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Abstract
Learning subtle discriminative feature representation plays a significant role in Fine‐
Grained Visual Categorisation (FGVC). The vision transformer (ViT) achieves prom-
ising performance in the traditional image classification filed due to its multi‐head self‐
attention mechanism. Unfortunately, ViT cannot effectively capture critical feature re-
gions for FGVC due to only focusing on classification token and adopting the strategy of
one‐time image input. Besides, the advantage of attention weights fusion is not applied to
ViT. To promote the performance of capturing vital regions for FGVC, the authors
propose a novel model named RDTrans, which proposes discriminative region with top
priority in a recurrent learning way. Specifically, proposed vital regions at each scale will
be cropped and amplified as the next input parameters to finally locate the most
discriminative region. Furthermore, a distillation learning method is employed to provide
better supervision for elevating the generalisation ability. Concurrently, RDTrans can be
easily trained end‐to‐end in a weakly‐supervised learning way. Extensive experiments
demonstrate that RDTrans yields state‐of‐the‐art performance on four widely used fine‐
grained benchmarks, including CUB‐200‐2011, Stanford Cars, Stanford Dogs, and
iNat2017.
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1 | INTRODUCTION

Fine‐grained visual categorisation (FGVC) plays a vital role in
the field of image recognition, which aims to distinguish sub‐
classes within a general category, such as subcategories of birds
[1, 2], dogs [3] etc. Meanwhile, it is a challenging field due to
inappreciable inter‐class variations. With the progress of the
research methods [4–7], the performance of FGVC achieves a
giant leap in recent years. Lots of research verified that dis-
tinguishing easily confused images rely on efficient location
discrimination regions and feature learning [8, 9].

Inspired from the performance of discriminative regions in
FGVC tasks, the accurate region proposing shows pivotal value
[10, 11]. In the past few years, convolutional neural network
(CNN) learned high‐level semantic features from the shallower
to the deeper, which reveals formidable advantages in computer

vision [12, 13]. Fu et al. [8] proposed RA‐CNN which utilises a
multi‐scale network to multi‐step refine unique local region. Liu
et al. [10] proposed FDL which adopts efficient supervision for
discriminative part proposals and region‐based feature learning.
However, CNN builds long‐distance dependencies among
features in a limited way, which is difficult to effectively focus on
the global receptive field. Concurrently, CNN cannot dynami-
cally adapt to rich variety of input due to the fixed weights.

Recently, researchers creatively apply transformer to
computer vision tasks [14]. Compared with CNN, the self‐
attention mechanism in transformer is not affected by local in-
teractions, which can both achieve long‐distance dependencies
and perform parallel computing. Carion et al. [15] proposed
DETR which combines a simple CNN with a transformer to
generate the final detection set. Dosovitskiy et al. [16] proposed
ViT which is a novel image classification model based on
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self‐attention mechanism completely and the first research of
transformer substituting for CNN. Zhang et al. [17] proposed
AFTrans which utilises adaptive attention multi‐scale fusion
transformer for FGVC. Nonetheless, on the one hand the raw
attention weights of transformer are used in a simple combi-
nation way, on the other hand the proposed transformer ap-
proaches rely on inputs at once to obtain discriminative regions
and do not employ the advantages and tricks of CNN to improve
the performance of transformer in FGVC.

To address the above challenges, we proposed a novel
model RDTrans which can further boost the performance of
ViT via lots of improvements according to the traits of FGVC.
To be specific, we find that benefiting from knowledge trans-
ferring for distillation learning and recurrent discriminative
region proposing, the performance of the critical region pro-
posing obtains a steady progress [18–20]. Note that region
proposing with a recurrent manner takes the input from the
image region selected by attention weight fusion. Firstly, the
attention weights in each transformer layer are grouped ac-
cording to the index of attention heads and then fused by
matrix product within the group, which outputs attention
weight maps. Secondly, the attention weight fusion block
consists of channel attention module and feature refinement
module to further focus on significant information. Thirdly, we
utilise channel grouping and maximum connected region
search methods to determine the currently selected discrimi-
native region. Fourthly, we adopt a recurrent manner to locate
the discriminative region from coarse to fine. Moreover, we
propose a distillation learning approach to transfer the object‐
based knowledge by CNN to the region proposing sub‐
network. Intuitively, the object‐based feature learning can
bring about relatively reliable label distribution knowledge. To
compensate for the shortcoming of ViT region proposing, we
design object‐based feature learning to supervise region
proposing.

