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ABSTRACT

Duplicate record is a common problem within data sets, especially in huge-volume
databases. The accuracy of duplicate detection determines the efficiency of the duplicate
removal process. However, duplicate detection has become more challenging due to the
presence of missing values within the records where during the clustering and matching
process, missing values can cause records deemed similar to be inserted into the wrong
group, hence, leading to undetected duplicates. Keeping a database free of duplicates is
crucial for most use-cases, as their existence causes false negatives and false positives when
matching queries against it. These two data quality issues have negative implications for
tasks, such as in the medical field, where the patient may get drugs overdosage, which could,
unfortunately, cause loss of life, or parcel delivery, where a parcel can get delivered to the
wrong address. While research in duplicate detection is well-established and covers different
aspects of both efficiency and effectiveness, our work in this thesis focuses on both. We
propose novel method to improve preprocessing task to overcome the challenge posed by
the presence of missing values on the efficiency of duplicates detection before duplicate
detection takes place and apply the latter in datasets even when prior labeling is not available.
In this thesis, duplicate detection improvement is proposed to deal with the presence of
missing values within a data set through Duplicate Detection within the Incomplete Data
set (DDID) method. DDID is based on a set of procedures to address the problem of missing
data, which is to adopt a generic approach based on high-rank attributes (high uniqueness,
low missing values ), followed by compensating the missing values in high-rank attributes
using the Hot Deck compensation method. Dynamic sort keys and matching strings are
created from the high-rank attributes in certain lengths. These procedures that were adopted
in DDID aimed to validate the expected results in successive stages of detection and achieve
a high matching rate of duplicate records despite the presence of missing values through a
specific detecting mechanism. The experiments included the use of four benchmark data sets
(restaurant, CDDB, MusicBrainz (A), MusicBrainz (B)) to detect duplicates. The missing
values were hypothetically added to the key attributes with 4% for the Restaurant data set
and 1.5% for the CDDB data set, using an arbitrary pattern to simulate both complete and
incomplete data sets. DuDe toolkit was used to detect duplicates as a benchmark to make
a relative comparison. Duplicates detection measures have been used to evaluate DDID in
terms of accuracy and use performance improvement (PI) and statistical analysis to evaluate
DDID in terms of elapsed time. The results of the experiments showed that the procedures
adopted in the proposed method DDID achieved a significant improvement in the accuracy
of detecting duplicates compared to DuDe as it reached in the first implementation stage,
18% with the Restaurant data set while 16% with the CDDB data set; and its reached 19%
and 4% for both MusicBrainz(A) and MusicBrainz(B) respectively, as compared to DuDe.
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Similarly, DDID achieved significant improvement in the accuracy of detecting duplicates as
compared to DuDe in the second implementation stage, reaching 24%, 18%, 30%, and 3%
for Restaurant, CDDB, MusicBrainz(A), and MusicBrainz(B), data sets respectively. The
analysis proved that even though the data sets were incomplete, DDID was able to offer
better accuracy and faster duplicate detection as compared to DuDe. The adopted procedures
also had a positive effect on limiting the defect of window size in the sorted neighbourhood
method, as it maintained the stability of the accuracy of detection of duplicates, in addition to
improving the performance of the tested blocking methods within this study. The results of
this thesis not only contribute to expanding the body of knowledge in data management
specifically in the area of data quality, where the focus is given to the problem of how
to detect the presence of duplicates within data sets that are incomplete. But it can also
contribute to the problem of industry-scale duplicate detection.
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PENDEKATAN PENGESANAN PENDUA DALAM SET DATA TIDAK LENGKAP
MENGGUNAKAN KUNCI PENGISIHAN DINAMIK DAN KAEDAH PAMPASAN

