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 This paper addresses the essential part of modelling primary user (PU) activity 

pattern in the time domain, which involved choosing the best distribution fit 

to represent idle and busy time. The accurate PU activity model plays a vital 

role in developing high-performance cognitive radio (CR) network. This work 

formulates the PU activity model by using the empirical data measured from 

wireless local area network (WLAN) testbed. The detected idle time analysed 

in this work in two different scenarios, then a statistical approach performed 

to find the best fits. The finding shows the generalised Pareto (GP) distribution 

as the best fit with DKS=0.266 compared to other distribution fits. 
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1. INTRODUCTION 

A transformation from voice communication to the multimedia application and the evolution of the 

internet of thing (IoT) technology increase the need of spectrum frequency in the wireless communication 

industry. Nevertheless, the use of frequency band in the radio spectrum limited due to allocation to primary 

user for particular services. This condition will cause spectrum congestion as there are many users access the 

same spectrum band at the same time. On the other side, there are a lot of spectrum band have been found 

underutilized and the demand for the spectrum band is different in term of users and the usage time. This 

condition will leave certain spectrum frequency unused and release the spectrum frequency to the cognitive 

radio (CR) users to occupy. 

Performance of CR depends on the appearance of idle time in a channel which also known as spectrum 

occupancy. A detected idle time is the opportunity length of time that has been sensed by a secondary user 

(SU) during the spectrum sensing process. The spectrum occupancy in each channel caused by the activity 

pattern of primary user (PU). The detected spectrum occupancy in PU relates to the state of PU signal, which 

is categorised as static and dynamic states. The state of PU channel depends on the behaviour of PU signal 

during sensing duration [1]. Hence, modelling the accurate and realistic PU activity model is crucial in 

https://creativecommons.org/licenses/by-sa/4.0/
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developing a CR system. According to [2-7], most of the previous PU activity models are based on assumptions 

and modelled based on the exponential distribution. Not with standing, there are several empirical measurement 

studies contradict with the finding. According to [8-11], in the real system the period of time of PU activity is 

not exponentially distributed and less accurate. Therefore, an accurate model of spectrum occupancy patterns 

that describe the real system should be developed to encounter this issue. 

In this paper, an experimental setup to observe a CR system is executed, and a wireless local area 

network (WLAN) is emulated as a PU to represent random PU activity. The experimental data is analysed and 

energy detection is performed during the sensing period. An energy detection technique is used because it can 

detect the signal in both the frequency and time domains [12]. The main contribution of this paper is the 

proposed model of an empirical idle time from the measured WLAN signal using generalised Pareto (GP) 

distribution. An algorithm was developed to detect a series of WLAN signals using energy detection. During 

the sensing period, spectrum holes are detected and evaluated to provide opportunities for SU to access a 

channel without interfering with the PU network. The paper is organized as follows, section 2 explains the  a 

detailed research method and overview of modelling the PU activity based on the empirical model, and  

section 3 discusses a result and analysis for the experimental models is presented. Finally, section 4 concludes 

the outcome presents in this paper. 

 

 

2. RELATED WORKS 

The understanding of previous studies and gaps in wireless technologies knowledge remained central 

during this process of identifying potential solutions to the research problem. There are a variety of ways to 

measure spectrum occupancy in time, space, or frequency domain. The measurement configurations and 

testbeds depend on study purposes, ranging from simple to more complicated methods. 

The wireless local area network (WLAN) signals can be measured to obtain the spectrum frequency 

in time domain. The testbed to detect PU signal can be configured by using an antenna for signal detection, as 

well as access point and spectrum analyser to display the detected signals. This testbed known as antenna-

based WLAN setup. This type of measurement for the PU activity pattern setup was studied by [8,13-15]. 

According to [8], a complex WLAN baseband signal is detected by a vector signal analyser that uses 

both antenna-based and isolated RF setups that guarantee to be free of interference from other adjacent devices. 