Since the finer‐scale network utilises the recurrent manner,
RDTrans can gradually focus on the most discriminative re-
gions from coarse to fine. Concurrently, the distillation learning
can reinforce the generalisation ability of the network. Thus,
RDTrans benefits from the co‐action of the recurrent learning
and distillation learning. To future apply the superiority of
ensemble learning, our model utilises fusing attention weights
to enhance feature representation. The RDTrans outperforms
existing vision transformer networks (e.g. ViT [16], Deit [21]

etc.) on the ImageNet [22] as shown in Figure 1. Our contri-
butions are summarised as follows:

� To more accurately capture salient feature, we employ
attention weights fusion method to increase the sensitivity
to informative features and suppress less useful ones.

� To capture the most discriminative region, we adopt a
recurrent manner to gradually focus on the most salient
discriminative regions.

� To reinforce the generalisation ability of the network, we
adopt a distillation learning approach to achieve the
improvement of performance.

� To our best knowledge, RDTrans outperforms transformer‐
based network for FGVC tasks.

2 | RELATED WORK

In this section, we review previous methods that are most
closely related to this study, including discriminative region
proposal, distillation learning, and transformer combines with
CNN.

2.1 | Discriminative region proposal

Discriminative region proposing methods have been givenmore
attention due to the decisive role of obtaining discriminative
features. Lots of approaches have been proposed by detecting
the corresponding discriminative regions. CNN played an
important role in the fgvc field and a lot of studies have made
contributions in dealing with discriminative regional proposal
[23, 24]. Zheng et al. [9] proposed MA‐CNN which is one‐scale
network to recommend multiple discriminative regions by
channel grouping layer. He et al. [11] proposed TASN which
transfers the distilled learned fine‐grained knowledge from
hundreds of region proposing to a simple CNN. Recently,
transformer has been applied to computer vision tasks and
achieved satisfactory results [25–27]. ViT does not rely on CNN,
which cannotmeet FGVC taskswell due to each tokenwhich has
equal role in ViT. He et al. [28] proposed TransFG for FGVC,
which cannot utilise all attention weights in ViT, such that it only
chooses some tokens with important contribution. Conde et al.
[29] proposed a multi‐stage ViT framework for FGVC, while it
simply uses the attention regions generated by ViT, and
continuously refines discriminant region through serial multiple
ViT networks, which significantly improves the complexity of
model. Zhang et al. [17] proposed an adaptive multi‐scale
transformer model AFtrans for FGVC, while it only corrects
the discriminant region once, which has limited improvement on
the performance of FGVC.However, we utilise aViT network to
refine the discriminant region in a recurrent way to reduce the
complexity, and complement the transformer with the fused
attention weight to further enhance the feature representation.
Meanwhile, we apply the advantage of distillation learning to
improve the generalisation ability of the model.

F I GURE 1 The comparison of top‐1 accuracy of SOTA methods on
ImageNet.
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2.2 | Distillation learning

Knowledge distilling transfers knowledge from a high perfor-
mance network into a smaller, distilled network in a teacher‐
student manner [30]. Liu et al. [10] proposed the FDL model,
which transfers the knowledge from object to part regions as
‘teacher’ and ‘student’. On the contrary, Zheng et al. [11] pro-
posed TASN with knowledge distillation, which transfers fine‐
grained knowledge into object‐based feature learning. As far
as we know, both FDL and TASN achieve SOTA for FGVC at
that time. Touvron et al. [21] proposed DeiT which adopts
attention to distil transformer. Interestingly, DeiT demonstrate
that using convolution network as teacher network for distilla-
tion is better than using transformer network as teacher.
Whereas distillation learning can evidently strengthen the
feature learning, we employ distillation learning to look for the
devil in the details for FGVC.

2.3 | Transformer combines with CNN

The locality of CNN can enrich the feature diversity of
transformer, which is a benefit for optimising the problem of
over‐smoothing of transformer features. The first method is to
utilise the local characteristics of CNN in transformer to
improve the network representation ability. Esser et al. [25]
built VQGAN which combines CNN with transformer to
yield high‐resolution images. He et al. [28] proposed TransFG
which just keeps vital tokens as the inputs of the final trans-
former layer. Swin transformer [31] explicitly interacts locally
by limiting attention to local window. CeiT [32] adds local
feature learning to FFN module to establish local relationship.

