

SAFETY PERFORMANCE ANALYSIS OF SIGNALIZED INTERSECTIONS IN ABU DHABI USING A MIXED RESEARCH APPROACH

DOCTOR OF PHILOSOPHY

Institute of Technology Management and Entrepreneurship

Doctor of Philosophy

SAFETY PERFORMANCE ANALYSIS OF SIGNALIZED INTERSECTIONS IN ABU DHABI USING A MIXED RESEARCH APPROACH

ABDULLA HAMAD OBAID HAMAD ALGHFELI

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this thesis entitled "Safety Performance Analysis of Signalized Intersections in Abu Dhabi Using a Mixed Research Approach" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I hereby declare that I have read this thesis, and, in my opinion, this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

DEDICATION

To my beloved father and mother, for your uninterrupted prayers.

To my wife, my beloved companion who spared no time or effort to help me complete my studies.

To my sisters, for all the support and encouragement.

To my leaders and role models in work, research and persevereance, Sheikh Mohammed bin Rashid Al Maktoum and Sheikh Mohammed bin Zayed Al Nahyan for your unlimited support in empowering Emiratis in all fields.

To the Commander-in-Chief of Abu Dhabi Police and the Head of the Department of Municipalities and Transport, for your support and approval to use the data to complete this

work. UNIVERSITI TEKNIKAL MALAYSIA MELAKA

I dedicate to you my scientific thesis that will improve traffic safety at traffic light intersections in the United Arab Emirates.

ABSTRACT

Even though Abu Dhabi government has taken a number of steps to reduce the number of road accidents, and fatalities as well as injuries associated with them, the city has continued to experience high number of traffic accidents especially at the intersections. According to Abu Dhabi's Police Traffic Engineering Department, in 2013 for instance, of all the 1400 severe traffic accidents, signalized intersections were responsible for 240 traffic accidents which was the highest contribution by a single factor. On the other hand, red light violation (RLV) is considered one of the major contributors of traffic accidents in many cities including Abu Dhabi. Several studies done elsewhere have attributed this to reaction times after activation of red light but not in Abu Dhabi which may help the authorities implement appropriate signal phasing timings at the intersections. Moreover, in an effort to homogenize Abu Dhabi City's Road traffic rules with those of international rules, Abu Dhabi government removed the 20 kph speed buffers on all roads in 2018. This was implemented in such a way that the enforcement speed and the posted speed have the same value. However, few studies have examined the effect of implementing policies to the safety performance at the signalized intersections. The study aims at improving the safety performance of these intersections by determining operational and geometric factors affecting safety performance of the Abu Dhabi's Signalized intersection; determining the effect of drivers' reaction time; determining the effect of removal of speed buffers on the safety performance of Abu Dhabi's Signalized intersections; ascertain the recommendations used by road safety audit staff while evaluating signalized intersections; and proposing practical and feasible safety performance indicators that could act as a standard to the administrative authorities for developing the signalized intersections. The objectives were achieved via quantitative research methodology (objectives 1 to 3) and qualitative research (Objective 4 and 5). The data were analysed via descriptive and inferential statistics (negative binomial regression) and thematic analysis. The result shows that when compared to other intersections, 3-leg intersections tend to be more sensitive to variations of the geometric and operational factors. This is such that the size of the mid-island (major direction), the size of separation between through and left and number of lanes in minor left are negatively related with number of accidents. The size of mid-island (minor direction), number lanes in the main through, number of pedestrian crossings, intersection speed, and average hourly traffic are positively related at this intersection. In terms of objective 2, the research found that most of the red violations and hence traffic accidents occur between less than 1s to 2 to 3 seconds after activation of red light at the intersections which indicates drivers' reaction is a major contributor safety performance of these intersections. In terms of objective 3, the study found that introduction of speed buffers indeed reduced traffic accidents, and thus improved the safety performance of the intersections. In terms of objectives 4 and 5, the research found that: there is the poor implementation of guidelines by the auditors. Based on the above results, it is recommended that other emirates in UAE should consider implementing the policy; safety manual should be improved to conform to the internationally renowned manuals.