DEK PANAS

ABSTRAK

Kelewahan data adalah masalah biasa dalam set data terutamanya dalam pangkalan data
bersaiz besar. Ketepatan pengesanan pendua menentukan kecekapan proses penyingkiran
pendua. Walau bagaimanapun, pengesanan pendua telah menjadi lebih mencabar kerana
kehadiran nilai yang hilang dalam rekod di mana semasa proses pengelompokan dan
pemadanan, nilai yang hilang boleh menyebabkan rekod yang dianggap serupa dimasukkan
ke dalam kumpulan yang salah, justeru, membawa kepada pendua tidak dapat dikesan.
Mengekalkan pangkalan data bebas daripada pendua adalah penting untuk kebanyakan
kes penggunaan, kerana kewujudannya menyebabkan negatif palsu dan positif palsu
apabila memadankan pertanyaan dengannya. Kedua-dua isu kualiti data ini mempunyai
implikasi negatif untuk tugas, seperti dalam bidang perubatan, di mana pesakit mungkin
mendapat dos berlebihan ubat, yang malangnya boleh menyebabkan kehilangan nyawa
atau penghantaran bungkusan, di mana bungkusan boleh dihantar ke alamat yang salah
. Walaupun penyelidikan dalam pengesanan pendua sudah mantap dan merangkumi
aspek berbeza bagi kedua-dua kecekapan dan keberkesanan, kerja kami dalam tesis ini
memfokuskan pada kedua-duanya. Kami mencadangkan kaedah baru untuk meningkatkan
tugas prapemprosesan untuk mengatasi cabaran yang ditimbulkan oleh kehadiran nilai
yang hilang pada kecekapan pengesanan pendua sebelum pengesanan pendua berlaku dan
menggunakan yang terakhir dalam set data walaupun pelabelan sebelumnya tidak tersedia.
Dalam tesis ini, penambahbaikan pengesanan pendua dicadangkan untuk menangani
kehadiran nilai yang hilang dalam set data melalui Pengesanan Pendua dalam kaedah
Set Data Tidak Lengkap (DDID). DDID adalah berdasarkan satu set prosedur untuk
menangani masalah kehilangan data, iaitu menggunakan pendekatan generik berdasarkan
atribut peringkat tinggi (keunikan tinggi, nilai hilang rendah), diikuti dengan mengimbangi
nilai yang hilang dalam peringkat tinggi atribut menggunakan kaedah pampasan Hot Deck.
Kekunci isihan dinamik dan rentetan padanan dicipta daripada atribut peringkat tinggi
dalam panjang tertentu. Prosedur ini yang diterima pakai dalam DDID bertujuan untuk
mengesahkan keputusan yang dijangkakan dalam peringkat pengesanan berturut-turut
dan mencapai kadar pemadanan rekod pendua yang tinggi walaupun terdapat nilai yang
hilang melalui mekanisme pengesanan khusus. Eksperimen tersebut termasuk penggunaan
empat set data penanda aras (restoran, CDDB, MusicBrainz (A), MusicBrainz (B)) untuk
mengesan pendua. Nilai yang hilang telah ditambahkan secara hipotesis pada atribut
utama dengan 4% untuk set data Restoran dan 1.5% untuk set data CDDB, menggunakan
corak arbitrari untuk mensimulasikan kedua-dua set data yang lengkap dan tidak lengkap.
Kit alat DuDe digunakan untuk mengesan pendua sebagai penanda aras untuk membuat
perbandingan relatif. Langkah pengesanan pendua telah digunakan untuk menilai DDID
dari segi ketepatan dan menggunakan peningkatan prestasi (PI) dan analisis statistik untuk
menilai DDID dari segi masa berlalu. Keputusan eksperimen menunjukkan bahawa prosedur
yang diterima pakai dalam kaedah yang dicadangkan DDID mencapai peningkatan yang
ketara dalam ketepatan pengesanan pendua berbanding DuDe kerana ia mencapai pada
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peringkat pelaksanaan pertama, 18% dengan set data Restoran manakala 16% dengan set
data CDDB; dan mencapai 19% dan 4% masing-masing untuk kedua-dua MusicBrainz(A)
dan MusicBrainz(B), berbanding DuDe. Begitu juga, DDID mencapai peningkatan ketara
dalam ketepatan pengesanan pendua berbanding DuDe pada peringkat pelaksanaan
kedua, mencapai 24%, 18%, 30% dan 3% untuk Restoran, CDDB, MusicBrainz(A), dan
MusicBrainz(B), set data masing-masing. Analisis membuktikan bahawa walaupun set data
tidak lengkap, DDID mampu menawarkan ketepatan yang lebih baik dan pengesanan
pendua yang lebih pantas berbanding DuDe. Prosedur yang diterima pakai juga mempunyai
kesan positif dalam mengehadkan kecacatan saiz tetingkap dalam kaedah kejiranan yang
disusun, kerana ia mengekalkan kestabilan ketepatan pengesanan pendua, di samping
meningkatkan prestasi kaedah menyekat yang diuji dalam kajian ini. Hasil tesis ini
bukan sahaja menyumbang kepada pengembangan badan pengetahuan dalam pengurusan
data khususnya dalam bidang kualiti data, di mana tumpuan diberikan kepada masalah
bagaimana untuk mengesan kehadiran pendua dalam set data yang tidak lengkap. Tetapi ia
juga boleh menyumbang kepada masalah pengesanan pendua skala industri.
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CHAPTER 1