Meanwhile, in [14] this type of measurement was used to detect two independent WLAN systems under the 

indoor environment. Conversely, [13] has combined a commodity of 802.11 wireless LAN card with 2.4 GHz 

RF transceiver IC for the purpose of spectrum measurements. A probabilistic model was built using the 

empirical data to determine the activity of the 802.11 and non-802.11 separately. Some of studies use a 

universal software radio peripheral (USRP) to measure WLAN signal and to validate the simulation works. 

These works [16-19] have been carried out their measurement using USRP as an interface to connect with 

softwares such as GNU Radio, LabVIEW, and MATLAB. 

 

 

3. RESEARCH METHOD  

An experimental setup is constructed to measure the Wireless Local Area Network (WLAN) signal 

to demonstrate random PU activity like a real-time wireless circumstance. The same testbed of WLAN has 

been used in [14, 19] to maximize the SU throughput by clustering the idle time. The experiment consists of 

two stations (STAs) and a wireless access point 1 (AP1). Both STAs are recognised as STA1 and STA2 and 

are connected to AP1 through a wired and wireless LAN, respectively. Accordingly, STA1 and STA2 share a 

significant amount of the data (i.e. file), through AP1. The STA2 retrieves the data file from STA1 using the 

MS Windows file sharing facility. Indeed, the large data file is used to ensure that the download process has 

not been completed during the measurement process. Therefore, the resultant traffic via access to the WLAN 

is considered as full-buffering. 

Meanwhile, in the second scenario the other two stations, STA3 and STA4 are added up in the same 

channel. Both STA3 and STA4 are connected to wireless access point 2 (AP2) similar as the connection in 

scenario 1. The specification of the WLAN system used in the experiment is shown in Table 1. The packet 

accessed in the system is discovered by the detecting antenna (DA), which is a wireless LAN Omni-antenna. 

The DA is connected to a real-time spectrum analyser, SA2600 (Techtronic) to display the spectral activities 

of the system in an indoor real-time environment. The measurement antenna is located near to AP1 and AP2 

to maintain the power of the detected signal. As a result, false alarms and miss detections are avoided.  

Figure 1 and Figure 2 illustrate the structure of the experimental setup, and the specification of the signal 

detector are listed in Table 1. 
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Figure 1. Experimental of WLAN system setup for  

scenario 1 

 

Figure 2. Experimental of WLAN system setup for 

scenario 2 
 

 

Table 1. Specification of WLAN system 
WLAN standard IEEE 802.1a 

Transmission Power 12% of the Prescribed 
WLAN Extension NEC Corp.,PA-WL54SU2 

Access Point Logitech Corp., LAN-WAGE/AP 

 

 

3.1.  Modelling of primary user activity based on the empirical model (EM-PuO) 

The detected signals of the wireless network are observed from AP1 and AP2 as displayed in the 

SA2600 spectrum analyser and are then saved for offline processing and analysis. The spectrum analyser 

captured a minimum number of PSD samples in time dimension which is defined by the sampling rate and the 

measurement period. The measurement is executed indoor and evaluated during the short-term measurement 

campaign. The detected signal displayed is an OFDM signal with the given specification in Table 2. The signal 

is then converted to PSD vs time to execute evaluation in time domain. The displayed signal emulated as PU 

activity in a channel with fixed frequency in a changing value of time. 

The TOL that have been extracted from the WLAN signal is modelled as EM-PuO. The EM-PuO is 

the empirical measurement data of the PU. It is imitated by the WLAN system as random PU activity for SU 

opportunistic transmission. The modelled EM-PuO is used to form the realistic spectrum occupancy of the PU 

channels based on the real measurement of the WLAN system. 

According to the MAC protocol of the IEEE 802.11a standard, the WLAN specification considered 

in defining the states space and analysed them. IEEE 802.11a has different access modes which are distributed 

coordination function (DCF) and enhanced distributed coordination access (EDCA). The IEEE 802.11a MAC 

protocols have a standard length of interframe space (IFS), which depends upon the previous frame type, the 

following frame type, the coordination function inuse and the physical layer (PHY) type [20]. 