ANALISIS PRESTASI KESELAMATAN PERSIMPANGAN BERISYARAT DI ABU DHABI MENGGUNAKAN PENDEKATAN PENYELIDIKAN GABUNGAN

ABSTRAK

Biarpun kerajaan Abu Dhabi telah mengambil langkah untuk mengurangkan jumlah kemalangan jalan raya dan kaitannya dengan kematian dan kecederaan, bandar itu masih menunjukkan jumlah kemalangan jalan raya yang tinggi, terutamanya di persimpangan. Menurut Jabatan Kejuruteraan Trafik Polis Abu Dhabi, pada 2013, persimpangan berisyarat adalah punca 240 daripada 1400 kemalangan serius jalan raya yang merupakan faktor penyumbang tertinggi. Pelanggaran lampu merah (Red light violations) adalah punca utama kemalangan jalan raya di banyak bandar, termasuk Abu Dhabi dan beberapa kajian telah mengaitkan keadaan ini dengan masa tindak balas pemandu selepas lampu merah diaktifkan. Walau bagaimanapun, tidak ada kajian seperti itu dijalankan di Abu Dhabi. Pada 2018, kerajaan Abu Dhabi mengalih penampan berkelajuan 20 kph di semua jalan sebagai sebahagian daripada usaha untuk menyesuaikan peraturan jalan raya bandar dengan peraturan antarabangsa. Kini kelajuan penguatkuasaan dan kelajuan yang ditetapkan mempunyai nilai yang sama. Di sebalik perubahan ini, beberapa kajian telah melihat kesan dasar tersebut terhadap prestasi keselamatan persimpangan berisyarat. Kajian ini bertujuan menambah baik prestasi keselamatan persimpangan ini dengan mengenal pasti faktor-faktor operasi dan geometri yang mempengaruhi keselamatan persimpangan berisyarat di Abu Dhabi, menentukan kesan masa tindak balas pemandu, menganalisis kesan pengalihan penampan kelajuan dan mencadangkan indikator prestasi keselamatan yang praktikal dan boleh dilaksanakan untuk digunakan oleh pihak berkuasa pentadbiran apabila membangunkan persimpangan berisyarat. Objektif kajian dicapai melalui gabungan kaedah penyelidikan kuantitatif (objektif 1 hingga 3) dan kualitatif (objektif 4). Data telah dianalisis menggunakan statistik deskriptif dan inferensi (regresi binomial negatif) dan teknik analisis tematik. Keputusan telah menunjukkan bahawa apabila dibandingkan dengan jenis persimpangan lain, persimpangan tiga cabang lebih terdedah kepada perubahan dalam faktor geometri dan operasi. Ini bermakna saiz separuh pulau di laluan utama, jarak antara lorong yang dilalui dan lorong kiri serta bilangan lorong di laluan sisi membelok ke kiri semuanya didapati ada kaitan negatif dengan bilangan kemalangan. Sebaliknya, saiz separuh pulau dalam laluan sisi, bilangan lorong yang melewati laluan utama, bilangan lintasan pejalan kaki, kelajuan persimpangan dan purata lalu lintas setiap jam terdapat kaitan positif dengan bilangan kemalangan. Berhubung dengan objektif kedua, kajian mendapati bahawa kebanyakan pelanggaran lampu merah yang menyebabkan kemalangan berlaku antara 0 hingga 2 hingga 3 saat selepas pengaktifan lampu merah, menunjukkan bahawa masa tindak balas pemandu adalah faktor penting yang mempengaruhi prestasi keselamatan persimpangan berisyarat. Berkenaan objektif ketiga, keputusan menunjukkan bahawa pengenalan penampan kelajuan sememangnya membawa kepada penurunan kemalangan jalan raya dan penambahbaikan prestasi keselamatan persimpangan. Bagi objektif keempat dan kelima, kajian mendedahkan bahawa pelaksanaan garis panduan oleh juruaudit adalah lemah. Berdasarkan penemuan ini, adalah disyorkan agar bahagian lain di UAE menerima pakai dasar ini dan manual keselamatan perlu dikemas kini agar sejajar dengan piawaian antarabangsa.