The second method is to combine transformer and CNN to
form a new network structure, for example, CeiT [32] and
ViTc [33] add convolution blocks to the front of transformer
to enhance the extraction of deep local information. Currently,
the popular method is to fuse CNN features and transformer
features. FFVT [34] aggregates the local information of multi‐
level tokens for classification. AFTrans [17] reinforces the
location of discriminative regions with the help of channel
attention mechanism. In this case, we carry on the magic of the
fusion of CNN and transformer to further promote efficiency
and effectiveness of RDTrans.

3 | METHOD

In this section, we will introduce the RDTrans network, which
contains three modules (i.e. attention weight map, vital region
proposing, and distillation learning). We utilise three modules
to focus on the relative importance of the raw attention
weights.

An overview of RDTrans is shown in Figure 2. Note that
ViT is the backbone of the RDTrans which combines with the
multiple attention weights fusion blocks for salient feature
representation in a recurrent way and the distillation learning
sub‐network transfers knowledge to backbone to enhance
discriminative region proposing.

From Figure 2, it can be observed that we group the
transformer layers according to head for generating grouped
head feature map (i.e. Head 1#, Head k# etc). Each grouped
head feature map generates a feature map (d ∈ R1�H�W , where
H=W= the number of patches) by matrix product, and they are
concatenated to output feature weight maps. Concurrently,

F I GURE 2 The architecture of RDTrans. Images are split into patches of the same size and sent into ViT. We group the transformer layers by head to
generate an attention weight map. Subsequently, CNN is utilised to reinforce the feature representation and detect the most discriminative region at the moment
over image. With a distillation learning method, RDTrans continuously refines the discriminative region in a recurrent way.
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RDTrans consists of multiply attention weights fusion blocks,
which finally outputs the current saliency feature map. Then, we
utilise channel grouping method to cluster neighbouring loca-
tions for producing part attentions and we apply maximum
connected region search method for proposing discriminative
region. Finally, we crop and zoom in this region to the given size
as the input of ViT.

3.1 | Attention weight map

To obtain more comprehensive and rich features, ViT utilises
multi‐head self‐attention mechanism and each head focus on
different region feature. ViT splits an image into fixed‐size
patches, linearly embed each of them, add position embed-
dings, and feed the resulting sequence of vectors to a Trans-
former encoder layer. The attention weight of each head is
described as follows:

W¼ soft max
QKT
ffiffiffiffiffi
dk

p

 !

ð1Þ

where Q, K, V are Query, Key, and Value vectors respectively.
dk is the dimension of Key and the dimension of W is
dw ∈ RP�P (P is the number of patches).

In view of this, the attention weights of ?‐th transformer
encoder layer are shown below:

wL ¼ w1
L;w

2
L; :::;w

k
L

h i
ð2Þ

where k is the number of the self‐attention heads. Thus, the
attention weight map in RDTrans is as follows:

MAðAttention Weight MapÞ

¼ ∏
h¼n

h¼1
W h

1

� �

; ∏
h¼n

h¼1
W h

2

� �

; :::; ∏
h¼n

h¼1
W h

k

� �� �

ð3Þ

where n is the number of transformer encoder layer, Π is
matrix product, attention weight map with MA ∈ Rk�ðP�PÞ.
The detailed process description is shown in Figure 3.

3.2 | Vital region proposing

Locality is a typical feature of CNN. In contrast, the learning
process of transformer focuses on the interaction of global
information. Thus, CNN can compensate for the deficiency of
transformer (e.g. Ceit [32], Vitc [33], MobileViT [31] etc.). The
detailed architecture of attention weight fusion block in
Figure 2 is shown in Figure 4.

AWFB consists of channel attention (CA) and feature
refinement module (FR). CA is composed of Max Pooling,
Max Pooling, and a MLP with two layers sharing weights. The
output of CA can be denoted as MðcÞ:

MðcÞ ¼MA

∗ sigmoid MLP AvgPool MAð Þð Þ þMLP MaxPool MAð Þð Þð Þ

ð4Þ

where the dimension of MðcÞ is consistent with that of MA.
FR is a residual network composed of two 3 * 3 Conv layer

and one 1 * 1 Conv layer, which further improves the network
representation ability. The output of AWFB is denoted Y .

Y¼ f1�1 f3�3 f3�3 MðcÞ
� �� �� �

þMA ð5Þ

F I GURE 3 The detailed process of attention weigh map in RDTrans.
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where the dimension of Y is the same as MA. We utilise mul-
tiple AWFB to obtain saliency feature map.