INTRODUCTION

This thesis proposes an improved approach to duplicate detection within incomplete

data set. The proposed method aims to improve the factors of accuracy and elapsed time in

the duplicates detection within incomplete data sets. This chapter is organized as follows:

The problem of duplicates within the incomplete data set and its impact on data quality is

presented in Section 1.1. In Section 1.2 research motivation is covered. Research objectives

and its mapping with the research questions is in Section 1.3. Section 1.4 presents the

main challenges in duplicates detection within incomplete data sets. Section 1.5 presents the

contributions of the research in expanding data quality body of knowledge. In Section 1.6

the chapter concludes with a summary of the expected results in the chapters of the thesis.

1.1 Overview

Applications of business and projects rely mostly on databases for storage purposes

and information processing for determining results. However, the database usage over the

past years faced specific constraints and most databases were configured only for specific

applications and purposes usage. In short, the configuration of applications and databases

are tailored for attaining specific results for end-users. However, at present, many of these

applications produce outputs that are not inevitable but may be incomplete, inaccurate or

somewhat ambiguous (Panse, 2015). The databases suffer from quality problems which are

lacking inconsistency in which the kind of data consistency often relates to the real-world

entities unique representation such as individuals’ data and merchandises stored in databases.

An inconsistent database refers to a scenario where an entity is represented several times in

the database or when the data itself is represented differently in different databases because

of the schematic heterogeneity (Wang and Zhang, 1996; Chen, Zobel and Verspoor, 2017b).

Thus, the database becomes ’dirty’ because of the presence of duplicates (Elmagarmid,

Ipeirotis and Verykios, 2007; Naumann and Herschel, 2010; Christen, 2012). Definitions
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of duplicates or redundancy rely on the context. In standard databases, duplicate occurs if a

unique entity is represented several times (Songchun and Hideto, 1993; Tamilselvi and Gifta,

2011; Chen, Zobel and Verspoor, 2017a; Panse et al., 2021) or the objects mirror the identical

real-world object but have a variety of representations in the database (Elmagarmid, Ipeirotis

and Verykios, 2007; Baumgartner et al., 2009; Barcelos, Mendoza and Moreira, 2021).

Data duplication can lead to a disaster. In the medical field, for example,

non-detection of duplicates can lead to an increase in the quantity of drugs (overdose)

(Di Rico et al., 2018). Consequently, the prescription of wrong medications may endanger

the patient’s health due to the unintended interdependencies between the administered

medications. Therefore, data sets within databases must be cleaned from duplicate

representations of entities to ensure data consistency. (Elmagarmid, Ipeirotis and Verykios,

2007; Naumann and Herschel, 2010; Christen, 2012; Ehsani-Moghaddam, Martin and

Queenan, 2021). One of contributing causes of duplicates is the integration of data generated

from multiple sources (Lenzerini, 2002; Brazhnik and Jones, 2007; Doan, Halevy and

Ives, 2012; Picado et al., 2020). The absence of a universal identifier or the damage of a

value of this identifier may lead to data duplication. Duplicate detection requires linking

of several data sources that help to capture aspects of the same real-world entities (van

Gennip et al., 2018). The integrated data contain a ratio of duplicate data which is between

(1%−5%) (Kelkar, Manwade and Prof, 2012). Addressing duplicated data is more important

to avoid false inflation of the database which makes data retrieval becomes costly and

difficult. Besides, duplicates detection is used to improve the quality of schemas between

different databases (Panse, 2015). Duplicate detection is a complex task especially in the

presence of noise such as misspellings, abbreviations, and missing values. This situation

causes similar records that represent the same physical entity, for example, having the

same staff represented multiple times in the company’s database, with several different

personnel numbers. This situation is also known as semantic duplicates (Nguena, Ophélie

and Richeline, 2017; Ansari and Sharma, 2020).