ACKNOWLEDGEMENTS

In the Name of Allah, the Most Gracious, the Most Merciful

First and foremost, I would like to thank and praise Allah the Almighty, my Creator, my Sustainer, for everything I received since the beginning of my life. I would like to extend my appreciation to the Universiti Teknikal Malaysia Melaka (UTeM) for providing the research platform.

WALAYSIA

My utmost appreciation goes to my main supervisor, Professor Ts. Dr. Effendi Mohamad from Faculty of Manufacturing Engineering, UTeM. for all his support, advice, and inspiration. His constant patience for guiding and providing priceless insights will forever be remembered. Also, to my co-supervisors Associate Professor Dr. Muhamad Arfauz Rahman and Associate Professor Ir. Dr. Md Nazri Othman who constantly supported my journey.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

My appreciation also goes to my manager at work Dr. Ahmed Nasir Al-Zaidy and to my colleagues at the Traffic Engineering and Road Safety Department in Abu Dhabi Police for all the support in providing the required data to complete my research.

Last but not least, from the bottom of my heart my beloved parents and wife for their endless support, love, and prayers. Finally, thank you to all the individual(s) who had provided me with the assistance, support, and inspiration to embark on my study.

TABLE OF CONTENTS

		I	PAGE
DE	CLAR	ATION	
AP	PROVA	AL	
DE	DICAT	ION	
AB	STRAC	T.	i
AB	STRAK	· -	ii
AC	KNOW	LEDGEMENTS	iii
TA	BLE O	F CONTENTS	iv
LIS	ST OF 1	TABLES	viii
LIS	ST OF F	TGURES	x
LIS	ST OF S	SYMBOLS AND ABBREVIATIONS	xi
	T OF A	APPENDICES	vii
	T OF F	PUBLICATIONS	viii
1	INT	RODUCTION	1
	1.1	Background	1
	1.2	Problem statement and justification	4
	1.3	Research hypothesis	8
	1.4	The rationale of this research	9
	1.5	Research questions	12
	1.6	Research objectives	13
	1.7	Scope of this research	14
	1.8	Thesis outline	16
_		lever wir in Since alund	
2		ERATURE REVIEW	18
	2.1	Introduction	18
	2.2	USystematic Review KNIKAL MALAY SIA MELAKA	18
	2.3	Factors affecting the traffic safety at the Signalized intersections	19
		2.3.1 Average Annual Daily Traffic (AADT)	19
		2.3.2 Number of lanes entering the intersection	21
		2.3.5 Middle Island Width	22
		2.3.4 Factors affecting the safety at pedestrian crossing	23
		2.3.5 Signal phasing sequence (Lead Lag phasing, Split phasing)	24 25
		2.3.0 Separation type between through direction and left direction	25 25
	24	Accident theoretical models	23 27
	2.4	2.4.1 Accident based models	27
		2.4.1 Accident based models	27
		2.4.2 Connect models	32
		2.4.5 A summary of the different theoretical accident models	Δ1
	25	Red-light camera system violation (running violation)	41 //3
	2.5 2.6	Efficiency of the automated red-light signal camera system	т.) ДЛ
	2.0 2.7	Relationship between the elansed time from the onset of the red signal	- -
	2.1	until its violation and traffic accident occurrence	46
			10