As far as we know, previous work [24] verified that con-
volutional channels in high‐level layers tend to have responses
to specific semantic patterns. Thus, we can divide convolutional
channels into several groups by their semantic information. We
adopt cosine similarity to achieve channel grouping.

Mλ ¼ Fλ
X

cos Fi; Fj
� �� �� �

ð6Þ

where i and j are different channels, λ is the threshold of the
number of grouping which is a hyperparameter with default
values of 3. We regard each group as a connected region. Then,
we employ the maximum connected region search algorithm to
select the largest connected component from Mλ for locating,
cropping, and zooming in this region over the raw image. In
Figure 4, as ViT ignores lots of significant details for FGVC,
we adopt a recurrent way to gradually focus on the most ac-
curate discriminative region for achieving efficient object
recognition.

In this work, we zoom in the cropped image region and its
size is consistent with the raw image for training network
effectively. At the same time, the number of loop is set to 3,
and we give the reason in the corresponding experiments.

3.3 | Distillation learning

To improve the generalisation ability of RDTrans, we employ
knowledge distillation method which transfers the learned
details from CNN to ViT‐based region proposing network in a
teacher‐student manner.

Specifically, the teacher‐student outputs are denoted
ZtðteacherÞ;ZsðstudentÞ respectively. Then, we convert Zt;Zs
into a soft probability distribution over classes. Taking Zs for
example:

qðiÞs ¼
exp ZðiÞs

T

� �

P
jexp

ZðjÞs
T

� � ð7Þ

where T is a temperature parameter to produce a soft proba-
bility distribution over classes. Hence, we get the soft target
cross entropy for the distillation learning as:

Lsoft qt; qsð Þ ¼ −
XN

i¼1
qðiÞt log

qðiÞs ð8Þ

where N is the number of classes. Thus, the loss function of
the RDTrans is as follows:

Lf ¼ αLsoft þ βLVIT ð9Þ

where LVIT is the loss function for ViT. Note that α and β are
hyperparameter with default values of 1, unless otherwise
specified.

4 | EXPERIMENTS

In this section, we evaluate and analyse the performance of
RDTrans on four widely used fine‐grained benchmarks. The
url of our codes is https://github.com/dlearing/RDTrans.git.

F I GURE 4 An overview of discriminative region proposing. An Attention Weight Fusion Block (AWFB) includes channel attention module and feature
refinement module, which are stacked to produce saliency feature map. We adopt some tricks (i.e. channel grouping and maximum connected region methods) to
assert the discriminative region. Note that the input of Attention Weight Fusion Block is MA, and all of them share weights. We adopt matrix addition in the
residual connection for Attention Weight Fusion Block.
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4.1 | Experiments setup

Datasets. To verify the performance of RDTrans, we carry out
experiments on four datasets, including CUB‐200‐2011, Stan-
ford Cars, Stanford Dogs, and iNat 2017. The detailed statistics
for example, quantity, category numbers, and data splits are
summarised in Table 1.

Implementation. In our experiments, the input images are
resized 224*224 for fair comparison, which are split patches of
size 16*16. Meanwhile, the step size of sliding window is set to
be 12. Then we load weights from the official ViT‐B_16 model
pre‐trained on ImageNet [22]. We utilise SGD optimiser with a
momentum 0.8 and weight decay 0. The batch size is set to 16.
We employ cosine annealing to adjust the learning rate which is
initialized as 0.001 for four benchmarks. RDTrans is trained on
four GPU (i.e. GeForce RTX 2070 8GB) with Pytorch as our
code‐base. Note that the backbone of the ‘teacher’ sub‐
network is ResNet50 [37].

4.2 | Performance comparison

To prove the performance of RDTrans, we compared it with
other SOAT models on above mentioned benchmarks. From
Table 2, we found that RDTrans obtains SOAT performance on
CUB‐200‐2011 [1], Stanford Cars [11], and Stanford Dogs [3].

Compared with the best result CLNET50 [39] so far,
RDTrans achieves a further 0.9% improvement and reaches
93.3% on CUB‐200‐2011. Although ViT‐based models obtain
good performance on CUB, our RDTrans gets 1.7% perfor-
mance gain compared to FFVT [34] and outperforms all CNN‐
based and ViT‐based methods. CNN‐based methods (e.g. RA‐
CNN [8] etc.) dependents on the relationship among local
regional features to obtain discriminative regions, which are
difficult to improve the performance. Later, methods with
distillation learning (e.g. FDL [10], TASN [11] etc.) utilise
‘teacher’ sub‐network to refine the discriminative region pro-
posing several times. The appearance of ViT activates the po-
tential of transformer in FGVC. Thus ViT‐based methods
achieve much better performance than the CNN‐based
methods. However, compared to the ViT‐based methods,
CLNET [39] employ long‐distance feature dependency to take
the lead in the FGVC again. In view of this, RDTrans combines
the advantages of CNN and transformer to further improve
performance for FGVC.

