireless Power Transfer (WPT) is discussed. This chapter focuses mainly on Capacitive Power Transfer (CPT). Its working principle, applications and roles of each block that constitute the CPT system such as inverter, compensation circuit,

rectifier, and capacitive coupler are presented. This chapter ends with several issues and challenges related to the present CPT system design.

Chapter 3 depicts the methodology for full development of CPT system. This chapter presents the derivation of related formulas for circuit parameters and output performances of CPT system. Firstly, a basic Class-E resonant inverter is designed. Then, π 1b matching circuit is designed to change the optimum load to 50 Ω . Then, an extra LC matching circuit is added to the receiver part of the Class-E with π 1b matching circuit to form Class-E LCCL and LCLC circuits. Moreover, the Class-E DC-to-DC converter is formed by adding the fullwave rectifier and a capacitor filter to either of them. Lastly, the Class-E DC-DC converter is modified to CPT system.

Chapter 4 presents the results of the design specifications and output performances of the Class-E resonant inverter, Class-E with π 1b impedance matching circuit, Class-E LCCL circuit, Class-E LCLC circuit, Class-E DC-to-DC converter and CPT system. The Class-E LCCL circuit and Class-E LCLC circuits are compared based on output performance at optimum load, load variations, duty cycle variations and gap distance variations to select one suitable to realize the CPT system.

Chapter 5 discusses the conclusion of this research, including research outcomes, contributions of this study and recommendations for future research based on this study.