	2.7.1	Dilemma zone in traffic signal	46
	2.7.2	Previous literature on driver reaction time and occurence of red-	
		light violations	47
2.8	Safety	performance function	50
2.9	Road	safety auditing on Signalized intersections	51
2.10	Limita	ations of accident-based models and importance of qualitative da	ta
	(interv	views)	55
2.11	Resea	rch gap (significance of this study)	55
2.12	Summ	hary	58
RESI	EARCH	I METHODOLOGY	60
3.1	Introd	uction	60
	3.1.1	Research methodology used in this study	60
	3.1.2	Research strategy	64
3.2	Phase	I: Quantitative data analysis	66
	3.2.1	Data Collection:	67
	3.2.2	Multicollinearity	74
	3.2.3	Operational, geometric, and demographic road characteristics	
		affecting safety at signalized intersections	75
	3.2.4	Model (s) used to examine operational, geometric, and	
	2	demographic factors.	76
	3.2.5	Correlation between the elapsed time after the onset of a red	
	N. Contraction	signal and traffic violations and traffic accidents	82
	3251	Regression models used	84
	326	Determining the effect of the speed buffer policy on traffic	
	2	safety at signalized intersections	84
	3.2.7	Sources of data	87
	3.2.8	Validation	87
	3.2.9	Validity and reliability	88
3.3	Phase	II: Oualitative data analysis (interviews)	88
0.10	3.3.1	Participant selection and sampling	90
	3.3.2	Data Collection Method	93
	3.3.2	Semi-structured interviews	93
	3.3.2.2	2 Questionnaire design	95
	3.3.3	Oualitative data analysis	96
	3.3.4	Data Validity	99
	3.3.5	Data Reliability	100
3.4	Summ	hary	100
RES	ULTS A	ND DISCUSSION	101
4.1	Introd	uction	101
4.2	Check	ing multi collinearity of the regression variables	102
	4.2.1	Operational and Geometrical Conditions affecting total number	•
		of accidents at signalized intersections	104
	4.2.1.1	Operational and Geometrical Conditions effecting total number	
		of accidents	104
	4.2.1.2	2 Size of Mid-Island Main Direction	106
	4.2.1 3	Size of middle island on the minor direction	107
	1.2.1.	size of initial bland on the initial direction	107

	4.2.1.4	Number of Pedestrian Zebra Crossing	108
	4.2.1.5	Number of lanes on main through	108
	4.2.1.6	Number of lanes on main road left direction	109
	4.2.1.7	Number of lanes on minor road through direction	109
	4.2.1.8	Number of lanes minor road left direction	109
	4.2.1.9	Separation between through and left	110
	4.2.1.1	0 Average Hourly traffic (AADT)	110
	4.2.1.1	1 Signal control type	111
	4.2.1.1	2 Intersection speed limit	111
	4.2.2	Operational and Geometrical Conditions factors affecting the	
		Pedestrian safety at the signalized intersection	112
	4.2.3	Average hourly traffic volume	113
	4.2.4	Number of red-light violations	114
	4.2.5	Number of pedestrian zebra crossing	114
	4.2.6	Intersection speed	115
4.3	Effect	of demographic factors on safety performance of the	
	interse	ctions	115
	4.3.1	The effect gender on safety performance of intersections	118
	4.3.2	The effect age on safety performance of intersections	119
4.4	Relatio	onship between the time elapsed after the onset of red light and in	ts
	violatio	on and the occurrence of traffic accident	120
	4.4.1	Descriptive statistics	120
	4.4.2	Relationship between the red-light violations and different	
	1	types of accidents	122
	4.4.3	Relationship between the red-light violations and signal	
	°43.	crossing speeds without causing any accidents	123
	4.4.4	Relationship between the red-light violations and speed of	
	chi	vehicles crossing the signals and causing accidents	124
	4.4.5	Relationship between the red-light violations and the traffic	
		volume	125
	4.4.6	Relationship between the time elapsed after the onset of red	
	OTTI VIL	light and its violation and the occurrence of traffic accident	126
	4.4.7	Relationship between the time elapsed after the onset of red	
		light and its violation and occurrence of a traffic accident at the	
	4.4.0	4-leg intersections	127
	4.4.8	Relationship between the time elapsed after the onset of red	
		light and its violation and the occurrence of a traffic accident at	100
	4.4.0	the 3-leg intersections	128
	4.4.9	Relationship between the time elapsed after the onset of red	
		light and its violation and the occurrence of traffic accidents at	100
15	T ff	the Signalized intersections	128
4.5	Effect	of removing the speed buffer on traffic safety at Signalized	120
	interse	Ctions	129
	4.5.1	Estimation of Empirical Bayes factors	129
	4.3.2	Estimating Safety Performance Functions (SPF)	120
	4.3.3 1 5 1	Effort of removing speed buffers at the 4 log intersections	132
	4.3.4	Effect of removing speed buffers at the 2 log intersections	132
	4.3.3	Effect of removing speed burrers at the 5-leg intersection	130