The 4th column of Table 2 shows the results on Stanford
Cars. We observe that RDTrans first outperforms CNN‐based
methods with 0.4% improvement. We believe that this bench-
mark has less image noise than others, which leads to easily

TABLE 1 Detailed statistics of the four datasets used in this paper.

Dataset Total Category Train Test

CUB‐200‐2011 [1] 11788 200 5994 5794

Stanford cars [35] 16185 196 8144 8041

Stanford dogs [3] 20580 120 12000 8580

iNat 2017 [36] 859000 5089 579184 95986

TABLE 2 Comparison results on
CUB‐200‐2011, Stanford Cars, Stanford Dogs.

Method Backbone

ACC. (%)

CUB‐200‐2011 Stanford cars Stanford dogs

RA‐CNN [8] VGG19 85.2 92.5 87.3

MA‐CNN [9] VGG19 86.5 92.8 ‐

TASN [11] VGG19 86.1 92.4 ‐

FDL [10] VGG19 86.84 91.52 84.9

NTS‐Net [38] Resnet‐50 87.5 93.3

DBTNet [24] Resnet‐50 87.5 94.1

TASN [11] Resnet‐50 87.9 93.8 ‐

CLNET50 [39] Resnet‐50 92.4 96.7 ‐

FDL [10] Resnet‐50 ‐ ‐ 85

DBTNet [24] Resnet‐101 88.1 94.5 ‐

FDL [10] DenseNet161 89.09 94.02 84.46

StackedLSTM [40] GoogleNet 90.4 ‐ ‐

ViT [16] ViT‐B_16 90.2 93.5 91.2

TransFG [28] ViT‐B_16 90.9 94.1 90.4

AFTrans [17] ViT‐B_16 91.5 95.0 91.6

FFVT [34] ViT‐B_16 91.6 ‐ 91.5

RDTrans ViT‐B_16 93.3 97.1 93.6
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obtain discriminative regions for classifying sub‐categories.
Even so, RDTrans achieves a 2.1% improvement compared to
AFTrans [17] in terms of accuracy. We analysis that the reason is
fusion CNN and locating the most discriminative region in a
recurrent way.

Similarly, due to the subtle inter‐class differences among
certain species, Stanford Dogs [3] is a challenging benchmark.
The 5th column of Table 2 shows that ViT‐based methods
outperforms CNN‐based by a large margin. However, our
RDTrans still outperform all of methods, which gets 2.0% gain
compared to AFTrans and reaches 93.6% with its discrimina-
tive region proposing.

We show evaluation results on iNat2017 in Table 3. The
iNat2017 [36] is a large‐scale dataset with complicate back-
ground and high computational complexity. Luckily, ViT out-
performs RA‐CNN [8] by 3.9%, which demonstrates that ViT
is born for large‐scale benchmark. Based on ViT, RDTrans
gets 1.8% gain compared to AFTrans. Concurrently, we know
that the GFLOPs of our model outperform DeiT‐B by 6.1%.
Although the total of params achieve 0.2% compared to DeiT‐
B, its influence is limited. We believe that it is due to the
adoption of attention weight fusion blocks.

4.3 | Ablation studies

We conduct ablation studies to show the effect of variants in
RDTrans architecture on FGVC results. All ablation studies are
done on CUB [1] while other datasets have the same phe-
nomenon as well.

Impact of Attention Weight Fusion Block. RDTrans
has multiple attention weight fusion blocks, which significantly
enhance fine‐grained feature representation.

FromTable 4, it can be observed that attentionweight fusion
block has a significant improvement in performance for FGVC.
We argue that these blocks focus on the relative importance
of the raw attention weights. Specifically, if we add one block,
the model can outperform ViT by 1.3%. Concurrently, the
computational complexity is directly proportional to the number

of blocks, but the improvement of accuracy is limited. Thus, we
add three blocks in RDTrans.

From Table 5, both channel attention module and feature
refinement module are beneficial to the improvement of per-
formance. They achieve 0.7% and 0.4% gain compared to ViT
respectively. We think that these two blocks further fuse atten-
tion weights, which is able to selectively emphasise informative
features and suppress less useful ones.