 

 

Table 2. Parameters of signal detector 
Bandwidth 5 MHz 

Center Frequency 5.2 GHz 
Reference Level -10 dBm 

Samping rate 2 Msamples/sec 

Measurement antenna ELECOM WDC 433DU2H 
Detecting Antenna Omni-directional 

 

 

3.2.  Characterisation of WLAN signal 

The detected WLAN signal is classified into four (4) type of states which are the data packet, short 

inter-frame spacing (SIFS), ACK, and a stop period, tp. The stop period tp is a combination of distributed 

coordination function spacing (DIFS) and the random back-off time tRB. Each inter frame spaces (IFS) will 

define the priority for a station to access the wireless channel. 

The temporal measurement for both scenario 1 and scenario 2 are based on one cycle signal as 

illustrate in Figure 3 and Figure 4 respectively. In scenario 1, only one PU is generated from the experiment, 

where the signal consists of 𝑡𝑑𝑎𝑡𝑎1, 𝑡𝑆𝐼𝐹𝑆, 𝑡𝐴𝐶𝐾 and 𝑡𝑝 for one cycle of the signal. The 𝑡𝑑𝑎𝑡𝑎1 spaces with 5 mW 

power that displays in Figure 3 indicated as the PU signal. In the standard transmission data packet, the 

appearance of SIFS indicates the end of the data packet, and the ACK signal is sent by AP to acknowledge the 

received packet. Meanwhile, in Figure 4, there are two different power of signals which are 𝑡𝑑𝑎𝑡𝑎1 = 5 𝑚𝑊 and 

𝑡𝑑𝑎𝑡𝑎2 = 2 𝑚𝑊, both represent PU 1 and SU 1 respectively. 
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The characterisation of the detected WLAN signal with the BUSY and IDLE states is shown in  

Figure 5. Thet_SIFSandt_DIFSspace classified as BUSY state as the interframe spaces have important function 

in WLAN signal sequence, which cannot be accessed by SU. Thet_SIFSis the shorter IFS that indicate the end 

of the data frame and before the ACK signal. Importantly, in this system, the PU also performs sensing to 

detect wireless access, and in detecting any access during t_RBwhereby, if detected, the countdown of the 

back-off is immediately stopped. 

During measurement, the SU transmitter and receiver are configured to communicate using short-

range communication with minimal signal power. However, even though the SU signal is low, it produces 

harmful interference to the PU due to the close distance between the SU transmitter and the PU receiver. 

Accordingly, in this situation, the PU is not able to detect access to the system, but instead, suffers from the 

hidden node terminal interference. Therefore, to avoid this problem, the SU will only exploit the spectrum 

during the back-off period,t_RB. The appearance of a data series,𝑡𝑑𝑎𝑡𝑎1,𝑡𝑆𝐼𝐹𝑆,𝑡𝐴𝐶𝐾and 𝑡𝐷𝐼𝐹𝑆periods thereby 

specify that the channel is in the busy state and is known as𝑡𝑏𝑢𝑠𝑦. Meanwhile, during the running random back-

off time, 𝑡𝑅𝐵 the channel is identified as the idle state of the model. The states of BUSY and IDLE are expressed 

as given by: 
 

𝑡𝑏𝑢𝑠𝑦 = 𝑡𝑑𝑎𝑡𝑎1 + 𝑡𝑆𝐼𝐹𝑆 + 𝑡𝐴𝐶𝐾 + 𝑡𝑝       (1) 
 

𝑡𝑅𝐵 = 𝑡𝑝 − 𝑡𝐷𝐼𝐹𝑆         (2) 
 

𝑡𝑖𝑑𝑙𝑒 = 𝑡𝑅𝐵         (3) 
 

 

  
 

Figure 3. The measured WLAN signal when only 

PU1 in the channel 

 

Figure 4. The measured WLAN signal when PU1 

and SU1 access the channel 
 
 

 
 

Figure 5. Characterisation of the detected WLAN signal 
 
 