		4.5.6	Effect of removing speed buffers at the different intersection	138		
	4.6	A summary of the results derived after interviewing 10 safety audi				
		in Abu Dhabi, UAE				
		4.6.1	Issues related to Abu Dhabi's road safety auditing standard			
			manual (the standard manual used by Abu Dhabi Road auditors			
			for auditing the road safety) and the proposed solutions	141		
		4.6.2	The safety indicators that are used for assessing the traffic safety			
			at the existing Signalized intersections and suggesting some			
			countermeasures	143		
		4.6.3	Gaps existing in the decision-making process that ignore the			
			safety concerns	146		
		4.6.4	Review of the safety performance monitoring	147		
	4.7	Summ	ary of all findings observed in the study	149		
		4.7.1	Summary of the findings of quantitative research	149		
		4.7.2	Summary of the findings of qualitative research (interviews)	150		
_						
5	CON	CLUSI	ON AND RECOMMENDATIONS	152		
	5.1	Introdu	uction	152		
	5.2	Summ	ery of main findings	152		
	5.3	Resear	rch Contribution	157		
	5.4	Recon	nmendations and proposed solutions	158		
		5.4.1	Quantitative research recommendations	158		
		5.4.2	Recommendations based on the interview findings	160		
		5.4.3	Research Limitation	162		
		2				
REFE	REFERENCES					
APPE	NDICH	ES	Vn	183		
		sh1.	1.16.6			
		مهرب	اوتورستی پیکی متیست			
			1.0			

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF TABLES

TITLE

PAGE

TABLE

Table 2.1: A review of different accident-based models	32
Table 2.2: A review of the conflict-based models	37
Table 2.3: Review of the non-accident, non-conflict models	40
Table 2.4: A summary of the safety performance models under varying conditions	42
Table 4.1: Number of intersections and signal controls examined	101
Table 4.2: Pearson's correlation among variables used in regression model	103
Table 4.3: VIF analysis of the variables	103
Table 4.4: Results of the negative binomial model highlighting the relationship	
between the number of traffic accident occurrences and road geometry	106
Table 4.5: Results of the negative binomial model highlighting the relationship	
between the number of pedestrian accident occurrences and road	
geometry	113
Table 4.6: The effect of demographic factors on safety performance of the	
intersections	116
Table 4.7: Summary of the statistics noted at 4-leg intersections (33 signalized	
intersections) ITI TEKNIKAL MALAYSIA MELAKA	120
Table 4.8: Summary of the statistics noted at 3-leg intersections (11 signalized	
intersections)	121
Table 4.9: Summary of the statistics noted at different intersections (5 signalized	
intersections)	121
Table 4.10: Relationship between the red-light violations and various types of	
accidents	123
Table 4.11: Relationship between red-light violations and vehicle speed without	
accidents	124
Table 4.12: Relationship between red-light violations and speed of the vehicle with	
accidents	125
Table 4.13: Relationship between the red-light violations and traffic volume	125