In this thesis, inexact duplicates issue is highlighted, in which records refer to the

same physical entity while not being syntactically equivalent (Tamilselvi and Gifta, 2011;

Anitha et al., 2012; Vasiliev et al., 2020). Inexact duplicates occur due to the presence of

missing values within a data set. The element that has a null value does not necessarily

represent the element that does not exist at all. For example, if a book contains a subtitle field,
2



but the value is null, then the book contains the subtitle element but the exact value of the

field is unknown. On the other hand, stating that the subtitle is missing may simply indicate

that the book has no subtitle. Finally, there must be strategies to develop similar measures

to help detect the various possible semantics of missing elements and null values that may

cause a duplicate (Naumann and Herschel, 2010). Duplicate detection is a process known

to traditional databases (Elmagarmid, Ipeirotis and Verykios, 2007; Naumann and Herschel,

2010; Christen, 2012; Aleshin-Guendel and Sadinle, 2022), but little attention has been given

for duplication detection within incomplete data sets. Some aspects of duplication detection

within incomplete data set are very similar to other databases, however, the detection of

duplicates within incomplete data sets poses some new challenges. In this thesis, the effect

of missing values in detection of duplicates was analyzed and a method for the detection of

duplicates that focuses on incomplete data sets was proposed. In the next section, the concept

of incomplete data sets is presented.

1.1.1 Incomplete Data Sets

Incomplete data sets have become almost ubiquitous in various application domains.

It has been reported that, the more data are accumulated, and the more tools for integrating

and exchanging data become available, the more instances of incompleteness are obtained

(Libkin, 2014). A data set with at least one incomplete datum is referred to as an incomplete

data set, otherwise, it is called complete data set (Umathe and Chaudhary, 2015). Incomplete

data create uncertainties during data analysis, which must be managed during data analysis.

Dealing with incomplete data sets is a challenge in order to record high-quality data (Stiglic

et al., 2017). Climate and image, sensors and medical data sets are common examples

of incomplete data sets. Issue of incompleteness in these data sets may be caused by

several factors such as certain measurements reflection might be absent at the time, or the

information might be missing because of failure of partial system, sensor node malfunction,

certain areas in systematics policies which intentionally skip some values or it might simply

be a result of users’ privacy concerns. If all of the attributes have few missing significant

fraction of the entries, any kind of reasonable extrapolation on the original data is hard to

perform (Aggarwal and Parthasarathy, 2001; Jaseena and David, 2014). Thus, incomplete

data management, such as the merging of data from different sources for various reasons

3



brings a new challenge of data duplication (Chen, Zobel and Verspoor, 2017b). The next

section presents the impact of duplicates on data quality.

1.1.2 Duplicates as Data Quality Problem

Today, big data problem can be a result of organizations failures to process or analyse

data produced by several sources. These organizations have access to a massive information,

but they are unable to get the value out of it (Zezula, 2015). The main problem concerning

data quality is the data are often ‘dirty’ at data sources (Kim et al., 2003). Dirty data include

inaccurate data, incomplete data, the presence of duplicates, and non-standard representation

of data. Dirty data leads to unreliable results for analysis.

Data quality is defined as “fitness for use” (Wang and Strong, 1996; Carlo and

Scannapieca, 2006; Goodchild, Wenzhong and Fisher, 2002) and is also defined as “the

distance between the data views presented by an information system and the same data

in the real world” (Orr, 1998). Such a definition is viewed as an “operational definition”,

although defining data quality based on comparisons with the real world is an extremely

difficult task (Bertolazzi and Scannapieco, 2001) Accordingly, any false decision should be

ignored. Data sets must be preprocessed to produce a complete and clean dataset before

starting any integration process. Even though a standard set of dimensions for data quality is

not available, researchers commonly agree with data quality attributes or dimensions namely

accuracy, completeness, consistency, and currency. So for each data quality problem, there

is a specific data quality rule that it targets like redundancy (as a duplicate instance), illegal

values, functional dependency (Taleb, Dssouli and Serhani, 2015; Sadiq et al., 2018). The

systems which rely on these dimensions and rules are of high-quality (Scannapieco, Missier

and Batini, 2005). Data quality has become a common challenge for organizations where

they struggle with inconsistency, loss and data duplication (Huang et al., 2017).

Moreover, many statistical surveys have shown that data conflicts arise because of

duplicate records (Elmagarmid, Ipeirotis and Verykios, 2007). A practical solution for this

problem namely duplicate detection (or record linkage or data matching) is proposed to

produce a unique and consistent view of the data record. However, it is later found that

the techniques are facing a larger set of data problems such as incompleteness, inaccuracy

and inconsistency. Therefore, several researchers are dealing with data quality problems.

4
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