3.3.  Probability of generalised Pareto (GP) distribution 

The statistical characterisation of the channel is needed to specify the accurate PU activity traffic. A 

statistical behaviour will be captured by finding the distribution of the component of idle and busy time. This 

section analyses the suitable considered cdf models in describing both idle and busy time by employing the KS 

distance tests. Based on the extracted length of𝑡𝑖𝑑𝑙𝑒and𝑡𝑏𝑢𝑠𝑦obtained from the empirical data, a cumulative 
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distribution (CDF) was derived and compared to the probability of the distribution model. The distribution of 

generalised Pareto (GP) has gained attention for estimating parameters in practical application. Moreover, the 

GP distribution model has captured the primary user traffics variation accurately in [3, 21, 22] and increased 

the SU throughput by 5% in [23]. The probability distribution for GP is given as [24]: 
 

𝑓(𝑡𝑖𝑑𝑙𝑒| 𝑘, 𝜎) =
1

𝜎
(1 + 𝑘

𝑡𝑖𝑑𝑙𝑒−𝜇

𝜎
)(

−1−1

𝑘
)
      (4) 

 

Meanwhile, the cumulative distribution function of GP (𝜇, 𝜎, 𝑘) is given as: 
 

𝐹(𝑡𝑖𝑑𝑙𝑒) = {
1 − [1 −

𝜎(𝑡𝑖𝑑𝑙𝑒−𝜇)
1
𝑘

𝑘

1 − 𝑒−
𝑡𝑖𝑑𝑙𝑒−𝜇

𝜎 , 𝑘 = 0

, 𝑘 ≠ 0      (5) 

 

where 𝑘 ≠ 0denotes the shape parameter,𝜇is the location and𝜎is the scale. Noted that, for𝑘 = 0, the GP 

converges to the exponential distribution. The mean value of the distribution is 𝐸(𝑥) =
𝜎𝑘

𝑘−1
 for shape 𝑘 > 1. 

The Kolgomorov-Sminorv (KS) test is calculated for both the empirical data and the distribution fit to quantify 

the distance, 𝐷𝐾𝑆: 
 

𝐷𝐾𝑆 = 𝑚𝑎𝑥{ |𝐹𝑇𝑖𝑑𝑙𝑒

𝑒 (𝑡𝑖𝑑𝑙𝑒) − 𝐹𝑇𝑖𝑑𝑙𝑒
(𝑡𝑖𝑑𝑙𝑒) |}      (6) 

 

where𝐹𝑇𝑖𝑑𝑙𝑒
is empirical CDF of𝑇𝑖𝑑𝑙𝑒 . After running the KS test, the𝑡𝑖𝑑𝑙𝑒and𝑡𝑏𝑢𝑠𝑦are approximately the 

exponential distribution random variables as𝜆𝑖and𝜆𝑏respectively. 

MLE is a standard method of estimation in a statistic. It provides efficient estimators than other 

methods and has been well-known in a distribution fitting. A likelihood function is given as: 
 

𝐿(𝜃) = 𝑓( 𝑋1 | 𝜃) ×. . .× 𝑓(𝑋𝑛|𝜃)       (7) 
 

where the 𝑓( 𝑋 | 𝜃) = 𝑃𝜃( 𝑋 = 𝑋) is the unknown distribution 𝑃𝜃 with a sample 𝑋1, . . . , 𝑋𝑛that was observed. 

Then, the function of 𝐿(𝜃) tells the likelihood of the observed sample as: 
 

𝐿(𝜃) = 𝑓( 𝑋1 | 𝜃) ×. . .× 𝑓(𝑋𝑛|𝜃) = 𝑃𝜃( 𝑋1) ×. . .× 𝑃𝜃( 𝑋𝑛) = 𝑃𝜃( 𝑋1, . . . , 𝑋𝑛) (8) 
 

The value of 𝜃 indicates the MLE, which shows the largest likelihood of the observed data. The MLE often 

maximizes 𝑙𝑜𝑔{ 𝐿(𝜃)} if the data is independent and the likelihood are 𝐿(𝜃) = 𝑚𝑎𝑥 𝐿 (𝜃), Since maximizing 

𝑙𝑜𝑔{ 𝐿(𝜃)} equivalent to maximize𝐿(𝜃) the log-likelihood function can be written as in [25] as: 
 

𝑙𝑜𝑔{ 𝐿(𝜃)} = ∑ 𝑙𝑜𝑔 𝑓 (𝑋𝑖|𝜃)𝑛
𝑖=1        (9) 

 

The higher value of the MLE or log-likelihood indicates the best fits of the observed distribution to the 

empirical data [26]. 
 