Table 4.14: Relationship between the time elapsed after the onset of red light and its	
violation and the occurrence of traffic accident using the Poisson model	126
Table 4.15: Pearson correlation between the variables	131
Table 4.16: Variance inflation factor (VIF) Table	131
Table 4.17: Regression analyses used to determine coefficients for SPF function at	
4-leg intersection	133
Table 4.18: SPF, expected number of number of accidents and percentage change in	
the number accidents because of implementation of speed buffers at 4-	
leg intersection.	135
Table 4.19: Regression analyses for determining coefficients for SPF function at 3-	
leg and different intersections	137
Table 4.20: SPF values, expected accidents and percentage in accident number after	
implementation of speed buffers at 3-leg intersection	138
Table 4.21: Calculation of SPF functions for the different intersection	139
Table 4.22: SPF values, expected accidents and percentage in accident number after	
implementation of speed buffers at different intersection	140
Table 4.23: Themes, codes and datasets related to issues identified by the Abu	
Dhabi road safety auditors using the safety auditing standard manual	
and proposed solutions	142
Table 4.24: Themes, codes and the datasets related to the identified safety indicators	
that can be used for assessing the existing signalized intersections and	
suggesting countermeasures	144
Table 4.25: Themes, codes and the datasets related to the gaps existing in the	
decision-making process that ignore the various safety concerns	146
Table 4.26: Themes, codes and datasets related to the safety performance	
monitoring process	148

LIST OF FIGURES

FIGURE TITLE	PAGE
Figure 1.1: Actions affected the Traffic signal Operations (Source: Traffic Engineering	
and Road Safety Department, Abu Dhabi Police. UAE)	10
Figure 1.2: Types of Signal phasing sequence used in Abu Dhabi	11
Figure 1.3: The number of severe accidents that have occurred at signalized	
intersections in Abu Dhabi City according to the type of system used (Data	ì
source: Traffic Engineering and Road Safety Department, Abu Dhabi	
Police, UAE, 2022)	12
Figure 1.4: Abu Dhabi City (the research area, Source: Google map)	16
Figure 2.1: Systematic literature review	19
Figure 2.2: Accident theoretical models	27
Figure 2.3: Safety pyramid integrating accident severity into the safety hierarchy.	33
Figure 2.4: Illustrative example depicting a traffic conflict using the video analytics	
technique (High-rise used for traffic monitoring in Trieste 2017)	35
Figure 3.1: The sequential mixed method (Creswell and Creswell, 2017)	62
Figure 3.2: The phases of this present study	64
Figure 3.3: Data Collection Process	68
Figure 3.4: Type of Signalized Intersections	69
Figure 3.5 Types of Intersection based on the speed limit	69
Figure 3.6: Direction of movements determination and number of lanes	70
Figure 3.7: Sample intersection in Abu Dhabi for Signal Separation by Curb	71
Figure 3.8: Type of separation between through and left direction	71
Figure 3.9: Estimating the size of the middle island using aerial satellite images on	
Google Earth	72
Figure 3.10: Number of Pedestrian Crossing	72
Figure 3.11: Accident Reporting in Abu Dhabi	74
Figure 3.12 : Comparison of mean and variance for different dependent variables	81
Figure 3.13: Measuring the elapsed time after the onset of red signal.	82
Figure 3.14: Data Provided by Abu Dhabi Police for Red-light Violators	83
Figure 3.15 Methodology of the thematic analysis	97

LIST OF SYMBOLS AND ABBREVIATIONS

AADT	-	Annual Average Daily Traffic
DoT	-	Department of Transport
NB	-	Negative Binomial
EB	-	Empirical Bayes
NN	-	Neural Networks
OECD	-	Organization for Economic Co-operation and Development
Pi	-	A dependent variable, where the probability of $yi = 1$
PSL	-	Posted Speed Limit
RLR	-	Red Light Running
RLV	- 4	Red Light Violation
RSA	-	Road Safety Auditing
SPF	-	Safety Performance function
SPI	-	Safety performance indicators
UAE		United Arabs Emirates
βο		Constant
λ	- U	Actual recorded number of accidents after buffer
π	-	Expected number of accidents had the buffer not implemented
φ	-	Dispersion

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Data Used for Objective 1	183
В	Data Used for Objective 2	210
С	Data Used for Objective 3	213
D	Summary of Comments for Interview Questions	215

LIST OF PUBLICATIONS

Journal with Impact Factor

Indexed Journal

- Alghafli, A., Mohamad, E., and Ahmed, A.Z., 2021. The Effect of Geometric Road Conditions on Safety Performance of Abu Dhabi Road Intersections. *Safety*, 7(4), p.73.
- ii. Alghafli, A., Mohamad, E., and Zaidy, A.A., 2021. The relationship between the elapsed time from the onset of red signal until its violation and traffic accident occurrence in Abu Dhabi, UAE. *Safety*, 7(3), p.53.