Impact of Channel Grouping. In order to produce the
discriminative region, we have to select themaximum connected
component of the channel with the largest peak value. Besides,
we have to cluster the similar channels and then uses method
one to obtain the coordinates of the discriminative region.

TABLE 3 Comparison of SOTA
methods on iNat 2017, ImageNet.

Method Backbone
iNat 2017 ImageNet

ACC. (%) #param (£106) GFLOPs

ResNet152 [37] ResNet‐152 59 ‐ ‐

SSN [41] ResNet‐101 65.2 ‐ ‐

TASN [11] ResNet‐101 68.2 ‐ ‐

IncResNet [42] IncResNet‐101 67.3 ‐ ‐

ViT [16] ViT‐B_16 68 86 743

TransFG&PSM [28] ViT‐B_16 67.4 ‐ ‐

AFTrans [17] ViT‐B_16 68.7 ‐ ‐

DeiT‐B [21] ViT‐B_16 ‐ 86 17.6

DeepViT‐L [43] ViT‐B_32 ‐ 55 12.5

RDTrans ViT‐B_16 70.5 86.2 23.7

TABLE 4 Ablation experiment on different number of attention
weight fusion blocks.

Quantity ACC. (%)

ViT 90.2

One block 91.5

Two blocks 92.6

Three blocks 93.3

Four blocks 93.6

Five blocks 93.8

TABLE 5 Ablation experiment on the framework of attention weight
fusion block.

Methos ACC. (%)

ViT 90.2

+Channel attention module 90.9

+Feature refinement module 90.6

+Channel attention Module + Feature
refinement Module (one block)

91.5
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From Table 6, it conveys that channel grouping block can
improve by 0.9% gain. We argue that similar feature regions are
put together by channel grouping, which is beneficial to yield
the discriminative region.

Impact of Distillation Learning. To show the advantages
of the distillation learning, RDTrans boosts the performance
significantly as shown in Table 6.

In Table 7, using ResNet50 as the backbone of distillation
learning sub‐network. The distillation learning brings 1.9%
accuracy gains, which verifies that the knowledge learned in
entire object by CNN is beneficial for the discriminative region
proposing.

Impact of Recurrent Learning. To select the best
number of loop, we conduct comparative experiments as
shown in Figure 5.

From Figure 5, it can be observed that recurrent method
can significantly improve performance. Similarly, if the number
of loops is set 3, it can achieve 2.4% gains compared to ViT.
Meanwhile, the performance improvement is limited while the

value greater than 3, but the complexity of RDTrans will in-
crease significantly. Hence, we configure the value of this
parameter as 3. When we use RDTrans in different situations,
if the increase in the accuracy of the model is less than 0.5, this
is the best value of loop.

4.4 | Visualisation analysis

One image is randomly selected from each dataset. We conduct
the visualisation experiment and the result is shown in
Figure 6. To demonstrate the excellent performance of
RDTrans, we conduct a comparative experiment.

Specifically, the ViT‐based approaches can select multiple
discriminative parts of the object. Furthermore, our RDTrans
can capture the most discriminative regions and enhance the
feature representation as shown in the 4th row. Furthermore, we
use Attention Rollout to compute maps of the attention from
the output token to the input space in the 5th row.

5 | CONCLUSION

In this work, we propose a novel network RDTrans and achieve
SOAT performance on four benchmarks. We fuse attention
weight grouped by head to reinforce the attention of different
regions. Subsequently, we adopt three attention weight fusion
blocks to obtain salient feature map. Afterwards, we utilise a
channel grouping to produce part attentions from a group of
channels whose peak responses appear in neighbouring loca-
tions. In addition, we adopt a distillation learning method to
transfer the learned knowledge by CNN from object to regions
proposing. Finally, we gradually refine the discriminative regions
in a recurrent way. With the promising results achieved by
RDTrans, we believe that the ViT and CNN are legend for
FGVC. We need to seek the behind story of legend (e.g.
combining multiple maximum connected components) in the
future.

TABLE 6 Ablation experiment on channel grouping constraint.

Grouping ACC. (%)

No Grouping (ViT + three blocks) 92.7

+Grouping (ViT + three blocks) 93.3

TABLE 7 Ablation experiment on different components.

Methods ACC. (%)

Resnet50 83.5

ViT 90.2

RDTrans (No distillation learning) 91.4

RDTrans (+Distillation learning) 93.3

F I GURE 5 Influence of number of loops on
accuracy.
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