 

4. RESULTS AND ANALYSIS  

The total number of the detected idle time in both scenarios is displayed in Figure 6. The number of 

idle times detected in scenario 2 is higher than scenario 1 with 183 idle times. This situation occurs as there 

are two stations which are PU and SU competed to get the opportunity to transmit in the channel. Meanwhile, 

in scenario 1 only 156 idle times detected due to no competition between stations as there are only one PU in 

the channel. Nevertheless, the detected idle time in scenario 1 have longer period than in scenario 2. 

Table 3 shows the observation of𝝀𝒊which represent the idle time base on different distribution fits. 

The accuracy of the empirical data in this work compared the best distribution fit by parameter of DKS and 

MLE. According to the DKS value, the GP distribution is the best fit for idle period, 𝝀𝒊in both scenarios. The 

best and accurate fit is determined based on the minimum values of DKS which indicates that the fit describes 

the empirical data [2]. In addition, among the distribution fits listed in Table 3, the GP showed the highest 

value of loglikehood in 𝝀𝒊. The GP distribution also appeared as the best fit to the empirical data in other 

services as pointed in [27, 28]. 
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Figure 6. The number of idle time for both scenarios 
 

 

Table 3. The distribution fit for idle time 
Distr. Fit Idle time,𝝀𝒊  

Scenario 1 Scenario 2 
DKS             MLE DKS             MLE 

GP 0.266 1300 0.337 3185 

Ex 0.272 1300 0.353 1399 

Normal 0.306 1228.2 0.380 2567 

 

 

Figure 7 shows the empirical CDF and the fitted distribution for the idle time. The result indicated 

that the distribution fits started to approach the empirical CDF when the idle time reached 0.4 ms. Meanwhile 

during the shorter idle time, which is 0.2 ms, there are a big gap between the empirical CDF and others fitted 

distribution. According to the KS test, the GP distribution is the best fit for idle period with 𝐷𝐾𝑆=0.266. The 

graph also indicated that 50% of the detected idle times in scenario 1 are lower than 0.1 ms. 

 

 

 
 

Figure 7. Empirical CDF and fitted distribution for idle period for scenario 1 

 

 

The empirical CDF and distribution fit for idle time in scenario 2 illustrated in Figure 8. This figure 

shows that almost 50% of the detected idle times are below than 0.06 ms, which is shorter than in scenario 1. 

The best fit for𝜆𝑖 is GP distribution with𝐷𝐾𝑆=0.3370 and MLE=3185. In scenario 2 with two users which is 

PU1 and SU1 (refer Figure 2) access a channel, the idle time (tRB) is slightly shorter period than the idle time 

in scenario 1 (Figure 1). The shorter period in scenario 2 happen as there is a competitive condition as many 

users access the channel at the same time. The WLAN system generates more numbers of tRB to give equal 

opportunity to other users to transmit in the channel. While longer idle time in scenario 1 will open the longer 

vacant time for SU to exploit. 
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Figure 8. Empirical CDF and fitted distribution for idle period for scenario 2 

 

 

5. CONCLUSION 

This paper analyses the idle time detected in the WLAN and compared the duration of the idle time 

in two different scenarios. Then a statistical approach evaluated from the detected idle and busy time to provide 

the best fit. The generalised Pareto distribution outperformed other distributions in characterising idle time 

with the lowest value of DKS=0.266, which meant that this distribution was accurate and approximately 

represented the empirical data. 
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