Conference Proceedings

ALAYSIA

 Alghafli, A., Mohamad, E., and Rahman, A.A., Analysis of Safety Performance of Signalized Intersections in Abu Dhabi. *Proceedings of the 11th Annual International Conference on Industrial Engineering and Operations Management Singapore*, March 7-11, 2021, pp. 6009-6019.

CHAPTER 1

INTRODUCTION

1.1 Background

Every country tries to ensure that motorists and civilians can safely use the roads and intersections. As such, nations globally endeavour to adapt and implement plans, initiatives, rules, and traffic regulations to reduce road accidents (Atchley et al., 2014). Traffic safety authorities and the traffic police are responsible for these tasks (Batool et al., 2012).

To ensure the responsibility of ensuring pedestrian and motorist safety, these authorities assess all significant traffic safety-specific aspects, suggested standards and recommendations (Wiegmann et al., 2007).

Several aspects of traffic safety characteristics include human-specific factors, road geometry and vehicle factors (Hassan et al., 2012; Reveron and Cretu, 2019; Alshamsi, 2021). Considering these aspects, the human factor (or aspect) is considered the foremost cause of most traffic accidents (Das, 2022). Research suggests that road mishaps are primarily caused due to human factors, accounting for 90 to 95% of traffic accidents in several nations (Sayed et al., 2022).

It is critical to understand that safety is assessed using safety performance metrics. This research uses the mean of traffic accidents at intersections as the performance metric. Hence, traffic safety characteristics are compromised if the count of accidents is higher and vice-versa (Cunto and Saccomanno, 2008). Several aspects impact traffic mishaps at intersections, impacting safety characteristics: geometric aspects of the intersection, operating conditions, and driver demographics (Fortuijn, 2009).

Further, regulations and guidelines are specified; driver compliance is critical. Geometric aspects comprise intersection geometry such as leg count (3-leg, 4-leg, and several intersections), pedestrian crossing count, mid-island area, and other factors (Morency et al., 2012). Operational factors comprise traffic flow regulation at an intersection, like maximum permissible speed, signal control, and average hourly traffic (Yang et al., 2019).

The primary issue concerning traffic incidents is the potential to cause injury and death. Global research estimates that over 3,600 individuals lose their lives to road accidents daily (Ankit et al., 2018; Global Burden of Disease (GBD) Eastern Mediterranean Region Transportation Injuries Collaborators, 2018). Furthermore, accidents cause millions of injuries annually (World Health Organization, 2018). Despite the human factor being significantly correlated with traffic accidents, several engineering aspects like signal control and road geometry share noteworthy correlations with road mishaps, specifically close to intersections.

Several traffic safety guidelines have been proposed considering the substantial rise in fatal road accidents and overall injuries (Chung et al., 2010). Such measures facilitate specifying countermeasures that enhance traffic movement on the road. Countermeasures comprise engineering aspects like road design changes or enforcement-specific measures like amending the laws to change how individuals drive on the roads (Haworth et al., 2012). Further to the change implemented by nations, the World Health Organization (WHO) has advocated for enhancing road safety. The WHO drafted a post-accident response plan for 2011 to 2020, which suggested that government and other authorities, including civil society bodies, consider and devise safer road safety guidelines (Ouni and Belloumi, 2018) like rapid response for accidents, enhancing vehicular safety and road safety handling (World Health Organisation, 2018).

The United Arab Emirates has nationally considered road safety enhancement. The authorities have devised several traffic-mishap mitigation approaches that improve the nation's competitiveness globally (Al-Shayeb and Hatemi-J, 2016). To this effect, the UAE government endeavoured to reduce traffic fatalities to three in 100000 individuals by 2021 from six in 100,000 in 2015 (Ankit et al., 2018). Local bodies corresponding to every Emirate devised operational and tactical measures to meet this milestone, including building expert working groups from numerous government bodies (Ankit et al., 2018). Such strategy initiatives comprise safety and awareness, education, vehicular safety, engineering, and emergency action. Several aspects targeted enhancing intersection-specific safety in the country.

Considering that several traffic incidents are witnessed at intersections, the safety authorities of every Emirate (specifically in Abu Dhabi) have enhanced non-controlled (specifically 3- and 4-leg intersections) to include signal-based control. Notwithstanding this initiative, research by Essa and Sayed (2018) suggests that signal-enabled intersections witness additional traffic incidents in Abu Dhabi if the implementation is improper. It has been suggested that additional conflict points at such intersections than usual signal-less counterparts are responsible for additional incidents (Al-Ghafli et al., 2013). High-speed movement might deem such conflict points critical.

Studies also suggest that road accidents in Abu Dhabi have been witnessing increasing severity despite the initiatives implemented by Abu Dhabi authorities (Traffic Engineering Department and Road Safety-Abu Dhabi Police, 2019). It suggests the inadequacy of the present Road Safety Manual (standard) enforced by the authorities. Numerous aspects like outdated recommendations, improper execution of recommendations and substandard road safety manuals might be responsible for severe accidents.

The present work reduces the gap by assessing road safety standards used by auditors to evaluate signal-enabled intersections. Additionally, this study recommends feasible realworld safety characteristics and metrics that the traffic administration may use as a reference for devising signal-enabled intersections.

1.2 Problem statement and justification

The Abu Dhabi government has devised several plans for reducing road accidents, deaths, and injuries at intersections. Nevertheless, additional efforts are required since numerous accidents still happen at intersections (Alkheder, 2023). The Traffic Engineering Department of the Abu Dhabi Police (2019) suggested that signal-enabled intersections (specifically the 3- and 4-leg variants) witness a majority of the overall road accidents in Abu Dhabi. The department indicated that in 2013, 17% (240/ 1400) of the overall road accidents were witnessed at signal-enabled intersections (Table 1.1) (Traffic Engineering Department and Road Safety-Abu Dhabi Police, 2019). By 2018, the number had reduced to 7%, as listed in Table 1.1 (Traffic Engineering Department and Road Safety-Abu Dhabi Police, 2019). Therefore, a comprehensive assessment is critical to assess the aspects contributing to traffic incidents at signalized intersections.

		Number of RLR Accidents	Red Light Running (RLR) Accidents				
Year	Total Number of Accidents		Minor Injury	Moderate Injury	Serious Injury	Fatality	Probability of causing at least one serious injury
2013	1,409	240	354	106	19	6	10%
2014	1,246	160	236	102	23	6	18%
2015	1,112	114	184	99	14	2	14%
2016	1,014	112	126	64	12	2	12%
2017	918	93	129	76	12	3	16%
2018	940	66	109	70	5	4	13%
2019	901	52	32	35	9	3	23%
2020	873	48	32	32	8	3	22%
2021	758	59	47	50	3	3	10%

Table 1.1: The number of severe road accidents in Abu Dhabi City between 2013 to 2021

(Source: Traffic Engineering Department and Road Safety, Abu Dhabi Police, 2022)

It is critical to assess the effect of road geometry and operational factors on traffic and pedestrian accidents (safety performance metrics) to help Abu Dhabi traffic safety authorities to pinpoint the critical reasons that compromise safety at signal-enabled junctions.

In addition to geometry and operating conditions, human aspects like noncompliance to red signals are among the primary contributors to intersection-specific traffic accidents. Data from Dubai strengthens the argument because it suggests that red-light noncompliance has massively increased road accidents in the nation (Table 1.1).

Data from 2011 indicate that red-light violations caused 6% of the overall traffic incidents, which increased to over 17% in 2013 (240 out of 1406, Table 1.1) (Goldenbeld, 2016). The metric is more worrying if cities (specifically larger cities) are evaluated individually.